DUNE Physics program and prototyping

Federico Galizzi On behalf of the DUNE Collaboration

La Thuile – 11/03/2025

The experiment

A next-generation neutrino experiment

The long-baseline scheme [1]

- Powerful (anti)neutrino beam
 - Wide spectrum, peak ~ 3 GeV
 - Intensity > 2 MW
- Near Detector
 - Argon target and movable detectors
 - Pixelated readout and optical modularity
 - Flux constraints (spectra and composition)
- Far Detector

EUTRINO EXPERIMEN

- Massive underground LAr-TPCs
- Charge and light readouts
- Oscillated spectra, astroparticle studies

Beam program

Complete the three-flavour frame

Analysis of the (dis)apprearence spectra:

- $\nu_{\mu} \rightarrow \nu_{\mu}$ $\nu_{\mu} \rightarrow \nu_{e}$ $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$ $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$
- Mass Ordering
 - > 5 σ sensitivity for any δ_{CP} value
 - From 1 to 3 years according to the scenario
 - Exploit the matter effect
- **CP-violation**
 - Exp 5 σ for 50% of values in ~10 years
 - Sub-leading distortion in the oscillated spectra

 $sin^2 2\theta_{13} = 0.088$

 $sin^2 \theta_{23} = 0.580$

NC

 $(v_{\tau} + \overline{v}_{\tau})$ CC

 $\delta_{CP} = -\pi/2$

 $\delta_{CP} = +\pi/2$

 $-\delta_{CP} = 0$

6

Federico Galizzi

2

3

4

5

GeV

per 0.25

160F

140F

120 Events

80F

60F

40H

20

Beam program

Constraint the three-flavour frame

Precise measurements [3]

- Δm^2 resolution ~ 10 $^{-5}$ eV 2
- δ_{CP} within to 6°-16° (depending on true value)
- $heta_{13}$ comptetive with reactor experiments
- $heta_{23}$ octant determination

DUNE Sensitivity

All Systematics

Normal Ordering

 $\nabla \chi$

ll b $sin^2 2\theta_{13} = 0.088 \pm 0.003$

0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58

10 years (staged)

15 years (staged)

1σ: Variations of

statistics, systematics, and oscillation parameters

sin² θ_{23}

Natural sources

Atmospheric, solar and supernova neutrinos

Far Detector as standalone experiment for astroparticle studies

- Supernova neutrinos
 - Trigger, pointing, mass ordering [4]
- Solar neutrinos
 - hep chain and day-night asymmetry [5]
- Atmospheric neutrinos

6

BSM program

- Non-standard oscillation
 - Sterile neutrino mixing
 - PMNS non-unitarity
 - CPT violation
 - v_{τ} appearance
- Baryon number violation
 - Proton decay
 - Golden channel $p^+ \rightarrow K^+ \bar{\nu}$
 - $n \rightarrow \overline{n}$
- Dark matter searches
 - Heavy Neutral Lepton

INFŃ

ProtoDUNE-I

Single- and dual-phase era

The first Far Detector prototipes run

- ProtoDUNE-SP
 - Multiwire chamber technology, confirmed for the Horizontal Drift module
 - Explored different Photon Detection System technologies

Articles:

Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

Doping liquid argon with xenon in ProtoDUNE Single-Phase: effects on scintillation light

First Measurement of a Positively Charged Kaon on Argon Total Inelastic Cross Section at Total Energies of Approximately 5 to 7.5 GeV

- ProtoDUNE-DP
 - Single drift volume, liquid and gaseous phases
 - Xenon doping effects

Articles:

Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC

DUNE:ProtoDUNE-SP

K⁺ inel.

