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Higher Form Symmetries

Usual U(1) symmetries (0-form)

• Conserved 1-form current,

d ⋆ j1 = 0

• Codimension 1 topological symmetry operators,

Uα(Σd−1) = eiαQ = e
iα

∮
Σd−1

⋆j1

• Symmetry operators act on states. Equivalently,

on local operators by linking,

Higher (p-form) symmetries

• Conserved (p+1)-form current,

d ⋆ jp+1 = 0

• Codimension (p+1) top. symmetry operators,

Uα(Σd−p−1) = eiαQ = e
iα

∮
Σd−p−1

⋆jp+1

• Symmetry operators act on p-dimensional

operators by linking,
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Example: U(1) gauge theory in 4d.

• Equation of motion + Bianchi identity imply two conserved 2-form currents (Gaiotto et al., 2015),

d ⋆ j(2)e = d ⋆F = 0, d ⋆ j(2)m = dF = 0, → Uα(Σ2) = e
iα

∮
Σ2

⋆F
, Ũβ(Σ2) = e

iβ
∮
Σ2

F

• The symmetry is U(1)
(1)
e × U(1)

(1)
m .

• These symmetry operators act on Wilson lines and ’t Hooft lines,

⟨Uα(Σ2)Wq(γ)...⟩ = eiqα·Link[Σ2,γ]⟨Wq(γ)...⟩, ⟨Ũβ(Σ2)Hp(γ)...⟩ = eipβ·Link[Σ2,γ]⟨Hp(γ)...⟩

• Both symmetries are spontaneously broken,

⟨W (γ)⟩ ∼ e−Perimeter(γ), ⟨H(γ)⟩ ∼ e−Perimeter(γ)

• The Goldstone boson is the photon,

⟨0|j(2)e,µν |λ, p⟩ = (λµpν − λνpµ)e
ipx
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Definition of (-1)-form U(1) Symmetry.

The case of p = −1-form symmetry is a bit degenerate. Let us adopt the following working definition.

Definition: A theory has a (-1)-form U(1) symmetry if it contains a local operator j0(x) that can be

coupled to a background field taking values in the circle θ ∼ θ + 2π.

S ⊃ i

∫
θ(x) ⋆ j0(x)

•
∫
⋆j0(x) ∈ Z is the (-1)-form charge.

• Example: 4d gauge theory, (-1)-form symmetry charge is the instanton number,

⋆j0 =
1

8π2
tr(F ∧ F )

• Our point of view: (-1)-form U(1) symmetries are features of QFT’s that share some properties with

higher form symmetries.
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Higher (p-form) U(1) Symmetries

1. Conserved current. Conserved p+ 1-form current,

d ⋆ jp+1 = 0,

∮
jp+1 ∈ Z

2. Topological symmetry operators. Codimension
p+ 1,

Uα(Σd−1) = eiαQ = e
iα

∮
Σd−1

⋆jp+1

3. Charged operators Wq [γp]. Moving Uα(Σd−1) gives
selection rules.

4. Background gauge fields,

S ⊃ i

∫
Ap+1 ∧ ⋆jp+1,

d ⋆ jp+1 = 0 ⇒ A → A+ dλ,∮
⋆jp+1 ∈ Z ⇒ A → Ap+1 + 2πωp+1

5. Gauging (if not anomalous),

Z′ =

∫
DAZ[A]

6. Anomalies. A symmetry is anomalous if it can’t be
gauged. Typically encoded in anomaly inflow. For 4d
Maxwell theory,

A =
i

2π
dBe ∧Bm

7. Spontaneous Breaking. Charged operator takes a
vev.

⟨Wq [γp]⟩ ̸= 0

The conserved current acts on the vacuum creating
massless Goldstone,

⟨0|jµ(x)|p⟩ = pµe
ipx
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(-1)-form U(1) Symmetry

1. Conserved current. 0-form current. Conservation eq.
tautological, ✗

d ⋆ j0 = 0,

∮
⋆j0 ∈ Z

2. Topological Operators. Spacetime filling “topological”
symmetry operators, ✗

Uα(M) = eiαQ = eiα
∮
M ⋆j0

3. Charged Operators. There are none. No selection
rules. ✗

4. Background gauge fields, ✓

S ⊃ i

∫
θ(x) ∧ ⋆j0,∮

⋆j0 ∈ Z ⇒ θ(x) → θ(x) + 2πω0

Only large gauge transformations.

5. Gauging, ✓

Z′ =

∫
Dθ(x)Z[θ(x)]

Compact scalar field is gauge field.

