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• Top quark measurements are central to LHC 
program 

• Span many orders of magnitude, from very 
abundant to extremely rare processes 

• t( ) + vector boson  

• Powerful probes of both EW and QCD sectors 

• Rare processes, but with the data collected in 
Run 2, we entered the precision era 

• Differential distributions enhance sensitivity to 
BSM 

• t t  

• Lowest cross section - very rare process! 

• Recent observation - not discussed today 

• Searches for new physics decaying to top quarks 

• Constraints on Higgs width and Top Yukawa

t̄

t̄ t̄

https://arxiv.org/abs/2405.18661
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Physics Reports: arxiv.2405.18661
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(Does not contain all recent measurements, just for illustration)
• Top quark measurements are central to LHC 

program 

• Span many orders of magnitude, from very 
abundant to extremely rare processes 

• t( ) + vector boson  

• Powerful probes of both EW and QCD sectors 

• Rare processes, but with the data collected in 
Run 2, we entered the precision era 

• Differential distributions enhance sensitivity to 
BSM 

• t t  

• Lowest cross section - very rare process! 

• Recent observation - not discussed today 

• Searches for new physics decaying to top quarks 

• Constraints on Higgs width and Top Yukawa

t̄

t̄ t̄

• t t  

•

t̄ t̄

https://arxiv.org/abs/2405.18661


4

Physics Reports: arxiv.2405.18661

t Zt̄
tWZ

tZq

El
ec

tro
w

ea
k 

an
d 

as
so

cia
te

d 
to

p 
qu

ar
k 

pr
od

uc
tio

n

*

tt̄γ

(Does not contain all recent measurements, just for illustration)
• Top quark measurements are central to LHC 

program 

• Span many orders of magnitude, from very 
abundant to extremely rare processes 

• t( ) + vector boson  

• Powerful probes of both EW and QCD sectors 

• Rare processes, but with the data collected in 
Run 2, we entered the precision era 

• Differential distributions enhance sensitivity to 
BSM 

• t t  

• Lowest cross section - very rare process! 

• Recent observation - not discussed today 

• Searches for new physics decaying to top quarks 

• Constraints on Higgs width and Top Yukawa

t̄

t̄ t̄

• t t  

•

t̄ t̄

Talk by Regina Demina

https://arxiv.org/abs/2405.18661


Let’s start with t t  and t Ht̄ t̄ t̄
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• Combination of multiple previously published results based on profile likelihood ratio, with careful 
correlation scheme for systematic uncertainties and updated luminosity 

• Some assumptions: tree-level  same for on- and off-shell Higgs, no BSM contributions to t t  γt t̄ t̄

Constraint on the total Higgs width from H, t H and t tt̄ t̄ t̄

8

Phys. Lett. B 861 (2025) 
139277)

• Measure total  without needing to assume the production cross sections are the same for on- and off-shell 
Higgs (complementary to existing measurements)

−H

 MeV (75 MeV exp.)−H < 450
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Constraint on the total Higgs width from H, t H and t tt̄ t̄ t̄

9

Phys. Lett. B 861 (2025) 
139277)

• Combination of multiple previously published results 

• Simultaneous constraints on Higgs width and Top-Yukawa coupling strength also extracted based on a 2D fit

• Measure total  without needing to assume the production cross sections are the same for on- and off-shell 
Higgs (complementary to existing measurements)

−H

Constraint on the total Higgs width from H, t H and t tt̄ t̄ t̄

9

Phys. Lett. B 861 (2025) 
139277)

• Combination of multiple previously published results 

• Simultaneous constraints on Higgs width and Top-Yukawa coupling strength also extracted based on a 2D fit

• Measure total  without needing to assume the production cross sections are the same for on- and off-shell 
Higgs (complementary to existing measurements)

−H

See also talk by Martina Manoni 



Now on to t( ) + vector bosonst̄
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Simultaneous measurement of t Z, tWZ, and tZqt̄

• Inclusive and differential measurements of t Z and tZq with Run 2                                                                                                           
by both ATLAS and CMS exist for a few years 

• Evidence for tWZ reported by CMS 

• Simultaneous measurement: 

• less dependent on signal modelling assumptions, 
• consistently treat correlations between systematic uncertainties 
✦ enhance sensitivity to deviations from SM that affect all processes                                                                                              

(e.g. anomalous tZ, tbW couplings)

t̄

9

JHEP02(2022)107

Phys. Lett. B 855 (2024) 138815

JHEP 07 (2024) 163

Interference between ttZ and tWZ - treated as one signal!

