

La Thuile, 11. March 2025 Tobias Böckh

The Intensity Frontier at the LHC

- The LHC is the highest energy collider in the world
 - Large-scale experiments to search for **heavy**, **strongly produced SM** and **BSM** particles

The Intensity Frontier at the LHC

- The LHC is the highest energy collider in the world
 - Large-scale experiments to search for **heavy**, **strongly produced SM** and **BSM** particles
- But, also huge number of light SM hadrons
 - Search for weakly coupled, light new particles
 - Study neutrinos produced in hadron decays
 - $\circ~$ Light hadrons collimated around the beam collision axis:
 - About 1% of all pions with E > 10 GeV are produced in the forward 10^{-6} % of solid angle
 - Small detector in this region would have impressive sensitivity

FASER – The ForwArd Search ExpeRiment

- Located 480 m downstream of ATLAS IP on beam collision axis in TI12 tunnel, $\eta > 8.8$
- Shielded from ATLAS IP by ~ 100 m of rock
- Charged particles are additionally deflected by LHC magnets
 - \rightarrow **Clean environment**, main background from high-energy muons
- Goals:
 - Search for **new, light, long-lived particles**, e.g. dark photons, ALPs, ...
 - Study collider **neutrinos**

FASER Detector

arXiv:2207.11427 JINST 19 P05066

FASER Detector

FASER Operations

Run 10417

Event 12340

2023-04-21 19:44:55

FASER

- Detector operated very smoothly since July 2022
- Collected > 97% of delivered data
 - Average physics trigger rates of 1 kHz
 190 fb⁻¹ of data recorded
- All components working as expected!

- Huge number of light mesons (π^0 , η , ...) in forward direction \rightarrow May decay in dark photons
- First analysis, designed to be simple and robust
- Event selection:

Dark Photon Search – Backgrounds

1. Muons that are **not vetoed** by any of the scintillators: **Negligible** - estimated from scintillator inefficiency

 (Cosmic) muons missing veto: Negligible - evaluated using MC and non-colliding bunches

- Neutral hadrons from upstream muon interactions decaying in detector: (2.2 ± 3.1) 10⁻⁴ events - evaluated from three-track events in side-band
- 4. Neutrinos: (1.8 ± 2.4) 10⁻³ events - evaluated using MC

Total background: (0.0020 \pm 0.0024) events \rightarrow Achieved essentially background free search

Dark Photon Search

- Zero events observed, limits in unconstrained regions of parameter space
- Result also interpreted in B-L gauge boson model

arXiv:2410.10363 JHEP, 2025, 199 (2025)

Search for Axion-like particles (ALPs) in FASER using 2022+2023 data (60 fb⁻¹)
 First FASER search for all neutral final state

- Similar backgrounds as dark photon search
 - With current detector irreducible background from neutrino interactions in preshower
 - Expected background: 0.44 ± 0.39 events (from neutrino simulation, validated in data regions)
- In future, new preshower scintillator will allow to remove this background

ALPs Search – Results

- arXiv:2410.10363 JHEP, 2025, 199 (2025)
- 1 event observed in unblinded signal region (compatible with background estimate)

Neutrinos at FASER

- Large neutrino flux in forward direction
- All flavors produced: $\pi \rightarrow v_{\mu}, K \rightarrow v_{e}, D \rightarrow v_{\tau}$
- Cross sections of all neutrino flavors at TeV energies unexplored
- Neutrinos are proxy for forward hadron production
 - $\circ~$ Input for QCD, forward charm production, $\ldots~$
- Example: neutrino interactions and cross section of muon neutrinos:

Run 3 365 fb $^{-1}$	$ u_{e}$	$ u_{\!\mu}$	$ u_{ au}$
Production $\#\nu$ traversing FASER ν $\#\nu$ interactions	\mathcal{K} $\mathcal{O}(10^{11})$	π $\mathcal{O}(10^{12})$	D $\mathcal{O}(10^9)$
'' in FASER $ u$	2400	12400	40
unexplored		arXiv:1	908.02310
		arxiv:2	402.13318

Phys. Rev. D 110, 012009

Observing Neutrinos with FASER

FASERv emulsion detector:

- 730 layers of tungsten + emulsion film, 1.1 ton
- Excellent position & angular resolution (0.3 μ m), but no time resolution
- Films saturate at ~ 5x10⁵ tracks/cm² \rightarrow Replace films about 3 times/year, develop the emulsion films

Electronic detectors:

- Use FASERv only as target for neutrino interaction
- Reconstruct muon, produced in CC v_{ii} interactions, with electronic detectors
- Other particles are absorbed in tungsten
- → Observe only CC v_{μ} interactions Charge of muon used to separate v and \overline{v}
- Two complementary approaches to study neutrinos

FASERv Emulsion Detector – Events

• Readout of emulsion films is time-consuming \rightarrow First analysis uses 283 films 128.6 kg (9.5 fb⁻¹)

- Short tracks + EM shower
- Expect 0.6 5.2 CC $v_{_{P}}$ interactions
- Observed 4 v_{e} events with a background of 0.025 ± 0.018 neutral hadrons (5.2 σ)

First observation of collider v !

