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ER/NR discrimination

Introduction

● Electron Recoil (ER) and Nuclear Recoil (NR) events are found in CYGNO Experiment.

● For dark matter searches, we are interested in NR events.

● Continue with Atul’s work (A. A. Prajapati, “Multivariate Analysis for Background Rejection in CYGNO/INITIUM Experiment”, PhD thesis (2024))

● Develop strategies to improve detection of such events

○ Signal efficiency (NR)

○ Background rejection (ER)

In CYGNO, each event is composed by:

● sCMOS image

● PMTs waveforms
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Introduction

Table 5.3: Simulated Energies and 
number of events for ER and NR.

From Atul’s thesis Atul’s dataset

Energies in a range from 2-50 keV
25 energy levels

10000 events per level

Before pre-processing phase

(A. A. Prajapati, “Multivariate Analysis for Background Rejection in CYGNO/INITIUM Experiment”, PhD thesis (2024))

● energy

● size

● nhits

● length

● width

● slimness

● Gaussian Width

● LAPA

16 shape variables were used in machine learning algorithm training:

● thin track

● SDCD

● ChargeUnif

● MaxDen

● CylThick

● eta

● dE/dX

● dE/dA
Pre-processing phase (MC data)

● Geometrical Cut
● Noise Cut
● Outlier Removal from 

Integral Distribution

Atul compared the discrimination performance for:

● Classical approach

● Deep Neural Networks

● Random Forest Classifier

● Gradient Boosting Classifier
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Datasets

12 datasets - 1000 events each - 60 GB in total
Data = MC data no noise + Real pedestal

+

Example of event

Energies:

➔ Run reconstruction code to get variables from analysis

6000 events of ER
6000 events of NR

Total
ER [keV] NR [keV] Events

1 1 1000
3 3 1000
6 6 1000

10 10 1000
30 30 1000
60 60 1000

Not applying any 
pre-processing to the data
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Variables from reconstruction
Variable Description

run run number

event event number

pedestal_run run number used for pedestal subtraction

cmos_integral integral counts of the full CMOS sensor

cmos_mean average counts of the full CMOS sensor

cmos_rms RMS of the counts of the full CMOS sensor

timestamp Timestamp in UTC of the picture

t_DBSCAN DBSCAN time

t_variables Variables time

lp_len # pixel

t_pedsub pedestal subtraction

t_saturation saturation correction mode

t_zerosup zero suppression

t_xycut xy acceptance cut

t_rebin rebinning

t_medianfilter median filter

t_noisered noise reductor

nSc nSc/i

sc_size number of pixels of the cluster, without zero-suppression

sc_nhits number of pixels of the cluster above zero-suppression threshold

sc_integral uncalibrated integral of counts of all the pixels in the cluster

sc_corrintegral density-corrected integral of the cluster (LEMON-specific calibration)

sc_rms RMS of counts of all the pixels in the cluster

sc_energy calibrated energy of the cluster in keV (LEMON-specific calibration)

sc_pathlength curved length of the cluster (made with skeletonization)

sc_redpixIdx index of the first pixel in the reduced pixel (redpix) collection belonging to the cluster

nRedpix nRedpix/i

redpix_ix x coordinate of the pixel

redpix_iy y coordinate of the pixel

redpix_iz number of counts of the pixel (after pedestal subtraction)

sc_theta polar angle inclination of the major-axis of the cluster

sc_length length of the major axis of the cluster

sc_width length of the minor axis of the cluster

sc_longrms truncated RMS of the cluster along the major axis

Variable Description
sc_latrms truncated RMS of the cluster along the minor axis

sc_lfullrms full RMS of the cluster along the major axis

sc_tfullrms full RMS of the cluster along the minor axis

sc_lp0amplitude amplitude of the main peak of the longitudinal cluster profile

sc_lp0prominence prominence of the main peak wrt the local baseline along the longitudinal cluster profile

sc_lp0fwhm full width at half-maximum of the main peak of the longitudinal cluster profile

sc_lp0mean mean position wrt the start of the cluster of the main peak of the longitudinal cluster 
profile

sc_tp0fwhm full width at half-maximum of the main peak of the transverse cluster profile