6. Anomalies. Anomalies in the space of coupling
constants (Córdova et al., 2020a; Córdova et al.,
2020b). In 2d Maxwell, ✓

A =
i

2π
dθ ∧Be

7. Spontaneous Breaking?.

• No charged operator that can take a vev.
• No candidate for a Golstone boson.

=⇒ In this talk: explore this possibility.
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Motivation to study (-1)-form symmetries

• Symmetries are robust under RG flow. Also true for (-1)-form U(1) symmetries.

• Their anomalies are robust under RG flow. Also true for (-1)-form U(1) symmetries.

• Spontaneously broken symmetries give rise to universal phenomena. What about (-1)-form U(1)

symmetries?

• In Quantum Gravity they have been conjectured to be absent, linking it with the absence of free

parameters in Quantum Gravity (McNamara & Vafa, 2020). Phenomenological implications?

• Axion physics closely related to (-1)-form symmetries. Axion monodromy inflation? Relaxion

monodromy?

In this talk: the Strong CP Problem.
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Spontaneously broken (-1)-form U(1) symmetries

11 / 30



A toy model: 2d Maxwell theory.

• 4d Maxwell has U(1)
(1)
e × U(1)

(1)
m . Both SSB and photon is the Goldstone.

• 3d Maxwell has U(1)
(1)
e × U(1)

(0)
m . Only U(1)

(0)
m is SSB and (dual) photon is the Goldstone.

dA = ⋆dϕ

• 2d Maxwell has U(1)
(1)
e × U(1)

(−1)
m . U(1)

(1)
e is not SSB.

S =

∫
1

2e2
F ∧ ⋆F +

1

2π

∫
θF

2d photon has no propagating degrees of freedom.

Is there a sense in which U(1)
(−1)
m is spontaneously broken?
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A toy model: 2d Maxwell theory.

Put the theory on a circle M = S1 × Rt

ϕ(t) =

∫ 2πR

0

dxA1(x, t) → S =

∫
dt

[
1

4πe2R
ϕ̇2 +

θ

2π
ϕ̇

]
, ϕ ∼ ϕ+ 2π

Solved by eigenstates ϕl = eilϕ with energy,

El = πe2R

(
l − θ

2π

)2

Excited states (not drawn): adding 2 probe particles.

Classically confined.
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A toy model: 2d Maxwell theory.

Gauging an spontaneously broken symmetry gives Higgs mechanism,

• The gauge boson A eats the would-be Goldstone ϕ and becomes massive.

S ⊃ |A− dϕ|2

• Electric screening. Objects electrically charged under gauge boson A are screened.
• Magnetic confinement. Objects magnetically charged under gauge boson A are confined.

Gauge the (-1)-form U(1) symmetry,

S =

∫
1

2e2
F ∧ ⋆F +

1

2π
(θ + ϕ)F +

1

2
(∂ϕ)2

• The compact scalar field is massive V (ϕ) ∼ πe2Rϕ2.
• Electric screening. Being ϕ massive, effects of eiϕ insertions decay at long distances.
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A toy model: 2d Maxwell theory.

What about magnetic confinement?

• Dualize to magnetic frame dϕ = ⋆dϕ̃. We find ϕ̃ eaten by A,

S ⊃ |A− dϕ̃|2,

A→ A+ dλ

ϕ̃→ ϕ̃+ λ

• Magnetic vortex operator ei
˜ϕ(x) not gauge invariant. Need to attach Wilson line,

eiϕ̃(x1) · ei
∫
γ A · e−iϕ̃(x2), ∂γ = {x1, x2}

Insertion of ei
∫
γ A leads to energy increase ∆E ∼ Length(γ). Magnetic vortices are confined.

We conclude that the gauged (-1)-form U(1) symmetry is in the Higgs phase. We interpret this to

mean that the global (-1)-form U(1) symmetry of 2d Maxwell is spontaneously broken.
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An order parameter

• If E(θ) was independent of θ, ϕ(x) would be massless and the gauged (-1)-form symmetry would not

be Higgsed. Therefore, the global (-1)-form symmetry not spontaneously broken.

• Proposal: The spontaneous breaking of the (-1)-form U(1) symmetry is diagnosed by an explicit

dependence of the vacuum energy on a constant background field θ, E(θ).

• The leading measure of such dependence is the topological susceptibility,

X ≡ ∂2

∂θ2
E(θ)

∣∣∣∣∣
θ=0

• Interestingly, X has been linked with long-range correlations via the Kogut-Susskind pole, (Kogut &

Susskind, 1975; Luscher, 1978),

i
qµqν
q2

· X
q2

= lim
q→0

∫
d2xeiqx⟨T (Aµ(x)Aν(0))⟩conn.