- Long tracks + no shower
- Expect 3.0 8.6 CC v_µ interactions
 Observed 8 v_µ events with a background of 0.22 ± 0.11 neutral hadrons (5.7 σ)

arxiv 2403.12520

FASERv Emulsion Detector - Cross section Phys. Rev. Lett. 133, 021802 (2024)

First measurement of cross section of collider neutrinos!

Electronic neutrino analysis – Event selection

arXiv:2303.14185, Phys. Rev. Lett. 131, 031801 arXiv:2412.03186

• Reconstruct muon, produced in CC v_{μ} interactions, with electronic detectors:

• Background from v_{ρ} , v_{τ} , NC, v interactions outside of the FV, and muons missing veto

Electronic neutrino analysis – Results

- 2023: First direct observation of collider neutrinos!
 - Using 2022 data (35.1 fb⁻¹)
 - $\circ~$ Observed 153 neutrino candidates with background of 0.19 ± 1.83 events (> 15 $\sigma)$
- 2024: Measurement of neutrino cross section and flux as function of energy
 - $\circ~$ Using 2022 and 2023 data (65.6 fb⁻¹)
 - Unfold number of neutrino interactions
 - $\circ~$ Interpret result in two ways:
 - 1. Assume flux from MC (with uncertainty) and measure cross section
 - 2. Assume theoretical cross section (with uncertainty) and measure flux

arXiv:2303.14185, Phys. Rev. Lett. 131, 031801

arXiv:2412.03186

18

What is next?

Preshower Technical Proposal (2022) FASER Run 4 Letter of Intent (2023)

- Installed new high-resolution tungsten/silicon-pixel preshower station in February 2025
 - Separate closely spaced high-energy photons
 - $\circ~$ Helps with background for ALPs analysis \rightarrow Improves sensitivity
- FASER is approved to operate during Run 4!
 - Increased sensitivity for higher luminosity
 - $\circ~$ Higher muon rates challenging for FASER $\!\nu$ emulsion detector
 - \rightarrow Explorations for minimal detector additions ongoing
 - FASER2 and FASERv2 at the FPF (awaiting approval)

Summary

- FASER operating since the start of LHC Run 3

 190 fb⁻¹ of data recorded
- Dark photon & ALPs searches
 - $\circ~$ Exclude interesting parameter space motivated by dark matter
 - Almost background free search validates detector design/performance

⁻² GeV⁻¹ nucleon⁻¹

10

- Preshower upgrade will improve sensitivity
- Neutrinos
 - $\circ~$ First direct observation of collider muon and electron neutrinos
 - \circ Measured v_{e} and v_{μ} cross sections (as a function of energy)
 - Measured forward neutrino flux at the LHC
 - \rightarrow Opened door to collider neutrino studies at at the LHC
- Looking forward to updated analysis

The future is forward!

FASER Collaboration

The FASER collaboration consists of 112 members from 28 institutions and 11 countries

FASER Acknowledgements

FASER is supported by

Swiss National Science Foundation

- We also thank:
 - LHC for the excellent performance
 - ATLAS Collaboration for providing luminosity information Ο
 - ATLAS SCT Collaboration for spare tracker modules Ο
 - ATLAS for the use of their ATHENA software framework Ο
 - LHCb Collaboration for spare ECAL module Ο
 - CERN FLUKA team for the background simulation Ο
 - CERN PBC and technical infrastructure groups for the excellent support Ο

Additional Slides

Dark Photon – Event selection

Dark photon

Dark photon – Exclusion contours

ALPs – Event selection

ALPs – Validation & Signal regions

Second Preshower Layer nMIP

ALPs – Additional interpretations

Neutrino Rates

Emulsion film

Emulsion film Tungsten plate (1 mm thick)

FASERv Neutrino Analysis – Event selection

1. Reconstruct vertices

- $N_{\text{track}} \geq 5$, $N_{\text{track}(\tan \theta < 0.1)} \geq 4$
- Impact parameter $d < 5 \,\mu m$
- No parent / incoming track

Muon flux 1.43 × 10^4 tracks/cm²/fb⁻¹

2000 9 1500 FASER Simulation GeV p > 4000 Ge **FASER Simulation** 4000 Electrons in v. CC MC Single muon MC 10^{2} 1000 2000 10 500 1000 2000 1500 500 1000 500 1000 1500 2000 E_{truth} [GeV] p_{true} [GeV]

2. Lepton identification

- Electron: vertex with EM shower
 - Energy measured by counting # of track segments around EM shower maximum - $\Delta E/E \sim 0.25$ at 200 GeV
- Muon: vertex with track traversing > 100 plates
 - Muon momentum from multiple coulomb scattering as muon traverses tungsten