K⁺ decay

Sec. or cosmic µ+

6 GeV/c Sample: K⁺ Int. Cand.

⁺ inel. out of Fid. Vol

200

ec. Beam K⁴

Sec other

1400

} ₩ 1200

20

400

g

20

DUNE:ProtoDUNE-SP Simulation

40 60 80

Number of Cosmic-Ray Muons

100

120

Cosmic-Ray Muon

of Reconstructed

Number

100

80

60

40

20

ProtoDUNE-II

The DUNE-FD now

- **ProtoDUNE-HD**
 - Operation in 2024, April-October
 - 10 weeks of beam: \pm 1, 2, 3, 5, 7 GeV
 - New CE, PDS, and DAQ
- **ProtoDUNE-VD**

Refs: [7] [8] [9]

DEEP UNDERGROUND

NEUTRINO EXPERIMENT

- Commissioning
- Completely re-designed •
- Two drift-volumes, one phase, CRPs as anodes •
- X-ARAPUCA with Signal and Power Over Fiber

ND-LAr 2x2 First neutrino canidate!

Filst neutrino candate:

The first detector in a neutrino beam

- Modularised LAr-TPC to sustain high rate
 - Module dimensions: 0.5 m x 1 m x 3 m
- Pixelated charge readout
 - 4mm granularity
 - Native 3D imaging
- High-performance light readout
 - 25% photocoverage
 - WLS materials coupled with SiPMs

First accelerator neutrino record on July 8th!

• 5 days of Physics data-taking ~1k CC evt/day

Anode plane, and two light guide technologies employed

Federico Galizzi

DUNE Phase-II

Forseen upgrades

Near Detector

ND-Gar: a new high-pressurized gas Argon TPC

Far Detector

- FD3: APEX
 - CRP optimization, pixel base option
 - PDS embedded into the field cage
- FD4: Moldule of Opportunity
 - SoLAr: light-charge pixel readout on anode
 - **VUV SiPMs**
 - Q-Pix: light-charge readout through photo-conductive material Refs: [11] [12] [13] [14] [15]

EUTRINO EXPERIMENT

Summary

- DUNE as a long-baseline experiment
- DUNE as a neutrino observatory
- Exciting results from DUNE's prototypes
- The Phase-II effort is begun

References

[1] Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I: Introduction to DUNE (<u>link</u>)
 [2] Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics (<u>link</u>)
 [3] DUNE, *Chris Marshall* (<u>link</u>)

- [4] Supernova Pointing Capabilities of DUNE (link)
- [5] DUNE's low energy phyisics searches, *Sergio Manthey Corchado* (link)
- [6] Prospects for Beyond the Standard Model Physics Searches at the Deep Underground Neutrino Experiment (link)
- [7] ProtoDUNE Photon Detection System, Jose Soto-Oton (link)
- [8] Analysis plans and preliminary results from the Proto-DUNE HD data taking, Laura Zambelli (link)
- [9] Characterization and novel application of power over fiber for electronics in a harsh environment, D. Leon Silverio et al. (link)
- [10] Overview and Status of the 2x2 NDLAr Demonstrator, *Karolina Wresilo* (link)
- [11] Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report (<u>link</u>)
- [12] DUNE Phase II: Scientific Opportunities, Detector Concepts, Technological Solutions (<u>link</u>)
- [13] Introducing APEX: a new concept for DUNE module 3 far detector photon detection system, Franciole Marinho (link)
- [14] SoLAr: Solar Neutrinos in Liquid Argon, Saba Parsa et al. (link)
- [15]QPIX, a novel pixel technology for large noble element detectors, Austin McDonald (link)