JHEP 02 (2025) 177 
arXiv:2410.23475

Now published

https://arxiv.org/abs/2312.04450
https://arxiv.org/abs/2111.02860
https://arxiv.org/abs/2312.11668
https://arxiv.org/abs/2410.23475
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• Signal region with three leptons (e or ), 2 jets, 1 b-tagged jet 

• Nonprompt lepton contribution is estimated from data, WZ and other smaller backgrounds from simulation 

• Neural network (multi-class classifier) to disentangle different signals and backgrounds 

• 3 output nodes for t Z+tWZ, tZq, and background (maximum-score splitting to build fit categories)

μ ≥ ≥

t̄

10

JHEP 02 (2025) 177 
arXiv:2410.23475Selection strategy for t Z, tWZ, and tZqt̄

https://arxiv.org/abs/2410.23475


Inclusive measurement

• Simultaneous fit to 3 max-score output nodes in SR and number of jets / b jets in two extra regions  
- 4 leptons (t Z enriched), and no b jets (WZ enriched) 

• Profiled likelihood-ratio scan for  and  

• Limited by statistics, main syst. uncertainties on background modelling                                                                  
and b tagging 

• Inclusive cross sections measured to be:

t̄

σtt̄Z+tWZ σtZq
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CMS  (13 TeV)-1138 fb

Best fit
68% CL
95% CL
SM

σtt̄Z+tWZ = 1.14 ± 0.07 pb

σtZq = 0.81 ± 0.10 pb

consistent with SM for tZq,  
slight excess for t Z+tWZt̄

• Fixing the t Z (tWZ) and tZq processes to the SM prediction 
yields a tWZ (t Z) cross section consistent with previous 
measurements

t̄
t̄

JHEP 02 (2025) 177 
arXiv:2410.23475

Compatible with the previous measurements

https://arxiv.org/abs/2410.23475
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Differential measurements

• Cross sections measured as function of lepton and Z observables 

• Maximum likelihood unfolding

12

• Measurements compared to predictions from aMC@NLO 

• Good agreement overall for tZq, slight excess for t Z+tWZt̄
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First simultaneous measurement of these processes, 
useful for theory and EFT interpretations

JHEP 02 (2025) 177 
arXiv:2410.23475

https://arxiv.org/abs/2410.23475
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Inclusive cross section measurements of tt̄γ

13

PAS-TOP-23-002

t  process contains: 
- t  production: photons from ISR or off-shell top quarks  
- t  decay: photons emitted from decay products

t̄γ
t̄γ
t̄γ

• Top pair production in association with a photon has the highest cross section of all top+V processes 

• Direct probe of the top-photon coupling 

• Challenging from the modelling perspective

NLO in QCD

LO in QCD * correction factor

Powerful variable!
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Preliminary CMS  (13 TeV)-1138 fb

• Measure σ(t  production) = 134 ± 2 (stat) ± 4 (syst) fb (5.0%) 

• In agreement with prediction of 123 ± 17 fb (MadGraph5_aMC@NLO) 

• Limited by systematic uncertainties, mainly normalisation of the nonprompt 
background,  identification, normalization of the t  decay, jet and b 
tagging

t̄γ

γ t̄γ

Inclusive cross section measurements of tt̄γ

14

PAS-TOP-23-002

• Focus on dilepton channel 

• t  production modeled at NLO in QCD and t  decay at LO 

• Measuring also total fiducial t  cross section (production+decay) 
• Fake photon contribution estimated with data-driven methods 

• Fit to min.  including all systematic uncertainties

t̄γ t̄γ
t̄γ

ΔR(γ, ℓ)

Fiducial phase space Photon Leptons Jets
Number ==1 >=2 >=2, >=1 b
pT (GeV) >20 >15 >30

<2.5 <2.5 <2.4

Others Not from hadrons Not from hadrons, 
isolated from photons

Isolated from photons 
and leptons

|η |



Inclusive cross section measurements of tt̄γ
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• Focus on single lepton and dilepton channels 

• t  production modeled at NLO in QCD and t  decay 
at LO 

• t  production measured separately for the first time 

• Measuring also total fiducial t  cross section 
(production+decay) 

• DNNs to separate t  production from other 
processes (multiclass in single lepton channel and 
binary in dilepton) 

• Fake photon contribution estimated with data-driven 
methods

t̄γ t̄γ

t̄γ

t̄γ

t̄γ

• Measure σ(t  production) = 322 ± 5 (stat) ± 15 (syst) fb (5.2%) 

• In agreement with prediction of 299 ± 31 fb 
(MadGraph5_aMC@NLO) 

