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Physics motivation beyond this talk …
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Physics motivation beyond this talk …

What are the most sensitive non-resonant HH analyses to Higgs boson self-couplings (kλ,k2V)?
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• Sensitivity of hadronic channels HH→4b and HH→bb𝛕h𝛕h limited 
by a combination of trigger acceptance, jet tagging performance, 
signal-to-background ratio, and background estimation

• These are all areas where ML makes a difference
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 Jet classification based on anti-kT R=0.4 jets

• In CMS the anti-kT clustering with R=0.4 is meant/used to cluster the fragmentation + hadronization products of a single parton

ME partons GEN jets Digi signals PF jets jet tagging

PS+clustering
detector particle flow +	

jet clustering
jet classification

• Jet classification: from cluster of particles infere the jet nature i.e. the original parton or the resonance who produced the jet
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 Jet classification based on anti-kT R=0.4 jets

• In CMS the anti-kT clustering with R=0.4 is meant/used to cluster the fragmentation + hadronization products of a single parton

Which classes (types) of jets we want to resolve and identify?

B-had SV

C-had SV

𝛕  ≈ 10-12 s
mb ≈ 4.2 GeV, qb = ± 1/3

𝛕  ≈ 10-13 s
mc ≈ 1.3 GeV, qc = ± 2/3

𝛕  << 10-13 s
mq < 0.1 GeV, q= ± 1/3, 2/3

mg = 0, qg = 0

𝛕  ≈ 10-13 s
m𝛕 = 1.7 GeV, q = ± 1

PV

PV

PV

PV

PV 𝜈s

c-quark
gluon

Isolated leptons (e,μ)

𝛕  ≈ inf

m ≤ 0.1 GeV, q = ±1

b-quark uds-quark Hadronic taus

PV

• Jet classification: from cluster of particles infere the jet nature i.e. the original parton or the resonance who produced the jet
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Jet-tagging with ML: representation and state-of-art

• Disclaimer: there is a long history and evolution of jet-tagging algorithm that will be neglected in this talk
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Jet-tagging with ML: representation and state-of-art

• Disclaimer: there is a long history and evolution of jet-tagging algorithm that will be neglected in this talk

• Jets can be interpreted as pixel-like images 
taken by a camera called particle detector

• Cons: images are sparse and we have 
multiple detectors providing heterogeneous 
informations

• Conclusion: we cannot easily use technique 
for image classification to solve jet tagging 

Jet as an image ?
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Jet-tagging with ML: representation and state-of-art

• Disclaimer: there is a long history and evolution of jet-tagging algorithm that will be neglected in this talk

Jet as a sequence ?

• A jet is a set of O(10-60) particles → sequence

• Each particle has O(50) features

• Therefore operations in jet-tagging must be 
permutation invariant

• A jet is intrinsically an un-ordered set of 
particles with certain relation due to shower 
and hadronization structure
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Jet-tagging with ML: representation and state-of-art

• Disclaimer: there is a long history and evolution of jet-tagging algorithm that will be neglected in this talk

Jet as a sequence ?

• A jet is a set of O(10-60) particles → sequence

• Each particle has O(50) features

• Therefore operations in jet-tagging must be 
permutation invariant

• A jet is intrinsically an un-ordered set of 
particles with certain relation due to shower 
and hadronization structure

Jet as a graph of particles → GCNN or Transformers

• A jet is a sparse set of particles → graph nodes

• Number of nodes varies from graph to graph

• Nodes can be related via physics-inspired 
pairwise features → graph edges

• Particles in the jet are product of the shower algorithm 
which respects conservation of 4-momentum, Lorentz-
invariance, etc 

• Transformers networks, which are equivalent to fully 
connected graphs, are state-of art architectures for 
jet tagging

• Examples of modern jet-tagging networks:

• Particle-Transformer (ParT) [Link]
• Lorentz Geometric-Algebra-Transformer (LGATr) [Link]

https://arxiv.org/abs/2202.03772
https://arxiv.org/abs/2411.00446
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A real-example: jet-tagging with ParT .. step-1

