Recent results on dark sector searches at Belle II

Foteini Faidra Trantou, on behalf of the Belle II collaboration

Università di Pisa and INFN Pisa foteini.trantou@pi.infn.it

Workshop Italiano sulla Fisica ad Alta intensità, Bologna 12-15 November 2024

Outline

- The Belle II experiment
 - Dark sector searches at Belle II
- Recent results on dark sector searches
 - The Z' searches: Z' decay into $\mu^+\mu^-$
 - Light (pseudo) scalars in B-meson decays
 - Inelastic dark matter and a dark higgs boson
- Summary

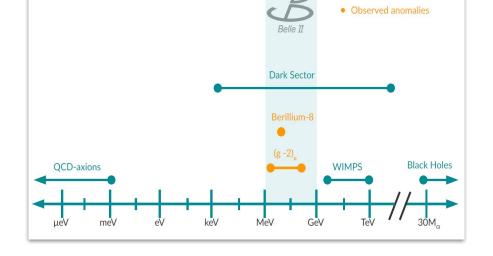
The Belle II experiment

Overview

- Second generation B-factory, optimized for the production of B meson pairs, but also D mesons and T leptons.
- Operating at the SuperKEKB accelerator (Tsukuba, JP), an e^+e^- asymmetric energy collider
- Collisions occur mainly at \sqrt{s} = 10.58 GeV, corresponding to the m_{inv} = Y(4S)
- Detector is $\sim 4\pi$ general purpose magnetic spectrometer

Data taking status

- Run I (2019-2022) + Run II (February 2024-Now):
 Recorded a total luminosity of more than 530 fb⁻¹.
- SuperKEKB reached world's highest instantaneous luminosity at $\mathcal{L}=4.7\times10^{34}~cm^{-2}s^{-1}$.
- Target: $\int \mathcal{L} dt = 50 \ ab^{-1}$ (50 x Belle dataset!)

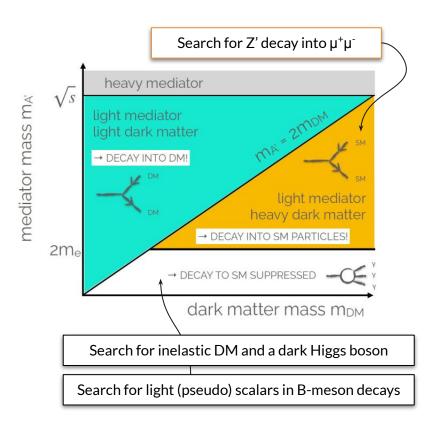

Central Drift Chamber (CDC) spatial resolution: 100 µm Vertex Detector (VXD) dE/dx resolution: 5% vertex resolution: 15 µm p_{τ} resolution: 0.4% 2-layer pixel detector (PXD) and 4-layer Small cells containing He(50%)C₂H₂(50%) double sided strip detector (SVD) TOP and ARICH e (7 GeV) particle identification fake π rate: ~5% e* (4 GeV) Electromagnetic Calorimeter (ECL) σ(E): 4%-1.6% K, and muon detector (KLM) u-ID efficiency: ~90% CsI(TI) crystals Resistive Plate Chambers (barrel) Scintillators + SiPM (end-caps, barrel)

See talks by <u>M.Mantovano</u>, <u>A.Gaz</u>, <u>L.Zani</u> and <u>D.Gosh</u> for more information

Dark sector searches at Belle II

Belle II can access the mass range naturally favored by light dark sectors (DS) $M_{Dark \, matter} \sim O \, (MeV - GeV)$

- Large potential for dark matter (DM) discoveries:
- Utilizing the advantages of B factories
 - High luminosity: $\mathcal{L} > 10^{34}~cm^2~s^{-1}$
 - \circ Well defined initial state: $E_{CMS} = 2 \times E_{beam}$
 - Clean environment with low background
 - Hermiticity (4π detectors)

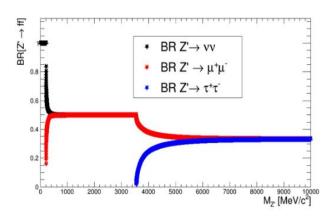


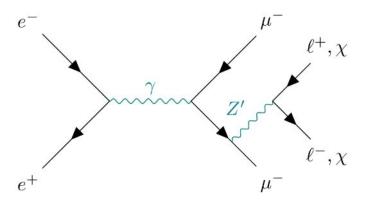
 Dedicated triggers for low multiplicity and missing energy final states, such as single photon, single track and single muon triggers → Make the Belle II dataset world-unique! We can reconstruct missing energy events or search for invisible signatures which are crucial for the detection of DM and the DS searches.

