# Searches for Dark Matter and other exotic particles from ATLAS and CMS

### LA THUILE 2025 - Les Rencontres de Physique de la Vallée d'Aoste

On behalf of the ATLAS and CMS collaborations **Michael Holzbock (CERN)** March 14, 2025







## LHC Searches: Needle in the Haystack?

- Countless experimental & theoretical motivations for physics beyond the SM

### → Do signals of BSM physics exist in the LHC data?



### Dark Matter, baryon asymmetry, neutrino masses, metastability of SM vacuum, ...





### LHC Searches: Quo Vadis?

- - Seems like ball is in the court of the experimentalists!

- Empirically scan "standard final states" in Run2 & Run3 data for NP
- Target "unconventional signatures" predicted by BSM scenarios

### **Standard Objects**

Decays of BSM particles prompt and into SM particles: **Electrons**, photons, muons, taus and jets in the final state



Michael Holzbock (CERN) | Searches for DM and Exotics Particles | LaThuile '25



Nearly endless ways how NP could be realised in LHC data, no "smoking gun" from theory

Advantages of ATLAS & CMS: general-purpose experiments, sensitive to variety of signatures

Access new phase space via specialized data acquisition: data scouting (CMS), TLA\* (ATLAS), delayed reco\*\*

### **Unconventional Signatures**



\*\* data parking (CMS) & delayed stream (ATLAS) 3

### LHC Searches: Quo Vadis?

- - Seems like ball is in the court of the experimentalists!

- Empirically scan "standard final states" in Run2 & Run3 data for NP
- Target "unconventional signatures" predicted by BSM scenarios

### **Standard Objects**

Some selected highlights of recent searches that probe new phase space, close existing sensitivity gaps, extend previous results ...

| Experiment | Reference           | Title                                                                                                                                                                                                                                                                                                                                                              |  |  |
|------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ATLAS      | <u>EXOT-2023-09</u> | Search for dark mesons decaying into top and bottom<br>quarks                                                                                                                                                                                                                                                                                                      |  |  |
| ATLAS      | <u>SUSY-2023-26</u> | <ul> <li>Search for chargino-neutralino pair production with small mass splittings in VBF topologies</li> <li>Search for vector-like electrons and muons</li> <li>Search for a dilepton resonance produced with a massive vector boson or top quark-antiquark pair</li> <li>Search for dark matter produced in association with a pair of bottom quarks</li> </ul> |  |  |
| ATLAS      | <u>EXOT-2021-31</u> |                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| CMS        | <u>EXO-21-018</u>   |                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| CMS        | <u>SUS-23-008</u>   |                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|            |                     |                                                                                                                                                                                                                                                                                                                                                                    |  |  |

+ many more!



Nearly endless ways how NP could be realised in LHC data, no "smoking gun" from theory

Advantages of ATLAS & CMS: general-purpose experiments, sensitive to variety of signatures

Access new phase space via specialized data acquisition: data scouting (CMS), TLA\* (ATLAS), delayed reco\*\*

### **Unconventional Signatures**

| Experiment   | Reference           | Title                                                                                  |  |  |
|--------------|---------------------|----------------------------------------------------------------------------------------|--|--|
| ATLAS        | <u>HMBS-2024-68</u> | Search for long-lived particles with Pixel dEdx and beta or two highly-ionizing tracks |  |  |
| ATLAS        | EXOT-2018-55        | Prompt lepton jet search                                                               |  |  |
| ATLAS        | <u>SUSY-2022-11</u> | Displaced e/mu lepton pairs                                                            |  |  |
| CMS          | <u>EXO-23-013</u>   | Search for light long-lived particles decaying to<br>displaced jets                    |  |  |
| CMS          | <u>EXO-21-008</u>   | Search for long-lived particles decaying in the CM muon detectors                      |  |  |
| + many more! |                     |                                                                                        |  |  |

Way too many to cover them all in one talk - will exemplarily introduce the ones highlighted in orange