• Disclaimer: this setup reflects studies I was doing until 1.5 years ago … now BTV-JME are working on a single-framework 
based on DeepNTuples for producing the training dataset and B-hive [Link] to run the NN trainings

Production of training Ntuples 

• Dataset must be large O(100)M jets as ParT model for AK4-tagging 
contains about 2-2.5M hyper-parameters 

• Jets from a diverse set of simulated physics processes

• Processes: ttbar, V+jets, QCD multijet, VBF-H, VH, high mass Z’, etc

• Input features for each jet:

• PF-candidates information → PackedPFCandidates
• (μ,e,𝛄) specific features  → match with slimmedMuons, etc

• Lost tracks matched to the jet with pT > 1 GeV
• Secondary, kaon, and lambda vertexes matched to the jet

• If PF-candidate is used to build an HPS-𝛕

• Input data-tier: MiniAOD in Run2-UL

Technical implementation 

• Processing: CMSSW job using native multithread 
(stream producers/filters) with a lock for thread 
safety on the output EDAnalyzer

• Inference: this step contains also example on 
how to run ParT-inference via the ONNXRuntime 
engine of CMSSW

• Execution on the grid via crab3

• See “producing tuples” in the README of

https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/
tree/cmssw_13X_new_features/
TrainingNtupleMakerAK4?
ref_type=heads#producing-training-ntuples

https://gitlab.cern.ch/cms-btv/b-hive
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#producing-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#producing-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#producing-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#producing-training-ntuples
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A real-example: jet-tagging with ParT .. step-2

Skimming + preparation of training Ntuples

• Goals:

• jet selection to be applied

• Standalone compiled C++ via scram (CMSSW)  
using std::thread for parallel event loop

Technical implementation 

• Skim options:

• PF/SV/track/lepton candidate minium pT 

• Selection for data-domain adaptation: Zμμ, DY(μ𝛕), dijet, tt(eμ)

• Produce a jet-library for every sample stored in a ROOT TTree in 
which every feature of a node (PF/SV/track/lepton) is in a std::vector 
with length equal to the number of nodes of that type in the jet

• Define truth class and truth kinematics from GEN info

• Python script to launch skim step on 
CondorHT CERN batch, a job for all files 
in a list

• By default I/O on CERN EOS either via 
XROOTD or local mount-point

• Reduced compression w.r.t. default 
NanoAOD for faster I/O

• Instructions: 

https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/
tree/cmssw_13X_new_features/
TrainingNtupleMakerAK4?ref_type=heads#skim-
training-ntuples

• Caveat: not all parameters can be override via command line [Link]

• Disclaimer: this setup reflects studies I was doing until 1.5 years ago … now BTV-JME are working on a single-framework 
based on DeepNTuples for producing the training dataset and B-hive [Link] to run the NN trainings

https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/blob/cmssw_13X_new_features/TrainingNtupleMakerAK4/bin/makeSkimmedNtuplesForTraining.cpp?ref_type=heads#L22-L68
https://gitlab.cern.ch/cms-btv/b-hive
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A real-example: jet-tagging with ParT .. step-2

Skimming + preparation of training Ntuples

• Goals:

• jet selection to be applied

• Standalone compiled C++ via scram (CMSSW)  
using std::thread for parallel event loop

Technical implementation 

• Skim options:

• PF/SV/track/lepton candidate minium pT 

• Selection for data-domain adaptation: Zμμ, DY(μ𝛕), dijet, tt(eμ)

• Produce a jet-library for every sample stored in a ROOT TTree in 
which every feature of a node (PF/SV/track/lepton) is in a std::vector 
with length equal to the number of nodes of that type in the jet

• Define truth class and truth kinematics from GEN info

• Python script to launch skim step on 
CondorHT CERN batch, a job for all files 
in a list