sc_xmean x position of the cluster energy baricenter

sc_ymean y position of the cluster energy baricenter

sc_xmax x position of the rightmost pixel of the cluster

sc_xmin x position of the leftmost pixel of the cluster

sc_ymax y position of the topmost pixel of the cluster

sc_ymin y position of the bottommost pixel of the cluster

sc_pearson Pearson coefficient of the cluster

sc_tgaussamp amplitude of the Gaussian transverse profile

sc_tgaussmean mean position of the Gaussian transverse profile

sc_tgausssigma standard deviation of the Gaussian transverse profile

sc_tchi2 chi-squared of the Gaussian fit to the transverse profile

sc_tstatus status of the Gaussian fit to the transverse profile

sc_lgaussamp amplitude of the Gaussian longitudinal profile

sc_lgaussmean mean position of the Gaussian longitudinal profile

sc_lgausssigma standard deviation of the Gaussian longitudinal profile

sc_lchi2 chi-squared of the Gaussian fit to the longitudinal profile

sc_lstatus status of the Gaussian fit to the longitudinal profile

Lime_pressure Lime pressure

Atm_pressure Atmosperic pressure

Lime_temperature Lime temperature

Atm_temperature Atmosheric temperature

Humidity

Mixture_Density

● 65 variables in total

● 33 variables selected at first (highlighted)
○ Features for the ML algorithms
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Tasks

On going

● Evaluate performance using Random Forest and Gradient Boosting Classifiers

● Evaluate performance using Deep Neural Networks

● Fine tuning and improvement of the models

Future Plans

-> Luan

-> Jordan

● Compare obtained results with Atul’s thesis
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Training data with RFC and GBC

Hyperparameters

Random Forest Classifier Gradient Boosting Classifier

'n_estimators' (default = 100) number of trees in the forest

'max_depth' (default = None)

'max_leaf_nodes' (default = None)

'max_features' (default = ‘sqrt’) number of features to 

consider when looking for the best split

'n_estimators' (default = 100) number of boosting stages

'max_depth' (default = 3)

'max_leaf_nodes' (default = None)

'max_features' (default = None)

'learning_rate' (default = 0.1) shrinks the contribution of each 

tree

sklearn.ensemble.GradientBoostingClassifier()sklearn.ensemble.RandomForestClassifier()
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Learning curve using default hyperparameters
determines cross-validated training and test scores for different training set sizes

Random Forest Classifier Gradient Boosting Classifier

Training data with RFC and GBC

Will more data help 
performance get better?

G
A

P G
A

P

Search the best 
hyperparameters
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HalvingGridSearchCV for best hyperparameters

Random Forest Classifier Gradient Boosting Classifier

'n_estimators':  range(10, 110, step = 10)

'max_depth': range(3, 9, step = 1)

'max_leaf_nodes': range(4, 50, step = 2)

'max_features': ['sqrt', None]

'n_estimators':  range(10, 110, step = 10)

'max_depth': range(3, 9, step = 1)

'max_leaf_nodes': range(4, 50, step = 2)

'max_features': ['sqrt', None]

'learning_rate': [0.01, 0.05, 0.1]

sklearn.ensemble.GradientBoostingClassifier()sklearn.ensemble.RandomForestClassifier()

sklearn.model_selection.HalvingGridSearchCV

Grid to search Grid to search

Best hyperparameters Best hyperparameters
'n_estimators':  30

'max_depth': 6

'max_leaf_nodes': 16

'max_features': 'sqrt'

'n_estimators':  70

'max_depth': 3

'max_leaf_nodes': 8

'max_features': 'sqrt'

'learning_rate': 0.05

Training data with RFC and GBC

Proceed the study 
with these optimal 
hyperparameters
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Learning curve using best hyperparameters
determines cross-validated training and test scores for different training set sizes

Random Forest Classifier Gradient Boosting Classifier

Training data with RFC and GBC

GAP GAP



Luan G. M. de Carvalho, 14/11/2024 13

Feature Importance using best hyperparameters

Let’s remove the 
features with 

importance == 0

Training data with RFC and GBC

For this preliminary 
analysis
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Variable Description

run run number

event event number

pedestal_run run number used for pedestal subtraction

cmos_integral integral counts of the full CMOS sensor

cmos_mean average counts of the full CMOS sensor

cmos_rms RMS of the counts of the full CMOS sensor

timestamp Timestamp in UTC of the picture

t_DBSCAN DBSCAN time

t_variables Variables time

lp_len # pixel

t_pedsub pedestal subtraction

t_saturation saturation correction mode

t_zerosup zero suppression

t_xycut xy acceptance cut

t_rebin rebinning

t_medianfilter median filter

t_noisered noise reductor

nSc nSc/i

sc_size number of pixels of the cluster, without zero-suppression

sc_nhits number of pixels of the cluster above zero-suppression threshold

sc_integral uncalibrated integral of counts of all the pixels in the cluster

sc_corrintegral density-corrected integral of the cluster (LEMON-specific calibration)

sc_rms RMS of counts of all the pixels in the cluster

sc_energy calibrated energy of the cluster in keV (LEMON-specific calibration)

sc_pathlength curved length of the cluster (made with skeletonization)