• Limited by systematic uncertainties, mainly t  modelling, 
normalisation of t  decay, jet and b-tagging uncertainties

t̄γ

t̄γ
t̄γ

JHEP 10 (2024) 191 
arXiv:2403.09452v2

Now published

Different phase space from CMS - 
dilepton & l+jets

https://arxiv.org/abs/2403.09452


Differential cross section measurements of tt̄γ
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PAS-TOP-23-002

• Objects defined at  

• Particle level (final state objects, phase space mimics detector acceptance) 

• Parton level (intermediate particles before showering and hadronization, broad phase space) 

• Observables: pT(γ), pT(lepton), angular distance between leptons, pT(top), m(t ), angular distances 
between photon and top/t  

• Top/t  variables are being measured for the first time in this process 

• Normalised and absolute cross sections measured for production+decay 

t̄
t̄

t̄



Differential cross section measurements of tt̄γ
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PAS-TOP-23-002

NLO t prod + LO ME t decayt̄γ t̄γ NLO t prod + NLO t  PS decayt̄γ t̄

Momenta well described by 
simulation, angular variables 

show some trends

• Compare to: 

•
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Differential cross section measurements of tt̄γ
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• Objects defined at particle level 
• Observables: pT(γ), η(γ), angular variables involving photons and jets/leptons 
• Normalised and absolute cross sections measured both for production and production+decay 

production production production

JHEP 10 (2024) 191 
arXiv:2403.09452v2

https://arxiv.org/abs/2403.09452


Top quark charge asymmetry using t  eventst̄γ

19

Phys. Lett. B 843 
(2023) 137848

• Top quark charge asymmetry (Ac) in t  production: anisotropy in the angular 
distributions of the final-state top quark and antiquark                                      
- SM prediction at NLO in QCD for : 0.6% 

• Charge asymmetry in t  potentially enhanced (and opposite sign) compared 
to t , and present already at LO                                                                           
- SM prediction at NLO: [-0.5%,-2%] depending on kinematics 

• Caused by interference between diagrams such as 

t̄

tt̄

t̄γ
t̄

(in )tt̄

PAS-TOP-23-002

• Analysis strategy: 
• Similar modeling strategy as cross section measurements just reported 

• Ac extracted from fit to |y( )|-|y( )|t t̄
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Top quark charge asymmetry using t  eventst̄γ

20

Phys. Lett. B 843 
(2023) 137848PAS-TOP-23-002

Result: 
AC=−0.003±0.029

Result: 
AC=−0.012±0.042

(limited by statistical uncertainty) 20
Both compatible with the SM 
and with no-asymmetry



First ever measurement of the t /t  ratio at the LHCt̄γ t̄
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PAS-TOP-23-002

• Correlations between  and  depend on the phase spacett̄ tt̄γ

differential

○ Differential ratio measurements give additional sensitivity to potential 
deviations from SM 

○ Theory papers suggest variables with larger variation of the ratio 
○ Sensitive to modelling aspects

arxiv:1809.08562

arxiv:1603.08911v2

inclusive

○  and  are both QCD production - many systematics cancel out 

○ Can be used to set limits on Effective Field Theory operators

tt̄ tt̄γ

• Measuring ratios between cross sections allows achieving higher precision

https://arxiv.org/abs/1809.08562
https://arxiv.org/pdf/1603.08911v2.pdf


• The ratio is computed as:

First ever measurement of the t /t  ratio at the LHCt̄γ t̄

22

PAS-TOP-23-002

0 gen 𝛄 

1 gen 𝛄 

SR  
(≥1 reco 𝛾)

Events

0 gen 𝛄 

1 gen 𝛄 

tt region  
(=0 reco 𝛾)

• A  (0-photon) region is built, in addition to the SR, by inverting cut on 1 reconstructed photontt̄ =

• 0-photon region has many events - allows for measuring  precisely  

• It is possible to write the  and  signal strengths as a function of R 

• Extract R directly from the fit - direct handling of all correlations 
between systematic uncertainties

tt̄

tt̄ tt̄γ

Rγ =
σtt̄,=1γ

σtt̄,=0γ + σtt̄,=1γ



First ever measurement of the t /t  ratio at the LHCt̄γ t̄
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PAS-TOP-23-002

1 photon region0 photon region
Ratio = (1.25  0.05) %±

• Result:

• Limited by systematic 
uncertainties, mainly photon 
identification, nonprompt 
photon, DY and Z+  
backgrounds, and modelling 

• t  normalization measured to 
be compatible with NNLO QCD 
prediction with 2% uncertainty
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The t /t  ratio - also differential!t̄γ t̄
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PAS-TOP-23-002

Compatible with SM predictions!

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3−10×
d
R
γ
/
d
p
T
(
ℓ
1
)
[
1
/
G
e
V
]

Data, dof = 6

Total unc.