X ≠ 0 related to “masslessness” of Aµ(x)

16 / 30



An order parameter

• If E(θ) was independent of θ, ϕ(x) would be massless and the gauged (-1)-form symmetry would not

be Higgsed. Therefore, the global (-1)-form symmetry not spontaneously broken.

• Proposal: The spontaneous breaking of the (-1)-form U(1) symmetry is diagnosed by an explicit

dependence of the vacuum energy on a constant background field θ, E(θ).

• The leading measure of such dependence is the topological susceptibility,

X ≡ ∂2

∂θ2
E(θ)

∣∣∣∣∣
θ=0

• Interestingly, X has been linked with long-range correlations via the Kogut-Susskind pole, (Kogut &

Susskind, 1975; Luscher, 1978),

i
qµqν
q2

· X
q2

= lim
q→0

∫
d2xeiqx⟨T (Aµ(x)Aν(0))⟩conn.
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General lessons

• A QFT has a (-1)-form U(1) symmetry U(1)(−1) if it can be coupled to a background gauge field:

S ⊃ θ ∧ ⋆j0.

• The symmetry U(1)(−1) is spontaneously broken if the vacuum energy E defined as,

ZEuc. = e−V E(θ)

depends explicitly on a constant background field θ.

• A good measure of this breaking is the topological susceptibility X ≡ ∂2

∂θ2
E(θ)

∣∣∣
θ=0

. Since

j0(x) = ∂µvµ(x),

i
qµqν
q2

· X
q2

= lim
q→0

∫
d2xeiqx⟨T (vµ(x)vν(0))⟩conn.

• Then, X ≠ 0 signals an emergent IR description in terms of a Cd−1 gauge field (Kogut & Susskind,

1975; Luscher, 1978).

• Cd−1 is the electromagnetic dual of the “Goldstone” (-1)-form gauge field of the spontaneously broken

(-1)-form symmetry.
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(-1)-form symmetry.
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Spontaneous breaking of (-1)-form symmetry in SU(N) Yang Mills

S =

∫
tr
(
− 1

g2
F ∧ ⋆F +

θ

8π2
F ∧ F

)

• There is a (-1)-form U(1) symmetry with background gauge field θ.

• Non-zero topological susceptibility. Introduce K1 = ⋆C3 such that ∂µKµ = 1
16π2 tr

(
Fµν F̃

µν
)

,

X = lim
q→0

−iqµqν
∫
d4xeiqx⟨0|TKµ(x)Kν(0)|0⟩

=⇒ pole at q = 0 in K1 2-point function.

• The U(1)(−1) symmetry is spontaneously broken. The Goldstone field is C3.

• In fact, at large N the IR of SU(N) YM can be described using an effective theory in terms of F4 = dC3

(Di Vechia, Veneziano, Shifman, Gabadadze, Dvali),

L = − 1

2X F4 ∧ ⋆F4 +
1

2π
θF4
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Spontaneous breaking of (-1)-form symmetry in SU(N) Yang Mills

Additional check for SSB of U(1)(−1): gauge it by coupling to an axion ϕ.

Physics is well known,

• The axion ϕ is massive.

• The magnetic objects, i.e. axionic strings are confined.

• Magnetic confinement can be seen explicitly from the effective action by dualizing dϕ ∼ ⋆dB2,

L′ ⊃ |dB2 − C3|2

• If X = 0, ϕ stays massless, in agreement with the gauge U(1)(−1) symmetry being unbroken.

Away from large N, or in physical QCD U(1)(−1) is still spontaneously broken but the effective theory

in terms of C3 takes a more complicated form. Generically,

L = −1

2
|F4|2 +

1

2π
θF4 +K(F4)
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Reformulating the Strong CP problem

In QCD θ (including quark matrix contribution) is an arbitrary angular parameter. Experimentally,

|θ̄| ≲ 10−10

This is a naturalness problem −→ Strong CP Problem.

• In our language, θ is physical iff U(1)
(−1)
I is spontaneously broken.

A necessary condition for the Strong CP problem in QCD.

A necessary condition for Quantum Chromodynamics to have a Strong CP problem is that the

global instantonic (−1)-form U(1) symmetry is spontaneously broken.

=⇒ If we prevent this phenomenon by either gauging or explicitly breaking the (-1)-form U(1) symmetry,

the Strong CP problem is avoided.
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A different look at Strong CP Problem solutions
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Solving the problem with an axion

The axion solution to the Strong CP problem boils down to introducing a compact scalar ϕ(x) with the

following coupling,

S ⊃ 1

8π2

∫
ϕ(x)tr(F ∧ F )

It is now apparent that this field gauges the instantonic (-1)-form U(1) symmetry. In other words,

f2d ⋆ dθ =
1

8π2
tr(F ∧ F )

The instantonic current becomes exact and integrates to zero in any closed manifold.