• By default I/O on CERN EOS either via 
XROOTD or local mount-point

• Reduced compression w.r.t. default 
NanoAOD for faster I/O

• Instructions: 

https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/
tree/cmssw_13X_new_features/
TrainingNtupleMakerAK4?ref_type=heads#skim-
training-ntuples

• Caveat: not all parameters can be override via command line [Link]

• Disclaimer: this setup reflects studies I was doing until 1.5 years ago … now BTV-JME are working on a single-framework 
based on DeepNTuples for producing the training dataset and B-hive [Link] to run the NN trainings
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https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/blob/cmssw_13X_new_features/TrainingNtupleMakerAK4/bin/makeSkimmedNtuplesForTraining.cpp?ref_type=heads#L22-L68
https://gitlab.cern.ch/cms-btv/b-hive
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A real-example: training framework

• Training framework based on a customised version of the weaver-core package developed by Huilin Qu for ParticleNet

• Fully based on python3  and PyTorch as machine-learning engine
• ROOT to awkward array conversion via uproot, then awkward to numpy / torch tensors
• Interface to internal operation via YAML configuration file

• Training and test dataset selection via cut string
• Definition of new variables (columns)
• Definition of input feature transformation (variable standardisation)
• Definition of class weights and per-jet sampling weights based on kinematics 

• Definition of truth labels (classification labels) and targets (regression targets)

• Padding mode (wrap or zero-padding) and length for each input block 

• NN architecture and loss function are given as external modules

Technical preparation of weaver

• Setup pip-python libraries in a conda environment → [Instructions] 
• Example of a weaver configuration needed to run a classification + regression task → [YAML config]
• Example of a ParT architecture config and loss definition → [YAML config]

https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul#create-docker-image-for-the-nrp-cluster-kubernetes-basrd
https://github.com/rgerosa/weaver-benchmark/blob/adv_da_attack/data/ak4_transformer_taumuel_classreg_ch.yaml
https://github.com/rgerosa/weaver-benchmark/blob/adv_da_attack/networks/particle_transformer_ak4_class_reg_contrastive_ch.py
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A real-example: pre-training aspects

• Disclaimer: most of the time, once the input dataset is built, some choices need to be taken before feeding a NN with tensor-like inputs

Class balance

• It is a physics inspired action 
depending on the final scope

• Higher class weight to b and 
c will enhance heavy-flavour 
tagging w.r.t. quark vs gluon

• Class weight used in weaver 
to up-sample (w>1) or down-
sample (w<1) a class of jets
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A real-example: pre-training aspects

• Disclaimer: most of the time, once the input dataset is built, some choices need to be taken before feeding a NN with tensor-like inputs

Class balance

• It is a physics inspired action 
depending on the final scope

• Higher class weight to b and 
c will enhance heavy-flavour 
tagging w.r.t. quark vs gluon

• Class weight used in weaver 
to up-sample (w>1) or down-
sample (w<1) a class of jets

Jet kinematic sampling

• Jet tagging performance depend on jet pT, 
η, as well as on the global event 
configuration

• The way jets are sampled could bias the 
performance towards a specific phase-
space

• A quite natural strategy is to sample 
uniform in pT and η every class

• This is done by defining a 1D or 2D matrix 
of weights binned in (X,Y) observables for 
every class of jets

• These weights are used in the internal jet 
sampling strategy not applied in the loss
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A real-example: pre-training aspects

• Disclaimer: most of the time, once the input dataset is built, some choices need to be taken before feeding a NN with tensor-like inputs

Class balance

• It is a physics inspired action 
depending on the final scope

• Higher class weight to b and 
c will enhance heavy-flavour 
tagging w.r.t. quark vs gluon

• Class weight used in weaver 
to up-sample (w>1) or down-
sample (w<1) a class of jets

• This is done once for the entire jet-
library provided that the definition of 
truth labels and sampling binning isn’t 
changed

• Weights stored in the configuration file, 
see for example [YAML config weights]

• RDF python code that computes the 
sampling weights [Link]