Stat. unc.

 (MG5 NLO prod. +SMR

 = 102
χ decay), γt MG5 LO t

 (MG5 NLO prod.SMR

 = 402χ decay), t PH+Pythia t

Preliminary CMS  (13 TeV)-1138 fb

20 40 60 80 100 120 140 160 180

Particle level p
T
(ℓ
1
) [GeV]

0.5

1

1.5

P
re

d
. 

/ 
D

a
ta

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

3−10×

) 
[1

/G
e
V

]
1

(t
T

 /
 d

 p
γ

d
 R

Data, dof = 4

Total unc.

Stat. unc.

 (MG5 NLO prod. +SMR

 = 932
χ decay), γt MG5 LO t

 (MG5 NLO prod.SMR

 = 9652χ decay), t PH+Pythia t

Preliminary CMS  (13 TeV)-1138 fb

0 50 100 150 200 250 300 350 400 450
) [GeV]

1
(t

T
Parton level p

0.5

1

1.5

P
re

d
. 

/ 
D

a
ta



25

Summary

• Putting the SM to the test with top quark rare processes, especially those involving top quark EW 
couplings 

• Simultaneous measurements enhance sensitivity to BSM effects 

• Run 2 and Run 3 data give access to very rare top processes 

• New!: Inclusive and differential t  results, and for the first time at the LHC, ratio between  and  

More results on their way: stay tuned!

t̄γ tt̄γ tt̄

Thank you!
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Modelling tWZ and treating the interference

• Overlaps with t Z and t  within the SM beyond the leading order: 

• Amplitude split into resonant and non-resonant part 

• DR1 removes  in , DR2 removes  in , leaving interference term, DS adds a subtraction term 

• DR1 used as nominal, DR2 for uncertainty (DS lies in between the two)

t̄ t̄

𝒜resonant
pp→tWZ 𝒜 |𝒜resonant

pp→tWZ |2 𝒜2

is 
t Z!t̄

|𝒜pp→tWZ |2 = |𝒜non−resonant
pp→tWZ |2 + |𝒜resonant

pp→tWZ |2 + 2ℛ(𝒜non−resonant
pp→tWZ 𝒜resonant †

pp→tWZ )

𝒜pp→tWZ = 𝒜non−resonant
pp→tWZ + 𝒜resonant

pp→tWZ

t Z and tWZ are 
treated as one signal

t̄
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• Signal region with three leptons (e or ), 2 jets, 1 b-tagged jet 

• Nonprompt lepton contribution is estimated from data, WZ and other smaller backgrounds from simulation

μ ≥ ≥
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Selection strategy for t Z, tWZ, and tZqt̄

x103 CMS > 1
Q) 
CJ 
I'-
� 0.8 
(0 
� ..._ 
CJ) c o.6
Q) 

0.4 

0.2 

50 100 

138 fb- 1 (13 TeV) 

150 200 250 
Leading lepton Pr [GeV] 

ttZ ttX

WZ Vγ

Data
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Nonprompt

tWZ

Multiboson
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JHEP 02 (2025) 177 
arXiv:2410.23475

https://arxiv.org/abs/2410.23475
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Nonprompt lepton estimation
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Measurement region (MR) 

- QCD multijet samples 
- Exactly 1 “fakeable”* lepton 
- >= 1 jet well-separated from 

Application region (AR) 

- Same selection as SR, but with 
“fakeable” leptons

*fakeable: leptons with loose quality criteria

Compute per lepton:

"fake" factor fi =
Ntight

Ntight + Nfakeable

Apply to
weight = (−1)n**−1

3

∏
i=1

fi
1 − fi

per event:

,

** : # of fakeable leptons not passing the tight IDn

• Contribution in SR = (Reweighted data in AR - prompt contribution from simulation) 

• Estimation validated in off Z-peak region 

• Statistical uncertainties on  propagated from MR & additional per-bin uncertainty for residual 
nonclosure

fi



Uncertainties on the nonprompt estimation
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• Per bin nuisance:

Statistical unc. in MR
Statistical unc. in AR

Systematic unc. to cover 
from residual mismodellings

• No difference in the behavior was observed as a function of lepton flavor 

• Limited statistics in AR  some terms in FF application are = 0.  