Michael Holzbock (CERN) | Searches for DM and Exotics Particles | LaThuile '25

\*\* data parking (CMS) & delayed stream (ATLAS) 4







### **CMS Search for DM with** *bb*

- - Results in typical  $p_{\rm T}^{\rm miss}$  + X signatures for DM searches

From DM From Mediator

- CMS considered first search for **DM + non-resonant** bb pair



### DM searches at LHC require **DM** $\chi$ to interact via some kind of mediator (Higgs, ...)

## • Interpretation in 2HDM+a model: 5 Higgses $(h, H, A, H^{\pm})$ , 1 pseudo-scalar a + 1 fermion $\chi$

Several **parameters** in this model  $(m_a, m_{\gamma}, ...)$ :  $\rightarrow$  Use recommendations of LHC Dark Matter Working Group (1810.09420) Results in **5 free parameters**:  $m_a, m_A, m_\gamma$ ,  $\tan \beta$ ,  $\sin \theta$ ,

> Search capitalises high couplings of pseudo scalars and b-quarks at large  $\tan \beta$

![](_page_4_Figure_14.jpeg)

![](_page_4_Picture_15.jpeg)

![](_page_4_Picture_16.jpeg)

![](_page_4_Picture_17.jpeg)

## **CMS Search for DM with** *bb*

- Select events triggered in Run 2 by  $p_{\rm T}^{\rm miss}$  signature
- Classify events with either 1 or 2 identified b-jets
  - Veto events with  $e/\mu$  for SRs, apply  $p_{\rm T}^{\rm miss} > 250 \,{\rm GeV^*}$
- Constrain  $Z \to \ell \ell$ ,  $W \to \ell \nu$  and top backgrounds via  $2\ell$  and  $1\ell$  events QCD multijet background estimated via fit of min( $\Delta \phi$ (jet,  $p_T^{\text{miss}}$ )) spectra to data

![](_page_5_Figure_6.jpeg)

\* For events with leptons ,  $p_{\mathrm{T}}^{\mathrm{miss}}$  is replaced with the recoil U $U = ert ec{U} ert = \leftert - \left(ec{p}_{ ext{T}}^{ ext{miss}} + \sum ec{p}_{ ext{T}}^{ ext{ lep}}
ight) 
ightec{u}$ 

![](_page_5_Figure_11.jpeg)

Multijet yields extrapolated from low (QCD-CR) to high  $\Delta \phi$  (SR) values

![](_page_5_Figure_14.jpeg)

![](_page_5_Picture_15.jpeg)

![](_page_5_Picture_16.jpeg)

## **CMS Search for DM with** *bb*

- Signal extraction via simultaneous fit of SR and CRs of
  - $p_{\rm T}^{\rm miss}$  spectra in 1b category
  - $\cos \Theta^* = |\tanh((\eta_1 \eta_2)/2)|$  spectra in 2b category\*

![](_page_6_Figure_4.jpeg)

\* Better S/B discrimination than  $p_{\rm T}^{\rm miss}$  in 2b category

![](_page_6_Figure_8.jpeg)

Sensitivity reach for  $m_a$  up to 260 GeV! (with  $m_A = 600 \text{ GeV}$  $\& m_{\gamma} = 1 \text{ GeV}$ 

![](_page_6_Figure_12.jpeg)

![](_page_6_Figure_13.jpeg)

### **ATLAS SUSY VBF Search**

- Vector boson fusion (VBF) allows to study pure-electroweak processes at LHC, e.g. Ewk V+jet production
  - Distinctive VBF topology: **2 forward jets with large** *m*<sub>*ii*</sub>
  - Well established probe of SM electroweak sector (and BSM)
- Supersymmetry (SUSY) well-studied extension of SM
  - Naturalness, gauge coupling unifications, attractive DM candidate, ...
- SUSY scenarios with **close-in-mass electroweakinos**\*  $(\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_1^{\pm})$  partly still unprobed since LEP

![](_page_7_Figure_7.jpeg)

Utilise VBF production of electroweakinos

Consider **all-hadronic** final state: No sensitivity loss due do lepton reconstruction thresholds

First VBF SUSY search at ATLAS\*\*!