The Strong CP problem is avoided by gauging the (-1)-form U(1) symmetry.
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Solving the problem with massless fermions

The Strong CP problem is automatically solved if a massless quark ψ is postulated. The chiral

symmetry is anomalous and a would-be chiral transformation ψ → eiαγ5ψ is a ψ field redefinition that

shifts θ → θ + α. Now θ can be absorbed in a field redefinition and is unphysical.

The equation of the ABJ anomaly is,

d ⋆ Jc =
1

8π2
tr(F ∧ F )

The instantonic current becomes exact =⇒ The instantonic symmetry is gauged.

The Strong CP problem is avoided by gauging the (-1)-form U(1) symmetry.
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Solving the (2d) problem with a non-compact gauge group

• In 2d Maxwell theory the Strong CP problem is avoided by using a non-compact gauge group R
(Banks et al., 1991).

• In our language, the problem is solved because an R gauge theory does not have a U(1)
(−1)
m

symmetry to start with.

• In fact, one can obtain R gauge theory by topological (or flat) gauging of U(1)
(−1)
m in U(1) gauge theory.

Thus, the Strong CP problem is, again, solved by gauging U(1)
(−1)
m .

• Related formulations of this solution exist in QCD but they are more involved.
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Exploring new solutions to the Strong CP Problem
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Failing to solve the problem using mixed anomalies

• Given a symmetry with a mixed ’t Hooft anomaly it can be broken by gauging a different symmetry.

• In 2d Maxwell theory, the U(1)
(−1)
m symmetry has mixed anomaly with U(1)

(1)
e ,

A =
i

2π
dθ ∧Be

• U(1)
(−1)
m is broken by gauging U(1)

(1)
e . Action becomes,

S =

∫
− 1

2e2
(F −Be) ∧ ⋆(F −Be) +

1

2π
θ(F −Be)

• The IR becomes trivial and X = 0. The problem is solved but the physics is gone with it.

• In 4d QCD not even this phyrric victory is available. The C3 theory has U(1)
(3)
e × U(1)

(−1)
m but U(1)

(3)
e

is not a symmetry of the fundamental theory and it can’t be gauged.

• Open question. Are there other anomalies that can be used to solve the problem?
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Failing to solve the problem by explicit breaking in the UV

• The U(1)(−1) symmetry of QCD can be broken by, i.e. embedding the Standard model in a GUT

theory.

SU(5) → SU(3)× SU(2)× U(1)

• Is the UV breaking enough to remove the pole and solve the Strong CP problem?

• Goldstone bosons are typically fragile and sensitive to UV effects.

• This is not true for higher-form Goldstones (i.e. photon is exactly massless regarless of

U(1)
(1)
e × U(1)

(1)
m being broken in the UV. Emergent higher-form symmetries are exact.

• Are emergent (-1)-form U(1) symmetries exact?

• If they are not, we could potentially solve the Strong CP problem for free with GUT models.
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Failing to solve the problem by explicit breaking in the UV

Toy Model: Higgsing SU(2) → U(1) in d dimensions.The IR has an emergent U(1)d−3
m symmetry.

• In 3d the IR theory has a massless photon Aµ that is the Goldstone of the spontaneously broken

U(1)0m emergent symmetry.

• As showed by Polyakov, once ’t Hooft-Polyakov monopoles (which are instantons in 3d) are taken

into account, the photon becomes massive.

• This is as expected, Aµ is dual to a compact scalar that gets a mass if the spontaneously broken

0-form symmetry is not exact.

• In 2d the IR theory has a massless photon Aµ that is the Goldstone of the spontaneously broken

U(1)−1
m emergent symmetry.

• The Higgsing can be done at arbitrarily weak coupling. Does Aµ get a mass from non-perturbative

effects. ?

• The answer seems to be no, since there are no instantons in the 2d theory that can do the job.

We expect this lesson to generalize, implying that the Strong CP problem can’t be solved in this

way.
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Outlook

• A firmer footing for (-1)-form symmetries. Perhaps using the SymTFT. Or Holography?

• Are (-1)-form symmetries matched under dualities?

• Goldstone Theorem?

• Better understanding of explicit breaking.

• Breaking by monopoles in GUT theories. Extensive study in 2408.00067.

• Application to other axion-like fields in particle physics. In particular axion monodromy.

Thanks!
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