• However, the uncertainties are not 0, but a one-sided uncertainty is set as the upper 

confidence interval of the Poisson statistics for 0 observed events,  

• This is more relevant at low lepton pT, where the fake rates are close to 1

→

1.8·
fi

1 − fi



Top quark reconstruction
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• Top quark reconstruction algorithm considers three cases: 

• 2 jets, 1 b tag: leptonic top is reconstructed from  

• 3 jets, 1 b tag: leptonic and hadronic top candidates are reconstructed separately, lowest  kept 

• 4 jets, 1 b tag: both hadronic and leptonic top are reconstructed

ℓ + ν + b

≥ χ2

≥ ≥

χ2
t,lep = ( mlνb − mt

σt,lep )
2

χ2
t,had = (

mjjb − mt

σt,had )
2

χ2
t = ( mlνb − mt

σt,lep )
2

+ (
mjjb − mt

σt,had )
2



tWZ production
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• Explore two top quark electroweak couplings in one process 

• Challenges: 

• Very rare process: exp. cross section ~136 fb 

• Overwhelming and irreducible t Z backgroundt̄

t Zt̄

(NLO in QCD)

• Interference with the t Z process within the SM beyond the leading ordert̄

tWZ:



• Explore two top quark electroweak couplings in one process 

• Challenges: 

• Very rare process: exp. cross section ~136 fb 

• Overwhelming and irreducible t Z backgroundt̄

tWZ production

t Zt̄

33

(NLO in QCD)

• Interference with the t Z process within the SM beyond the leading ordert̄

tWZ:

First analysis using state-of-the-art tWZ 
signal modeling at NLO, consistently 

treating the interference
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• Two regions of the phase space considered: 

✓ Low top quark pT (resolved): higher stat., sensitive to the SM tWZ production 

✓ Top quark with pT > 270 GeV (boosted): enhanced sensitivity for new phenomena 

• Signal and control regions built based on number of leptons and b jets 

• Resolved: 3 leptons, 2j, ≥ 1b  
                          3 leptons, ≥ 3j, ≥ 1(2)b 
                          4 leptons, ≥ 1b 

• Boosted: hadronic top decay (fat jet) 
                            leptonic top decay (lep. top tagger) 

• Diboson CRs: 4 leptons (ZZ) 
                                  3 leptons, 0b (WZ) 

Analysis strategy for tWZ

Multiclass NN

Binary NN

Simultaneous fit 
of 7 distributions

Multiclass 
NN

Multiclass 
NN
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Inclusive tWZ cross section

• Observed (expected) significance of 3.4σ (1.4σ) → evidence! 

• Dominant systematic uncertainties: 

• t Z normalization: 18% - strongly anti-correlated with the signal 

• Other background normalization 

• Sensitivity driven by resolved SRs, especially the SR with 3 leptons, ≥ 3j, ≥ 1b

t̄

𝜎tWZ = 354 ± 54 (stat) ± 95 (syst) fb 


(two s.d. above the SM)

Additional studies showed that when fixing the t Z cross section to 
the previously measured value, the significance stays above 3σ 

t̄

Now published 

in PLB!

http://10.1016/j.physletb.2024.138815
http://10.1016/j.physletb.2024.138815
http://10.1016/j.physletb.2024.138815
http://10.1016/j.physletb.2024.138815
http://10.1016/j.physletb.2024.138815
http://10.1016/j.physletb.2024.138815
http://10.1016/j.physletb.2024.138815
http://10.1016/j.physletb.2024.138815
http://10.1016/j.physletb.2024.138815
http://10.1016/j.physletb.2024.138815


Treating the interference between tWZ and ttZ
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MadSTR plugin used for removal through diagram removal schemes

Amplitude A divided into A(res) and A(non-res)

• 	DR1: removes A(res) in A, used for nominal 

• 	DR2: removes |A(res)|2 in |A|2 (leaves interference term) for uncertainty 

• 	DS: subtraction term, lies between DR1 and DR2 


A. Saggio 
LHCTopWG meeting 

07/06/2023

https://indico.cern.ch/event/1254906/contributions/5415888/attachments/2661752/4615473/LHCTopWG_tWZ_final.pdf


ttZ, tWZ and tZq - systematic uncertainties
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Summary
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 0.01(PDF) pb± 0.05(scale) ±  = 0.75 Wttσ

PRL 131 (2023) 231901
NNLO(QCD)+NLO(EW)