Technical example
Jet kinematic sampling

• Jet tagging performance depend on jet pT, 
η, as well as on the global event 
configuration

• The way jets are sampled could bias the 
performance towards a specific phase-
space

• A quite natural strategy is to sample 
uniform in pT and η every class

• This is done by defining a 1D or 2D matrix 
of weights binned in (X,Y) observables for 
every class of jets

• These weights are used in the internal jet 
sampling strategy not applied in the loss

https://github.com/rgerosa/weaver-benchmark/blob/adv_da_attack/data/ak4_transformer_taumuel_classreg_ch_weight.auto.yaml
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/blob/cmssw_13X_new_features/TrainingNtupleMakerAK4/macros/makeReWeightsPerClass.py?ref_type=heads
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A real-example: pre-training aspects

Feature engineering 

• Basic feature standardisation can 
help in maximising NN performance

• Implementation in weaver: for every 
input feature in each block one can 
define a vector of parameters

• Disclaimer: most of the time, once the input dataset is built, some choices need to be taken before feeding a NN with tensor-like inputs

Class balance

• It is a physics inspired action 
depending on the final scope

• Higher class weight to b and 
c will enhance heavy-flavour 
tagging w.r.t. quark vs gluon

• Class weight used in weaver 
to up-sample (w>1) or down-
sample (w<1) a class of jets

• Mean value to shift to 0
• Variance value to transform to variance 1
• Clipping values for outliers 

• Weights stored in the configuration file, 
see for example [YAML config weights]

• RDF python code that computes 
standardisation parameters [Link]

Jet kinematic sampling

• Jet tagging performance depend on jet pT, 
η, as well as on the global event 
configuration

• The way jets are sampled could bias the 
performance towards a specific phase-
space

• A quite natural strategy is to sample 
uniform in pT and η every class

• This is done by defining a 1D or 2D matrix 
of weights binned in (X,Y) observables for 
every class of jets

• These weights are used in the internal jet 
sampling strategy not applied in the loss

https://github.com/rgerosa/weaver-benchmark/blob/adv_da_attack/data/ak4_transformer_taumuel_classreg_ch_weight.auto.yaml
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/blob/cmssw_13X_new_features/TrainingNtupleMakerAK4/macros/makeInputTransfCoefficients.py?ref_type=heads
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Running training: challenges

• Goal: run the training until convergence in order or 4-5 days, a week at maximum for the more complex cases

• Large dataset size O(1TB) that needs to 
analysed at every epoch → cannot be 
loaded in memory

High CPU throughput needed

• Iterative PyTorch loader that loads in 
memory a chunk of every file, converts 
to torch tensors, apply transformation, 
defines new columns, and build batches

• The data-loader need to span across 
different parallel workers to keep the 
pace with the training loop

• Load cyclically a small chunk of each file, 
pad to a fix dimension, create new 
columns, etc  

Large RAM needed

Order of 16 workers needed

• Instantiate multiple iterative workers for I/
O is more demanding on the memory side

Order of 64-72 Gb per training

• Uncompress files and decided whether to 
use lower floating point precision

GPU memory and speed

• Mini-batch not ideal cause of 
larger loss fluctuations and more 
backward passes

• Larger batches required lot of 
GPU memory

Parallel on 2 GPUs 24 Gb each or	
single GPU with 48 Gb
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Solution is to use an HPC facility
• Disclaimer: this is what I was doing up to 1.5 years ago → work ongoing to replicate it at Cineca/Leonardo

National research platform (NRP)

• US network of computing centers lead by UCSD [Link]

• Sites are linked together under a common Kubernetes cluster
• GPUs available ~ 1.5k
• Five CEPH clusters with S3 access allowing for O(10) Pb storage

• Typical machine: O(128) CPUs, O(540) Gb RAM, 5 TB SSD, 8 GPU

• Description of cluster and its use:

https://docs.nationalresearchplatform.org/

• Monitor job / pod resources via Grafana webpages

https://dash.nrp-nautilus.io/
https://docs.nationalresearchplatform.org/
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Running over a Kubernetes cluster