sc_redpixIdx index of the first pixel in the reduced pixel (redpix) collection belonging to the cluster

nRedpix nRedpix/i

redpix_ix x coordinate of the pixel

redpix_iy y coordinate of the pixel

redpix_iz number of counts of the pixel (after pedestal subtraction)

sc_theta polar angle inclination of the major-axis of the cluster

sc_length length of the major axis of the cluster

sc_width length of the minor axis of the cluster

sc_longrms truncated RMS of the cluster along the major axis

Variable Description
sc_latrms truncated RMS of the cluster along the minor axis

sc_lfullrms full RMS of the cluster along the major axis

sc_tfullrms full RMS of the cluster along the minor axis

sc_lp0amplitude amplitude of the main peak of the longitudinal cluster profile

sc_lp0prominence prominence of the main peak wrt the local baseline along the longitudinal cluster profile

sc_lp0fwhm full width at half-maximum of the main peak of the longitudinal cluster profile

sc_lp0mean mean position wrt the start of the cluster of the main peak of the longitudinal cluster 
profile

sc_tp0fwhm full width at half-maximum of the main peak of the transverse cluster profile

sc_xmean x position of the cluster energy baricenter

sc_ymean y position of the cluster energy baricenter

sc_xmax x position of the rightmost pixel of the cluster

sc_xmin x position of the leftmost pixel of the cluster

sc_ymax y position of the topmost pixel of the cluster

sc_ymin y position of the bottommost pixel of the cluster

sc_pearson Pearson coefficient of the cluster

sc_tgaussamp amplitude of the Gaussian transverse profile

sc_tgaussmean mean position of the Gaussian transverse profile

sc_tgausssigma standard deviation of the Gaussian transverse profile

sc_tchi2 chi-squared of the Gaussian fit to the transverse profile

sc_tstatus status of the Gaussian fit to the transverse profile

sc_lgaussamp amplitude of the Gaussian longitudinal profile

sc_lgaussmean mean position of the Gaussian longitudinal profile

sc_lgausssigma standard deviation of the Gaussian longitudinal profile

sc_lchi2 chi-squared of the Gaussian fit to the longitudinal profile

sc_lstatus status of the Gaussian fit to the longitudinal profile

Lime_pressure Lime pressure

Atm_pressure Atmosperic pressure

Lime_temperature Lime temperature

Atm_temperature Atmosheric temperature

Humidity

Mixture_Density

● 65 variables in total

● 33 variables selected at first (highlighted)

● 28 variables after selection based on the Feature Importance

Training data with RFC and GBC
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Training with all energies and test with all energies - 80%  for training and 20%  for test

NR as positive class
ER as negative class

Results with RFC and GBC
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Training with all energies and test with 1 keV - split 80%  for training and 20%  for test

NR as positive class
ER as negative class

Results with RFC and GBC
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Training with all energies and test with 3 keV - split 80%  for training and 20%  for test

NR as positive class
ER as negative class

Results with RFC and GBC
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Training with all energies and test with 6 keV - split 80%  for training and 20%  for test

NR as positive class
ER as negative class

Results with RFC and GBC
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Training with all energies and test with 10 keV - split 80%  for training and 20%  for test

NR as positive class
ER as negative class

Results with RFC and GBC
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Training with all energies and test with 30 keV - split 80%  for training and 20%  for test

NR as positive class
ER as negative class

Results with RFC and GBC
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Training with all energies and test with 60 keV - split 80%  for training and 20%  for test

NR as positive class
ER as negative class

Results with RFC and GBC
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Training with all energies - Background Rejection vs Signal Efficiency

Results with RFC and GBC
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Training with all energies - Background Rejection vs Signal Efficiency

From Atul’s thesis
Figure 6.19

Results with RFC and GBC

Background Rejection vs Signal Efficiency - ANN

Jordan’s result
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Training with all energies - Background Rejection vs Signal Efficiency

Results with RFC and GBC

From Atul’s thesis
Figure 6.19

Background Rejection vs Signal Efficiency - ANN

Comparing 
10 keV

Jordan’s result
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● A preliminary study has been done for ER/NR classification
○ RFC, GBC, ANN

● Results showed divergences and similarities with Atul’s results
○ The comparison is not trivial and direct

Conclusions

● Without applying:
○ Pre-processing

○ Robust feature selection

○ Data augmentation
Next steps

Energies in a range from 2-50 keV
25 energy levels

~10000 events per level

Atul’s dataset

Energies in a range from 1-60 keV
6 energy levels

1000 events per level

My dataset

Evaluate performance

Jordan’s result

Jordan’s ANN performed slightly 
better than Atul’s DNN