 0.02(PDF) pb±(scale)  0.08− 
 0.07+   = 0.86Zttσ

EPJC 80 (2020) 428
NLO(QCD+EW)+NNLL

 0.10(tot.) pb±  = 0.98 Z+tWZttσ

MadGraph5_aMC@NLO
NLO QCD

 3×(tot.) pb  0.03− 
 0.03+  3 = 0.30×  prod.γttσ

MadGraph5_aMC@NLO
NLO QCD

 20×(tot.) pb  0.002− 
 0.001+  20 = 0.038× 

γ+tWγttσ

JHEP 10 (2018) 158
NLO QCD

 5× 0.03(tot.) pb ± 5 = 0.15 × 
γttσ

MadGraph5_aMC@NLO
NLO QCD

 0.14(tot.) pb±  = 0.77 
γttσ

MadGraph5_aMC@NLO
NLO QCD

-1= 140 fbintATLAS, L
arXiv:2401.05299

-1= 140 fbintATLAS, L
arXiv:2312.04450

, Vis 1-1= 140 fbintATLAS, L
arXiv:2403.09452

, Vis 2-1= 139 fbintATLAS, L
JHEP 09 (2020) 049

-1= 138.0 fbintCMS, L
JHEP 07 (2023) 219

-1= 77.5 fbintCMS, L
JHEP 03 (2020) 056

-1= 138 fbintCMS, L
CMS-PAS-TOP-23-004*

, Vis 3-1= 138 fbintCMS, L
JHEP 05 (2022) 091

, Vis 4-1= 137 fbintCMS, L
JHEP 12 (2021) 180

 (syst.)± (stat.) ± meas.σ

 0.07 pb± 0.05 ±0.88 

 0.04 pb± 0.04 ±0.86 

 3× 0.015 pb ± 0.005 ±0.322 

 20× pb  0.0022−
 0.0026+ 0.0008  ±0.0396 

 0.05 pb± 0.04 ±0.87 

 0.06 pb± 0.05 ±0.95 

 0.04 pb± 0.05 ±1.14 

 5× 0.006 pb ± 0.003 ±0.175 

 0.048 pb± 0.007 ±0.798 

Wtt

Ztt

Z+tWZtt

γtt dilepton

γtt l+jets

γ+tWγtt µe

 prod.γtt l+jets & dilepton

total          stat.

ATLAS+CMS Preliminary
LHCtopWG

 = 13 TeVs

April 2024

*preliminary
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 [pb]Xttσ
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 5×(tot.) fb  2− 
 5+  5 = 102× tZqσ

MadGraph5_aMC@NLO
NLO QCD

 5×(tot.) fb  3− 
 3+  5 = 94× tZqσ

MadGraph5_aMC@NLO
NLO QCD

(tot.) fb 42− 
 36+   = 515γtqσ

MadGraph5_aMC@NLO
NLO QCD

 5× 4(tot.) fb ± 5 = 81 × γtqσ

MadGraph5_aMC@NLO
NLO QCD

 2×(tot.) fb  8− 
 9+  2 = 136× tWZσ

MadGraph5_aMC@NLO
NLO QCD

-1= 139 fbintATLAS, L
JHEP 07 (2020) 124

-1= 138 fbintCMS, L
JHEP 02 (2022) 107

, Vis 1-1= 139 fbintATLAS, L
PRL 131 (2023) 181901

, Vis 2-1= 36 fbintCMS, L
PRL 121 (2018) 221801

-1= 138 fbintCMS, L
arXiv:2312.11668

 (syst.)± (stat.) ± meas.σ

 5× 7 fb ± 13 ±97 

 5× fb  6−
 7+   7−

 8+88  

 fb 71−
 75+ 23  ±688 

 5× 30 fb ± 17 ±115 

 2× 95 fb ± 54 ±354 

tZq

γtq

tWZ

total          stat.

ATLAS+CMS
LHCtopWG

Preliminary  = 13 TeV, April 2024s
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Measurement of t c( )t̄ c̄
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Phys. Lett. B 860 (2025) 139177 
arXiv:2409.11305

Now published

σtt+1c = 1.28+0.16
−0.10(stat)+0.21

−0.22(syst) pb

σtt+≥2c = 6.4+0.5
−0.4(stat) ± 0.8(syst) pb

• Important background for ttH->bb and ttH->cc processes 

• Challenging from the modelling perspective: blah blah blah 

• tt+c and tt+cc measured separately, in the single lepton and dileptonic 
final states

• Custom flavour tagging algorithm used to tag b and c jets 
simultaneously 

• Main uncertainties are background modelling (tt and ttbb), the 
tagger calibration, and data statistics 

• Results largely compatible with predictions, with slight excesses 
of 0.5-2 sigma

https://arxiv.org/abs/2409.11305


Ttgamma
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The tW process at the LHC Run 3

• Focusing on  final stateseμ

42

• Two SRs and CR defined based on number of jets and b jets

SR1
SR2

CR

• First tW measurement at 13.6 TeV, using full 2022 dataset (34.7 fb-1)

t
t̄

g

g

b̄

W

t

tW tt̄

JHEP 01 (2025) 107 
arXiv:2409.06444

Now published

https://arxiv.org/abs/2409.06444


The tW process at the LHC Run 3

43

• Two SRs and CR defined based on number of jets and b jets 

• MVA classifiers (Random Forests) to separate tW from 
irreducible t  background in SRst̄
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arXiv:2409.06444