\*superpartners of SM gauge/higgs fields mix to form electroweakinos Michael Holzbock (CERN) | Searches for DM and Exotics Particles | LaThuile '25  $\tilde{B}^0, \tilde{W}^0, \tilde{H}^0_d, \tilde{H}^0_u \to \tilde{\chi}^0_{1,2,3,4}$  and  $\tilde{W}^1, \tilde{W}^2 \to \tilde{\chi}^{\pm}_{1,2}$ 

![](_page_7_Picture_12.jpeg)

![](_page_7_Figure_13.jpeg)

\*\* inspired by <u>CMS</u>

![](_page_7_Figure_15.jpeg)

![](_page_7_Figure_16.jpeg)

### **ATLAS SUSY VBF Search**

- Select events triggered by  $p_{\rm T}^{\rm miss}$  signature in Run 2
- Apply requirements to enforce VBF topology (e.g.  $m_{ii} > 600$  GeV), lepton veto
  - Enhance signal/background separation with BDT trained on  $p_{\rm T}^{\rm miss}$ , jet and angular variables
  - SR split into 2j and  $\geq 3j$  categories; signal extraction via fit of BDT tail
- Main backgrounds: Strong and electroweak  $Z \rightarrow \nu \nu$  and  $W \rightarrow \ell \nu^*$  events
  - Constrained via CRs using  $2\ell$  and  $1\ell$  events (using  $p_{\rm T}^{\rm miss}$  with invisible leptons)

![](_page_8_Figure_7.jpeg)

\* where lepton from W is not reconstructed

![](_page_8_Figure_11.jpeg)

![](_page_8_Picture_12.jpeg)

![](_page_8_Picture_16.jpeg)

![](_page_8_Picture_17.jpeg)

![](_page_9_Figure_6.jpeg)

![](_page_9_Figure_9.jpeg)

![](_page_9_Figure_10.jpeg)

- Hidden sectors at electroweak scale compelling BSM scenarios
- Baseline benchmark model: additional broken U'(1) gauge symmetry
  - Mediated by massive vector boson: dark photon  $\gamma_d$
  - Kinetic mixing with SM  $\gamma$  with coupling  $\epsilon$
  - Dark Higgs  $H_d$  drives symmetry breaking of U'(1)
- Targeting prompt  $\gamma_d$  decays\* with masses  $\mathcal{O}(10 \text{ MeV}) \mathcal{O}(10 \text{ GeV})$ 
  - Search for  $\gamma_d \rightarrow ee/\mu\mu$  decays
  - Decay products highly collimated: Lepton-Jet (LJ) signatures

![](_page_10_Picture_11.jpeg)

11

Associated particles could be produced at LHC (interaction with SM via mediator)

![](_page_10_Figure_16.jpeg)

![](_page_10_Figure_17.jpeg)

- Trigger on muon and electron signatures in Run 2
- **Identify leptons** using "standard-like" criteria
  - Combined (ID+MS) muons with custom isolation variable
  - EM clusters with one or more associated ID tracks (showers from close-by  $e^-$  may merge)
- **Build LJs objects** using established clustering algorithm<sup>\*</sup> with  $\Delta R = 0.4$  from those leptons
  - $\mu$ LJ: constructed from at least two muons ← Next Slide Performance of  $\mu$ LJ reconstruction μLJ reconstruction efficiency <u>eLJ</u>: at least one electron and  $\geq 2$  ID tracks  $\leftarrow$  Backup •  $m_{\gamma} = 0.4 \text{ GeV}$ ATLAS Simulation  $= m_v = 2 \text{ GeV}$ √s = 13 TeV 🕨 m, = 10 GeV 0.8 🔻 m, = 15 GeV 0.6 Muon channel:  $\mu LJ - \mu LJ$  and  $\mu LJ - eLJ$ 0.4 Electron channel: eLJ-eLJ (optimised for  $m_{\gamma} < 2m_{\mu}$ ) 0.2 **I** *U* 20 40 60 80 Dark photon  $p_{T}$  [GeV]
- Zero total charge, LJ mass calculated from constituents Consider several orthogonal analysis categories

![](_page_11_Picture_14.jpeg)