DEEP UNDERGROUND

Federico Galizzi

Back-up Nu_e appearance

DEEP UNDERGROUND NEUTRINO EXPERIMENT

					NuFIT 5.3 (2024)
		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 2.3)$	
without SK atmospheric data		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
	$\sin^2 \theta_{12}$	$0.307^{+0.012}_{-0.011}$	$0.275 \rightarrow 0.344$	$0.307\substack{+0.012\\-0.011}$	$0.275 \rightarrow 0.344$
	$ heta_{12}/^{\circ}$	$33.66_{-0.70}^{+0.73}$	$31.60 \rightarrow 35.94$	$33.67^{+0.73}_{-0.71}$	$31.61 \rightarrow 35.94$
	$\sin^2 \theta_{23}$	$0.572^{+0.018}_{-0.023}$	$0.407 \rightarrow 0.620$	$0.578^{+0.016}_{-0.021}$	$0.412 \rightarrow 0.623$
	$ heta_{23}/^{\circ}$	$49.1^{+1.0}_{-1.3}$	$39.6 \rightarrow 51.9$	$49.5_{-1.2}^{+0.9}$	$39.9 \rightarrow 52.1$
	$\sin^2 \theta_{13}$	$0.02203\substack{+0.00056\\-0.00058}$	$0.02029 \to 0.02391$	$0.02219\substack{+0.00059\\-0.00057}$	$0.02047 \to 0.02396$
	$\theta_{13}/^{\circ}$	$8.54_{-0.11}^{+0.11}$	$8.19 \rightarrow 8.89$	$8.57^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.90$
	$\delta_{ m CP}/^{\circ}$	197^{+41}_{-25}	$108 \to 404$	286^{+27}_{-32}	$192 \rightarrow 360$
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.41^{+0.21}_{-0.20}$	$6.81 \rightarrow 8.03$	$7.41_{-0.20}^{+0.21}$	$6.81 \rightarrow 8.03$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.511^{+0.027}_{-0.027}$	$+2.428 \rightarrow +2.597$	$-2.498^{+0.032}_{-0.024}$	$-2.581 \rightarrow -2.409$
		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 9.1)$	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
	$\sin^2 \theta_{12}$	$0.307^{+0.012}_{-0.011}$	$0.275 \rightarrow 0.344$	$0.307\substack{+0.012\\-0.011}$	$0.275 \rightarrow 0.344$
lata	$ heta_{12}/^{\circ}$	$33.67^{+0.73}_{-0.71}$	$31.61 \rightarrow 35.94$	$33.67^{+0.73}_{-0.71}$	$31.61 \rightarrow 35.94$
with SK atmospheric d	$\sin^2 heta_{23}$	$0.454_{-0.016}^{+0.019}$	$0.411 \rightarrow 0.606$	$0.568\substack{+0.016\\-0.021}$	$0.412 \rightarrow 0.611$
	$ heta_{23}/^{\circ}$	$42.3^{+1.1}_{-0.9}$	$39.9 \rightarrow 51.1$	$48.9^{+0.9}_{-1.2}$	$39.9 \rightarrow 51.4$
	$\sin^2 \theta_{13}$	$0.02224^{+0.00056}_{-0.00057}$	$0.02047 \to 0.02397$	$0.02222\substack{+0.00069\\-0.00057}$	$0.02049 \to 0.02420$
	$\theta_{13}/^{\circ}$	$8.58^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.91$	$8.57^{+0.13}_{-0.11}$	$8.23 \rightarrow 8.95$
	$\delta_{ m CP}/^{\circ}$	232^{+39}_{-25}	$139 \rightarrow 350$	273^{+24}_{-26}	$195 \rightarrow 342$
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.41^{+0.21}_{-0.20}$	$6.81 \rightarrow 8.03$	$7.41_{-0.20}^{+0.21}$	$6.81 \rightarrow 8.03$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.505^{+0.024}_{-0.026}$	$+2.426 \rightarrow +2.586$	$-2.487^{+0.027}_{-0.024}$	$-2.566 \rightarrow -2.407$

19

Federico Galizzi

INFN

MILANO RICOCCA

Back-up Supernovae

Channel	Liver-	GKVM	Garching
	more		
$\nu_e + {}^{40} \operatorname{Ar} \rightarrow e^- + {}^{40} \operatorname{K}^*$	2648	3295	882
$\overline{\nu}_e + {}^{40}\operatorname{Ar} \rightarrow e^+ + {}^{40}\operatorname{Cl}^*$	224	155	23
$ u_X + e^- ightarrow u_X + e^-$	341	206	142
Total	3213	3656	1047

DEEP UNDERGROUND NEUTRINO EXPERIMENT

历

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Our commitment: be ready to start installation as soon as ND hall available, and be ready as soon as Beamline ready

1 27/01/25

By Luca Stanco

Federico Galizzi

INFŃ