• Disclaimer: I am old enough to avoid modern solutions like jupyter-notebooks … thus I still work with python scripts and use 
manual job submission / description

Training environment → docker image

• Docker image: it starts from default centos/RHEL/
ubuntu + cuda images from NVIDIA 

• Additional software: git, rsync, krb5, + xrootd (in case 
I/O with CERN is needed)

• Conda env with packages needed by weaver-core

• Docker image uploaded to gitlab registry of a 
repository interfaced with the cluster 

• Docker file [Link]

• Commands needed to create and upload the 
docker image from a local computer [Link] 

Persistent volume and data transfer from CERN

• Persistent volume of O(2.5) TB on the CEPH cluster [Link]

• Generate CERN kerberos keytab and upload as KUBE secret 

• Copy files without pwd in the KUBE job [Link]

Example of training job submission

• weaver-core not included in the docker image: it is pulled 
from github at job starting → allows to update packages 

• weaver train.py script takes several input parameters to 
customise the job

• Training submission command [Link]

https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/blob/main/Dockerfile?ref_type=heads
https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul#create-docker-image-for-the-nrp-cluster-kubernetes-basrd
https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/tree/main?ref_type=heads#persistent-volume-used-to-store-data
https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/tree/main?ref_type=heads#copy-files-from-cern-to-nrp-cluster-or-viceversa
https://github.com/rgerosa/weaver-core/blob/adv_da_attack/weaver/train.py#L18-L180
https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/tree/main?ref_type=heads#submit-a-weaver-training-job
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Running over a Kubernetes cluster: example

• Kubectl config YAML file is made by several sections

job name and docker container to pull

node affinity: type of hardware, etc.  → 48 Gb GPUs

job resources, volumes, shared memory 

https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/blob/main/ak4_training_latest/
config_1gpu_48gb/weaver-job-ak4-transformer-cont-ch.yaml?ref_type=heads#L12-L53

args section of the config express the commands to be executed

https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/blob/main/ak4_training_latest/config_1gpu_48gb/weaver-job-ak4-transformer-cont-ch.yaml?ref_type=heads#L12-L53
https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/blob/main/ak4_training_latest/config_1gpu_48gb/weaver-job-ak4-transformer-cont-ch.yaml?ref_type=heads#L12-L53
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Final results: heavy flavour tagging
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Disclaimer: in the plots shown, performance is not necessarily the best to-date → they are meant to provide a glance of the performance 
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Final results: hadronic 𝛕h
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ParT show the capability of being:	
• Better than DeepTau on ID	
• Better than HPS in decay mode assignment	
• Recover inefficiencies in HPS reconstruction

Disclaimer: in the plots shown, performance is not necessarily the best to-date → they are meant to provide a glance of the performance 
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Final results: jet pT regression and per-jet resolution 

Disclaimer: this was a rather experimental task I was trying … a kind of promising but not in production .. showing it just for fun

• Implemented without chaining the network layout but by adding a regression term to the loss-function

L = CrossEntropy(x, xtruth) + λ × log(cosh(y − ytarget) + γ × [ρ0.16(z − ytarget) + ρ0.84(k − ytarget)]
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Final results: improve description with data-domain

Disclaimer: this was a rather experimental task I was trying … a kind of promising but not in production .. showing it just for fun

• Jet tagging outputs are calibrated in-situ with data using data control regions (CRs)

• Known as b/c-tagging efficiency scale factors → measured via iterative simultaneous fit

• SFs can be significantly different from unity → impact on analysis performance
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Final results: improve description with data-domain

Disclaimer: this was a rather experimental task I was trying … a kind of promising but not in production .. showing it just for fun

Data-domain adaptation

• Train a first model solely on simulation
• Select data and simulation events from CRs 
that are “pure” in a certain class of jet 