• First tW measurement at 13.6 TeV, using full 2022 dataset (34.7 fb-1)

• Focusing on  final stateseμ

t
t̄

g

g

b̄

W

t

tW tt̄

https://arxiv.org/abs/2409.06444


Inclusive and differential tW cross sections at 13.6 TeV

• Inclusive result: 

44

σtW = 84.1 ± 2.1(stat.)+9.8
−10.2(syst.) ± 3.3(lum) pb

JHEP 01 (2025) 107 
arXiv:2409.06444

Compatible with SM NNLO prediction 

Limited by systematic uncertainties 
(mainly related to measurement of jets)

https://arxiv.org/abs/2409.06444


Inclusive and differential tW cross sections at 13.6 TeV

• Inclusive result: 
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σtW = 84.1 ± 2.1(stat.)+9.8
−10.2(syst.) ± 3.3(lum) pb

JHEP 01 (2025) 107 
arXiv:2409.06444

Compatible with SM NNLO prediction 

Limited by systematic uncertainties 
(mainly related to measurement of jets)

• Differential results (example):
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Compatible with predictions from 
different generators and modeling 
choices

https://arxiv.org/abs/2409.06444


Previous ttɣ measurements
● Already measured by CMS and ATLAS 

● Inclusive and differential measurements as a function of lepton and photon kinematic observables exist

46

example from [1]:
Note: 
• Inclusive cross 

section slightly higher 
than prediction 

• Imperfect description 
of photon origin 

● Not measured before at the LHC: cross section vs. top quark and  variables, ratio between  and tt̄ tt̄γ tt̄

- focus of this paper (+ improved modelling strategy)

https://www.google.com/url?q=https://arxiv.org/abs/2201.07301&sa=D&source=editors&ust=1695825023291872&usg=AOvVaw1eTzEDCczhILoUusNSx4yU
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 and  cross section calculationstt̄ tt̄γ

●  cross section computed using the TOP++ framework by Czakon, Mitov et al.  
● Computed at NLO in QCD with NLL resummation

tt̄

●  total cross section computed using Madgraph aMC@NLO to simulate two samples: 
• 2->3 , removing hard isolated photons from FSR. Remain photons from ISR, off-shell tops 
• 2->2 , removing hard isolated photons from ISR. Remain photons from FSR, on-shell tops 

• Distribution of photon pT compared to LO sample, and since it was compatible, k-factor derived

tt̄γ
pp → tt̄γ
pp → tt̄

only this is simulated: this is tWgamma: this is not simulated, but 
supposed to be <0.5%1:

1: computed in arXiv 1912.09999v2

How about non-resonant tops?
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● Small sample simulated at NLO with aMC@NLO containing 
photons from production, but not from top decay 

● Photons from decay present in tW NLO sample 

● Sum between two NLO samples compared with LO sample 
which contains all photon origins 

● Distributions match 
● Inclusive k-factor is derived

Simulating  at LOtWγ



49

● Small  sample simulated at next-to-leading order (NLO) with aMC@NLO 

● Final state with  appears at NLO 

● The same final state can be the result of a resonant LO  production

tWγ
tWbγ

tt̄γ

Simulating  at NLOtWγ

● The latter do not belong to  production but to  and thus need to be removed 

● Diagram removal is implemented using the DR2 scheme (same as in  evidence paper from our 
group)

tWγ tt̄γ
tWZ

γ

γ
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Simulating  at NLOtWγ

● NLO with real emission: p + p → t + W− + b̄ + γ

can be resonant t̄

● Amplitude:  

● Matrix element:  

𝒜pp→tW−γ = 𝒜non−resonant
pp→tW−γ + 𝒜resonant

pp→tW−γ

|𝒜pp→tW−γ |2 = |𝒜non−resonant
pp→tW−γ |2 + |𝒜resonant

pp→tW−γ |2 + 2ℛ(𝒜non−resonant
pp→tW−γ 𝒜resonant †

pp→tW−γ)

DR2 interference terms are kept
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Photon origins in tt̄γ
[arXiV:1912.09999v2]
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Nonprompt photon contribution



Nonprompt photon estimation (1)
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for ABCD method, must be mostly uncorrelated 
- they are, but residual correlations exist, especially in endcap
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Algorithm for  reconstructiontt̄

• Algebraic method is used: six kinematics constraints applied to determine the 4-momentum of the 2 neutrinos 