Dark matter candidates

Dark sector signatures

- Searching for dark sector particles
- \rightarrow Directly produced in e^+e^- collisions
- → Emerging from the decay of mesons (such as B,D) or fermions (such as T)
- Depending on the DS mediator and DM candidate mass hypothesis, different scenarios arise:
- Visible decay to SM: Search for DS mediators
- Invisible decay to DM:
 Search for DM or DS mediators in final states with missing energy
- Suppressed decays to SM lead to long-lived mediators


Recent results on dark sector searches


The Z' searches

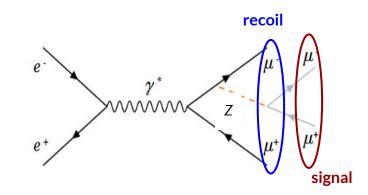
 $L_{\mu} - L_{\tau}$ model

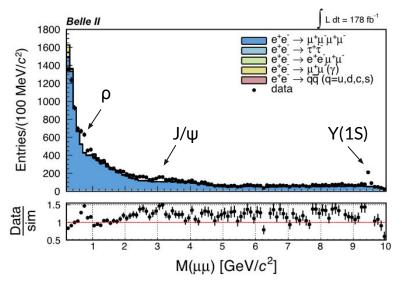
Z'is a vector boson which couples at strength g'only to 2nd and 3rd generation leptons

- → Could provide insights to the (g-2)_u anomaly and the DM phenomenology
- Possible decays and signatures
- Visible decay: $Z' \to \mu^+ \mu^-$, $Z' \to \tau^+ \tau^-$ Constraints from BaBar (2016), CMS (2019), Belle (2022) and neutrino-nucleus scattering experiments (CCF, CHARM)
- → Reinterpretation of the results in different models:
 Z', axion-like particle ALP, leptophilic/muonphilic dark-scalar
- Invisible decay: $Z' \to \nu \overline{\nu}$ or $\chi \overline{\chi}$ Constrained by Belle II (2023), BESII(2024)

Search for Z' decay into μ'μ-

I. Adachi et al., Phys. Rev. D 109, 112015 (2024)

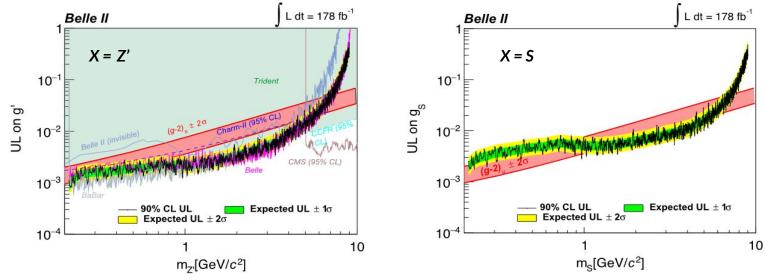

Strategy: Search for a $\mu^+\mu^-$ resonance in four-muon events


Signal signature is a narrow peak in the opposite-charge dimuon mass M(μμ)

 \rightarrow Reinterpreted also as muonphilic dark scalar S

- Four-track final state with at least three identified as muons
- m_{inv} of the four-tracks compatible with the beam energy
- Zero total charge and no extra energy
- No ISR effects included in the MC simulation
- Main SM background contribution from $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$ events
- Signal extraction: Fit scan on the di-muon reduced mass spectrum defined as $M_{\mu\mu}^{reduced}=\sqrt{M_{\mu^+\mu^-}^2-4m_\mu^2}$