- - SM background has non-resonant (virtual  $\gamma$ ) and resonant ( $J/\psi$ , ...) component

$$B(m_{\mu\text{LJ}}) = N_{\text{exp1}}e^{-m_{\mu\text{LJ}}/\tau_2} + N_{\text{exp2}}e^{-m_{\mu\text{LJ}}/\tau_1} \quad \text{Continuum: double exponential} + N_{J/\psi}e^{-\left(\frac{m_{\mu\text{LJ}}-\mu_{J/\psi}}{\sigma_{J/\psi}}\right)^2} + N_{\psi(2S)}e^{-\left(\frac{m_{\mu\text{LJ}}-\mu_{\psi(2S)}}{\sigma_{\psi(2S)}}\right)^2} + N_{\phi}e^{-\left(\frac{m_{\mu\text{LJ}}-\mu_{\phi}}{\sigma_{\phi}}\right)^2},$$

Fit functions validated in two CRs with one  $\mu$ LJ + two extra electrons or muons •

![](_page_12_Figure_5.jpeg)

\* in  $\mu$ LJ- $\mu$ LJ each event provides two entries

Michael Holzbock (CERN) | Searches for DM and Exotics Particles | LaThuile '25

![](_page_12_Picture_8.jpeg)

## Analysis strategy for muon channel: unbinned max. likelihood fit of $\mu$ LJ invariant mass<sup>\*</sup>

**Resonances:** Gaussians

- - Dark sectors, SUSY, heavy neutral leptons, ...
- Yield distinct **displaced jet signature**
- Benchmark scenario: SM Higgs portal
  - Higgs decay into 2 neutral scalars S, S  $\rightarrow f\bar{f}$
  - Appears in e.g. "neutral naturalness" models (where S would be a hidden glueball)
- Search targets on scenarios with  $m_{LLP} < 60$  GeV
  - Focus on hadronic final states via  $S \rightarrow b\bar{b}, d\bar{d}, \tau\tau$

Hadronically decaying LLPs (decay length  $\geq 0.1$  mm) appear in many BSM scenarios

![](_page_13_Picture_11.jpeg)

![](_page_13_Figure_12.jpeg)

- Dedicated displaced jet triggers in Run 3 targeting light LLPs
  - 2 trigger types: based either only on  $H_T$  (scalar sum of jet  $p_T$ ) or  $H_T$ +muon Overall trigger efficiencies around 0.4-1.0%
- Construct analysis inputs **dijet candidates**:
  - Form dijet candidates from all jet pairs in the event
  - Associate tracks to each dijet candidate via angular distance
  - Reconstruct displaced vertices\* (DVs) for displaced tracks for each dijet candidate
- Dijet candidates, **DVs and tracks** used to train GNNs
  - Graph nodes: tracks & DVs
  - <u>Graph edges:</u> track-to-vertex, track-to-track, ... relations
- 2 types of GNNs
  - "Displaced" GNN: associated displaced tracks and DVs
  - "Prompt-veto" GNN: associated prompt tracks (small  $d_{xy}$ )
- Both GNNs trained to separate  $S \rightarrow bb$  from multijet

![](_page_14_Figure_17.jpeg)

Michael Holzbock (CERN) | Searches for DM and Exotics Particles | LaThuile '25

![](_page_14_Figure_19.jpeg)

<sup>\*</sup> Two reconstruction algorithms are used: adaptive vertex reconstruction & using points of closest approach

- Select events with at least one dijet candidate with well reconstructed DV
- Require large displaced and prompt-veto GNN scores for SR
- Estimate backgrounds via ABCD method using plane spanned by both GNN scores
  - Good agreement in SR between prediction and observed data

![](_page_15_Figure_6.jpeg)

Michael Holzbock (CERN) | Searches for DM and Exotics Particles | LaThuile '25

![](_page_15_Figure_10.jpeg)

Up to x10 improvements by new techniques (triggers, reco, GNNs) w.r.t. previous results

Further key achievement (see backup):

First exclusions of hadronically decaying displaced tau leptons arising from LLPs with decay lengths  $\leq 1$  m

![](_page_15_Figure_15.jpeg)

![](_page_15_Figure_16.jpeg)

### Wrap-up

### Vibrant program at the LHC to discover BSM physics

- No "smoking gun" from theory, need to carefully comb through our datasets!
- Using both "standard" final states as well as unconventional signatures
- Presented recent, (only very few!) selected highlights examples of ATLAS & CMS collaborations

![](_page_16_Figure_5.jpeg)

![](_page_16_Picture_8.jpeg)

![](_page_16_Picture_9.jpeg)