• Example CRs: ttbar(eμ), DY(μ𝛕h), Z(μμ), dijet

• Train the network again together with a binary 
classifier in each CR that distinguishes data 
from simulation

• Invert gradient to penalize the loss function 
when data are distinguished from MC → 
domain adaptation

L = Lclass + λ ⋅ Lreg + η ⋅ Lqnt + k ⋅ (Lμμ + Leμ + Lμτ + Ldijet + Ltt+c)
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• Jet tagging outputs are calibrated in-situ with data using data control regions (CRs)

• Known as b/c-tagging efficiency scale factors → measured via iterative simultaneous fit

• SFs can be significantly different from unity → impact on analysis performance
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Final results: improve description with data-domain

Disclaimer: this was a rather experimental task I was trying … a kind of promising but not in production .. showing it just for fun

• Jet tagging outputs are calibrated in-situ with data using data control regions (CRs)

• Known as b/c-tagging efficiency scale factors → measured via iterative simultaneous fit

• SFs can be significantly different from unity → impact on analysis performance
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Data-domain adaptation

• Train a first model solely on simulation
• Select data and simulation events from CRs 
that are “pure” in a certain class of jet 

• Example CRs: ttbar(eμ), DY(μ𝛕h), Z(μμ), dijet

• Train the network again together with a binary 
classifier in each CR that distinguishes data 
from simulation

• Invert gradient to penalize the loss function 
when data are distinguished from MC → 
domain adaptation
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Conclusions and outlooks

• Availability of high performance analysis facilities will be crucial for the development of our field towards HL-LHC and FCC

• Today I focused on a single use case about data-preparation, ML training, and inference for jet-tagging

• Execution of the task from A to Z without R&D requires:

• O(5) days for dataset preparation starting from MiniAOD

• O(1) week for training + testing on NRP

• O(5) days for validation in data from MiniAOD

• With improved workflows for high rate data preparation and a validation, as well as improved pipelines and 
hardware for ML, a large speedup and a more efficiency use of resources is certainly possible

• This will immensely help CMS POGs that are short in person-power, dedicated analysis facilities and connected resources

• If some of you is interest in helping to test and automatise a procedure to run such kind of task with INFN resource contact me!
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backup slides
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Ingredients prior to jet-tagging

• Clustering is an unsupervised task as we don’t know what 
the result will be before running it

• Clustering aggregates particles via a logic based on a 
distance (metric) between particles or their clusters

• Clustering is an-iterative procedure that produces 
recombinations until a condition in satisfied 

• Jets serve two purposes: (a) observables that one can 
predict and measure, (b) tools to extract properties of a 
final state → constraints are infrared and ultra-violet safety

• The anti-kT jet clustering takes just one parameter called R 
distance that defines nearest neighbours of each particle

dij = min(
1

p2
T,i

,
1

p2
T,j

) × ΔR2/R2

Jet defintion aka jet clustering
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Ingredients prior to jet-tagging
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Ingredients prior to jet-tagging

• Clustering is an unsupervised task as we don’t know what 
the result will be before running it

• Clustering aggregates particles via a logic based on a 
distance (metric) between particles or their clusters

• Clustering is an-iterative procedure that produces 
recombinations until a condition in satisfied 

• Jets serve two purposes: (a) observables that one can 
predict and measure, (b) tools to extract properties of a 
final state → constraints are infrared and ultra-violet safety

• The anti-kT jet clustering takes just one parameter called R 
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Particle-flow reconstruction

• Particle-flow (PF) provides an improved event description by 
correlating single detector measurements

• PF-candidates in offline reconstruction:
• Leptons (muons and electrons ) and photons

JINST 12 (2017) P10003

• Charged hadrons: everything interpreted as pion (𝛑±)
• Neutral hadrons (neutrons, KL0)

• Useful info outside PF-candidate collection:

• Tracks not linked to any PF-object → lost tracks

• V0 candidates: KS and lambdas

https://doi.org/10.1088/1748-0221/12/10/P10003
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• Particle-flow (PF) provides an improved event description by 
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