Search for Z' decay into μ'μ-

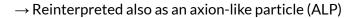

I. Adachi et al., Phys. Rev. D 109, 112015 (2024)

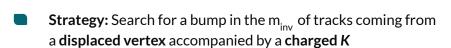
No significant excess found with 178 fb⁻¹ \rightarrow 90% CL upper limits set on the cross sections for the processes

$$e^+e^-
ightarrow \mu^+\mu^- X (
ightarrow \mu^+\mu^-)$$
 where X = Z', S

Results translated into upper limits on the coupling constant:

- g' for the Z' ($L_{II} L_{\tau}$ model) \rightarrow Competitive results with BaBar (> 500 fb⁻¹) and Belle (> 600 fb⁻¹)
- g_s for the muonphilic scalar model (S) \rightarrow **First limits** set on S from a dedicated search

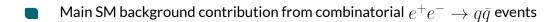

Search for light (pseudo) scalars in B-meson decays

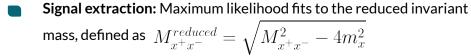

I. Adachi et al., Phys. Rev. D 108, L111104 (2023)

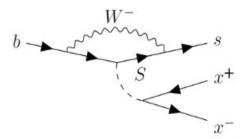
A light scalar *S* mediator could be produced in **b** to **s** quark transitions:

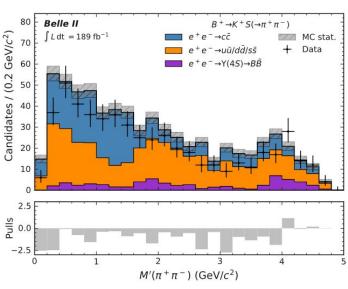
$$B^+ \to K^+ S$$
 and $B^0 \to K^{*0} (\to K^+ \pi^-) S$

S may interact with SM Higgs boson through a mixing angle θ (naturally long lived for small θ)

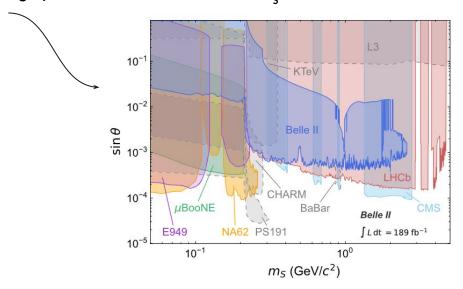





 \rightarrow Look for S decays into **two oppositely charged** tracks x^+x^- where $x = e, \mu, \pi, K$



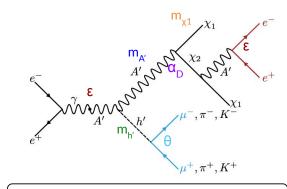
- Fully reconstructed B decay
- Probing lifetimes: $0.001 \, \text{cm} < \text{ct}_s < 400 \, \text{cm}$
- Long-lived K_s^0 mass region vetoed



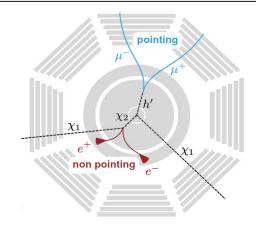
Search for light (pseudo) scalars in B-meson decays

I. Adachi et al., Phys. Rev. D 108, L111104 (2023)

- No significant excess found with 179 fb⁻¹ \rightarrow 95% CL upper limits set on the cross section $B^+ \rightarrow K^+S$ and $B^0 \rightarrow K^{*0} (\rightarrow K^+\pi^-)S$
- First limits set on S on exclusive hadronic final states and for e^+e^- final states
- Results used to constrain the parameter space for the sine of the mixing angle parameter θ and the scalar mass m_s



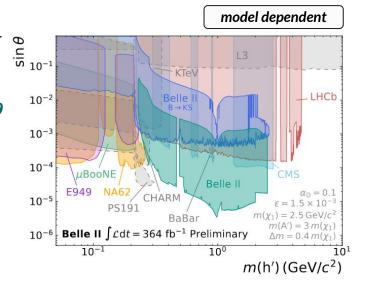
Search for inelastic dark matter and a dark Higgs boson