![](_page_16_Picture_10.jpeg)

![](_page_17_Picture_1.jpeg)

## **Recent ATLAS/CMS Searches for DM & LLP**

| Experiment | Reference           | Title                                                                                       | Experiment      | Reference           | Title                                                            |
|------------|---------------------|---------------------------------------------------------------------------------------------|-----------------|---------------------|------------------------------------------------------------------|
| ATLAS      | <u>SUSY-2018-25</u> | Search for new physics in the cc+MET final state                                            |                 |                     |                                                                  |
| ATLAS      | EXOT-2020-26        | Dark matter search in ETmiss + dark Higgs → bb                                              | ATLAS           | <u>HMBS-2024-68</u> | Search for long-lived particles with Pixel dEdx a                |
| ATLAS      | <u>EXOT-2021-35</u> | VLQ TT→Wq+X                                                                                 |                 | EXOT-2018-55        | Prompt lepton jet search                                         |
| ATLAS      | EXOT-2022-33        | Search for low-mass hadronic resonances produced in association with a photon               | AILAS           |                     |                                                                  |
| ATLAS      | <u>SUSY-2018-37</u> | Stop pair; 2 leptons, b-jets, RPV                                                           | ATLAS           | SUSY-2022-11        | Displaced e/mu lepton pairs                                      |
| ATLAS      | EXOT-2023-09        | Search for dark mesons decaying into top and bottom quarks                                  | / <b>_</b> / .c |                     |                                                                  |
| ATLAS      | <u>SUSY-2023-26</u> | Search for chargino-neutralino pair production with small mass splittings in VBF topologies | CMS             | EXO-23-013          | Search for light long-lived particles decaying<br>displaced jets |
| ATLAS      | <u>EXOT-2021-31</u> | Search for vector-like electrons and muons                                                  | 0140            |                     | Search for long-lived particles decaying in the                  |
| CMS        | <u>SUS-23-008</u>   | Search for dark matter produced in association with a pair of bottom quarks                 | CMS             | <u>EXO-21-008</u>   | muon detectors                                                   |

![](_page_18_Picture_3.jpeg)

![](_page_18_Picture_4.jpeg)

### The MSSM

![](_page_19_Figure_1.jpeg)

### A few important phenomenological features

- After EWSB, gauginos and higgsinos mix to form the neutralin and the charginos  $(\tilde{\chi}^{\pm}_{1,2})$
- The Higgs sector is a two Higgs-doublet (2HDM) of type-II. Physical spectrum is composed of two neutral CP-even Higgs (h and H), one neutral **CP-odd Higgs** (A) and two charged Higgses  $(H^{\pm})$
- The light Higgs mass is *predicted* in the MSSM (in terms of the other parameters). The tree level upper bound is  $m_Z$ , however radiative corrections are very important and allow to reach the observable value
- Slide stolen from Emanuele A. Bagnaschi

![](_page_19_Figure_8.jpeg)

nos (
$$ilde{\chi}^{0}_{1,2,3,4}$$
)

![](_page_19_Picture_13.jpeg)

![](_page_20_Figure_2.jpeg)

Michael Holzbock (CERN) | Searches for DM and Exotics Particles | LaThuile '25

![](_page_20_Figure_5.jpeg)

## **CMS Search for DM with** $b\bar{b}$

### Additional interpretations

![](_page_21_Figure_2.jpeg)

![](_page_21_Figure_4.jpeg)

![](_page_21_Picture_5.jpeg)

### **ATLAS SUSY VBF Search**

![](_page_22_Figure_2.jpeg)

Signal cross section depends on properly taking into account interference

![](_page_22_Picture_5.jpeg)

Large interference of pure electroweak and strong diagrams for VBF SUSY production

![](_page_22_Picture_8.jpeg)

![](_page_23_Figure_4.jpeg)

![](_page_23_Picture_6.jpeg)

![](_page_23_Picture_7.jpeg)

Comparison of prompt and displaced LJ results

![](_page_24_Figure_2.jpeg)

![](_page_24_Picture_4.jpeg)

![](_page_24_Picture_6.jpeg)

![](_page_25_Figure_1.jpeg)

![](_page_25_Figure_3.jpeg)

![](_page_25_Picture_4.jpeg)