• Equations solved analytically with a maximum of 4 solutions 

• To improve reconstruction efficiency, energies and directions of jets and leptons are smeared according to detector resolution

• Based on method by Sonnenschein 
[Phys.Rev.D73:054015,2006]



Unfolding
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X

true spectrum

X

reconstructed 
spectrum

detector effects 
acceptance 
efficiency

• Need to recover true spectrum (unfolding) 

• Corresponds to inverting the response matrix (entries are reco. vs gen. quantities in bins 1,…,i,…N) 

• Can be done by subtracting the backgrounds and inverting the matrix - classical method, usually 
implemented in TUnfold 

• Can also be done by doing a simultaneous maximum-likelihood fit to N signal templates, each defined by 
requiring that the event is in the ith generator-level bin.  

✓ Background template normalisations are included as nuisance parameters, as well as all relevant sources of 
experimental and systematic uncertainties

?

[arXiv:1205.6201]
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Maximum likelihood fit

μ =
σtt̄γ

σSM
tt̄γ

is the parameter of interest (POI).

Probability of observing  events when  are expected is ni λi(μ) P(ni |μ) =
λi(μ)e−λi(μ)

ni!

We expect λi(μ) = μ·si +
Nbkg

∑
j

bi,j events in bin i, where

without systematic uncs.

Likelihood (probability of seeing the observed data for a given ):μ ℒ(n |μ) =
N

∏
i=1

λi(μ)e−λi(μ)

ni!

With M systematic uncertainties included as nuisance parameters :Θ ℒ(n |μ) =
N

∏
i=1

λi(μ, Θ)e−λi(μ,Θ)

ni!
·

M

∏
m=1

f(Θm)

p.d.f. constraining each NP, 
typically Gaussian

maximised, by minimising -2 log( )ℒ

qμ =
ℒ(n |μ, Θ̂μ)

ℒ(n | ̂μ, Θ̂)

global maximum

maximum for each μ

used to quantify how compatible the observed data is with a given hypothesis

Profiled likelihood ratio:



57

Charge asymmetry
● In : caused by interference between NLO  diagramstt̄ qq̄

 (LO):tt̄γ

●  fusion diagrams represent 79% (88%) of  ( ) 

● Interference with photon diagrams bring additional 
(negative) contribution

gg tt̄γ tt̄

● In : caused by interference between NLO in QCD  diagrams and 
additionally LO diagrams with photons from initial state quarks or tops

tt̄γ qq̄

Why measure it in ?tt̄γ
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 limits on EFT by CMStt̄γ
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SMEFT with /tt̄γ tt̄
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SMEFT with  and tt̄γ tt̄Z
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SMEFT with top quarks
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CMS, tZq/t t̄Z [1] 138 fb°1

CMS, t t̄∞ [2] 137 fb°1

CMS, t t̄Z [3] 78 fb°1

CMS, t t̄ + Z/W/H, tZq,tHq [4] 42 fb°1

CMS, t t̄ + boosted Z/H [5] 138 fb°1

CMS, t t̄∞ [2] 137 fb°1

CMS, t t̄Z [3] 78 fb°1

ATLAS, t t̄Z [6] 36 fb°1

CMS, tZq/t t̄Z [1] 138 fb°1

CMS, t t̄ + Z/W/H, tZq,tHq [4] 42 fb°1

CMS, t t̄ + boosted Z/H [5] 138 fb°1

ATLAS, t t̄Z [6] 36 fb°1

ATLAS, Top polarization [7] 139 fb°1

ATLAS+CMS, W helicity [8] 20+20 fb°1

CMS, t t̄ and tW , BSM search [9] 36 fb°1

ATLAS, Top polarization [7] 139 fb°1

CMS, t t̄ + Z/W/H, tZq,tHq [4] 42 fb°1

CMS, t t̄ + boosted Z/H [5] 138 fb°1

ATLAS, t t̄ ` + jets boosted [10] 139 fb°1

CMS, t t̄ + Z/W/H, tZq,tHq [4] 42 fb°1

CMS, t t̄ and tW , BSM search [9] 36 fb°1

ATLAS, t t̄ rapidity asymmetry [11] 139 fb°1

CMS, t t̄ dilepton [12] 36 fb°1

CMS, t t̄ spin correlations [13] 36 fb°1

CMS, t t̄ spin correlations [13] 36 fb°1

EFT formalism is employed at different levels of
experimental analyses

ATLAS+CMS Preliminary
LHCtopWG

November 2022

Following arXiv:1802.07237
Dimension 6 operators C̃i ¥ Ci/§2

(Top) quark - vector boson operators - Individual limits
ATLAS ATLAS+CMS CMS