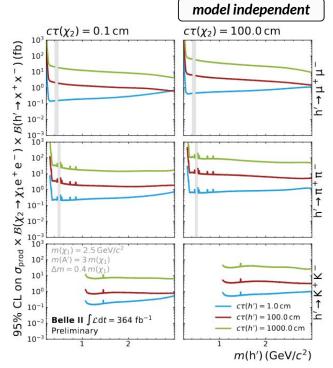

Preliminary results

 $e^+e^- o h'(o x^+x^-)A'(o \chi_1\chi_2(o \chi_1e^+e^-))$ where x = μ , π , K

- Inelastic dark matter model with 4 dark sector particles:
 - two dark matter states, χ_1 and χ_2 , with a small mass splitting Δm_{χ} χ_1 is stable (relic candidate) while χ_2 is long lived
 - a dark photon A' A'mixes with the SM photon at a strength ε and couples to DM with α_D
 - a dark higgs boson h'
 h' is long lived and mixes with the SM higgs at an angle @
- Strategy: Search for a bump in the m_{inv} of the dark higgs in events with up to two displaced vertices and missing energy
- Selections
- Four tracks in the final state
 - 2 forming a displaced vertex pointing back to the IP (h')
 - \circ 2 forming one **non-pointing** displaced vertex (χ_2)
- Probing lifetimes: $0.1 \text{ cm} < c\tau_h < 10000 \text{ cm}$ and $0.01 \text{ cm} < c\tau_{\chi 2} < 1000 \text{ cm}$
- Main SM background contribution from long-lived K_S^0 (mass region vetoed)
- Signal extraction: Cut-and-count technique due to low background levels

7 parameters: $m_{A'}$, $m_{h'}$, $m_{\chi 1}$, Δm_{χ} , θ , ϵ , α_{D}




Search for inelastic dark matter and a dark Higgs boson

Preliminary results

- No significant excess found with **364 fb**⁻¹ \rightarrow **95% CL upper limits** set on the cross section $\sigma(e^+e^- \rightarrow h'\chi_1\chi_2)$ and the branching fractions $\mathcal{B}(\chi_2 \rightarrow \chi_1 e^+e^-) \times \mathcal{B}(h' \rightarrow x^+x^-)$ where $x = \mu, \pi, K$
- Results used to constrain the parameter space for the sine of the mixing angle parameter θ and the dark higgs mass m(h')

Probing two orders of magnitude more in sin *θ* than other experiments → Excluding a region of parameters previously not-covered

Summary

- B-factories provide unique opportunities to explore the dark sector and study light dark matter/mediators
 Excellent sensitivity, complementary to that of higher-energy experiments
- ➤ Belle II has a wide DS physics program (presented today)

+ many more ongoing analysis!

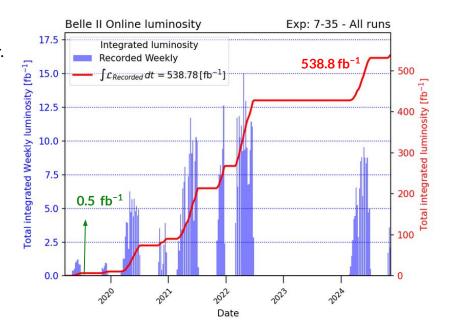
> Providing world-leading results and competitive limits on several models, with a subset of the available data

Large potential for future DS searches:

- Higher luminosity
- New analysis techniques implemented
- New triggers for low multiplicity events and displaced topologies

Thank you for your attention

Phases of the Experiment


- Belle II's data taking timeline is separated into three phases.
- Phase (2016) + Phase II (April July 2018):
 Dedicated to commissioning both the machine and the detector.

Collected 0.5 fb^{-1} of data with an incomplete vertex detector (VXD).

- Phase III (March 25, 2019 Now): Beginning of a full-scale data collection
 - o Run I (2019-2022): Recorded a total of **427 fb**⁻¹
 - Run II (January 2024-Now)

The total luminosity collected by the experiment for

Run I and Run II amounts to 538.8 fb⁻¹

