Development of imaging techniques
for scintillating light tracks
In @ novel neutron detector

Samuele Lanzi Licia Mozzina

22 November 2024



Motivations for neutron tracking

Neutron trackers are essential tools for
the development of many research fields
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Techniques for Recoll Proton Track Imaging

Fast neutrons and protons interact E
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Fast neutrons and protons interact

mainly via elastic scattering
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If the neutron source 1Is NOT known
a double scattering I1s needed
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The RIPTIDE detector concept

Advancements in silicon detector technologies
enable the imaging of scintillation light
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RIP TIDE: current status
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Parametric Monte Carlo simulations

A Geant4 simulation of 1M monoenergetic
neutrons provides data on reactions within
the scintillator
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Parametric Monte Carlo simulations

A Geant4 simulation of 1M monoenergetic
neutrons provides data on reactions within
the scintillator
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Scintillation optical photons are propagated using a custom code
Introducing optical aberrations, primarily spherical aberration
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Parametric Monte Carlo simulations

A Geant4 simulation of 1M monoenergetic
neutrons provides data on reactions within

the scintillator
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Two projections on
the sensor are used
for the analysis
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Proton reconstruction from i1ts projections
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Proton track direction

Find the 2D direction of the projected
tracks with the Hough transform

- _ B
Each (u, v) is mapped using

p=ucosfd+vsiné




Proton track direction

Find the 2D direction of the projected
tracks with the Hough transform

- _ A )
Each (u, v) is mapped using
p=ucosfd+vsiné y N
~ / Fill the (p, @) space

and find the peak
\ Y,




Proton track direction

Find the 2D direction of the projected
tracks with the Hough transform

Each (u,v) is mapped using y A
. p=ucosd+vsmnéb ) | h g How to resolve the ambiguity In A
all the (p,0) space the orientation?
and find the peak \ /
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Proton track orientation
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Proton track orientation
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Proton energy

Proton energy can be estimated from the 3D
track length (Range) using R = aE”
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Proton energy

4 . )
Range 1s calculated by projecting

unaberrated tracks on each axis

Proton energy can be estimated from the 3D
track length (Range) using R = aE”
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Results
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Conclusion & Future developments

/The method for measuring the energy and

appears promising based on Monte Carlo data
\vvhen the source position 1s known

~

direction of neutrons incident on the scintillator

/

\position when 1t Is unknown

/Applying the same method to double-scatterin
events would allow for determining not only the
iIncident neutron energy but also the source

~

g

Kl'he method relies on various techniques: the\
Hough transform, the momenta methods, and
deep learning techniques to determine the
neutron direction and energy from a single

/

Qcattering event /

QOOKING FORWARD TO EXPERIMENTAL DATA>