- $\Delta p/p \sim 0.3$ at 200 GeV

3. Event selection

- E_e or $p_{\mu} > 200 \, \text{GeV}$
- $\tan \theta_{\ell} > 0.005$
- $\phi > 90^{\circ}$ with respect to other tracks

track

z

FASERv Neutrino Analysis – Backgrounds

- Main background: neutral hadrons interacting with detector
 - Reduced by momentum / energy cut
 - Estimated from simulation and validated using vertices with lower energy
- Few neutral current interactions for v

FASERv Neutrino Analysis – Signal Events

"Pika-v" Event

Electronic Neutrino Analysis - Backgrounds

FASERv emulsion detector

- Neutral hadrons has to be produced in last meter in front of FASER (otherwise absorbed in concrete)
 - \rightarrow Almost always also parent muon hits VetoNu scintillator
- Momentum and track cut reduce background further
 - \rightarrow Negligible
- Inefficiency of each layer $< 10^{-7}$
- Expect $< 10^{-6}$ background events
 - \rightarrow Negligible
- Estimated from low momentum sideband
- Expect in total 0.3 ± 0.6 background events
- Small contribution from $u_{\rm e}$, $u_{
 m au}$, NC, or u_{μ} interactions outside fiducial volume
- Estimated from simulations

Signal					
$ u_{\!\mu}$ CC (fid.)	$ u_{\!\mu}$ CC (non-fid.)	$ u_e$ CC	$ u_{ au}$ CC	u NC	Geo. bgr
298.4 ± 42.6	17.1 ± 6.6	2.3 ± 1.9	0.2 ± 0.4	4.0 ± 1.4	0.3 ± 0.6

Electronic Neutrino Analysis – Geometric Backgrounds

Reduced Vetov Charge

Electronic Neutrino Analysis – Observed Events

Electronic Neutrino Analysis – Neutrino Interactions

Combined flux and cross section fit

Unfolding

	-1/100 -	TASER							-10	
	1/200	0.869 ±0.025	0.145 ±0.025	0.038 ±0.011	0.014 ±0.006	0.002 ±0.003	0.000 ±0.001			1.(
	-1/500 -	0.131 ±0.023	0.732 ±0.027	0.242 ±0.028	0.043 ±0.010	0.001 ±0.001	0.000 ±0.001			• 0.8
/ GeV]	-1/1000 -	0.000 ±0.000	0.115 ±0.036	0.595 ±0.021	0.136 ±0.026	0.000 ±0.003	0.000 ±0.000			• 0.6
$q/p'_{\mu}[$	-1/1000 -	0.000 ±0.002	0.001 ±0.002	0.113 ±0.027	0.732 ±0.030	0.063 ±0.026	0.000 ±0.004		-	- 0.4
	1/300 -	0.000 ±0.002	0.002 ±0.002	0.005 ±0.006	0.065 ±0.018	0.841 ±0.037	0.141 ±0.020		_	0.2
	1/100	0.000 ±0.000	0.005 ±0.004	0.008 ±0.004	0.010 ±0.003	0.093 ±0.030	0.859 ±0.020			0.0
$\frac{1}{100} \frac{1}{100} \frac{1}$								· 0.(

 $-L/E_{\nu}\left[\,/\,\mathrm{GeV}\,
ight]$

bins $\mathcal{L} = \prod^{i} \mathcal{P}(N^{i}_{\mu} | n^{i}_{\mu}) \times \prod^{i} \mathcal{G}_{l}$ i

n^i_μ :	$=\sum$	M_{ik}	ϵ_k	$n_{ u}^k$	+	$n_{ m bkg}^{i}$
	k					

43

$-L/E_{\nu}$ [GeV ⁻¹]	$\left[\tfrac{-1}{100}, \tfrac{-1}{300}\right]$	$\left[\tfrac{-1}{300}, \tfrac{-1}{600}\right]$	$\left[\tfrac{-1}{600}, \tfrac{-1}{1000}\right]$	$\left[rac{-1}{1000},rac{1}{1000} ight]$	$\left[\frac{1}{1000},\frac{1}{300} ight]$	$\left[\frac{1}{300},\frac{1}{100} ight]$	Total
Acceptance α [%] Reco. efficiency $\epsilon_{reco.}$ [%]	$16.7 \pm 0.6 \\ 80.8 \pm 7.2$	30.0 ± 1.2 79.0 ± 4.9	38.8 ± 2.6 79.3 ± 5.0	$46.6 \pm 3.0 \\ 78.8 \pm 5.5$	$47.5 \pm 1.9 \\ 84.4 \pm 4.7$	$27.8 \pm 2.5 \\ 84.5 \pm 6.9$	35.3 ± 2.0 80.3 ± 4.5
Efficiency $\epsilon = \alpha \cdot \epsilon_{\text{reco}} [\%]$	13.5 ± 1.2	23.7 ± 1.7	30.8 ± 2.6	36.8 ± 3.0	40.1 ± 3.1	23.5 ± 2.4	28.3 ± 1.9

Distribution of observed muons

Neutrino production modes

