

Training NN on HPC via a Kubernetes based interface08/01/25

Advanced use cases: training NN on HPC via a
Kubernetes based interface

Speaker: Raffaele Gerosa

Institute: Università degli studi di Milano-Bicocca and INFN

1

Training NN on HPC via a Kubernetes based interface08/01/25 2

Physics motivation beyond this talk …

V(H) =
1
2

m2
HH2 + λvH3 +

1
4

λH4 −
λ
4

v4 ** Expression of the Higgs boson 	
 potential when expanded around the VEV

Chasing the Higgs boson self-coupling

Training NN on HPC via a Kubernetes based interface08/01/25 3

Physics motivation beyond this talk …

V(H) =
1
2

m2
HH2 + λvH3 +

1
4

λH4 −
λ
4

v4

H, mH

** Expression of the Higgs boson 	
 potential when expanded around the VEV

Mass term measured with O(100) MeV precision

Chasing the Higgs boson self-coupling

Training NN on HPC via a Kubernetes based interface08/01/25 4

Physics motivation beyond this talk …

V(H) =
1
2

m2
HH2 + λvH3 +

1
4

λH4 −
λ
4

v4

H, mH

** Expression of the Higgs boson 	
 potential when expanded around the VEV

Mass term measured with O(100) MeV precision

Trilinear coupling

H
H

HλHHH

It can be directly probed via the non-resonant production of HH pairs

Chasing the Higgs boson self-coupling

Training NN on HPC via a Kubernetes based interface08/01/25 5

Physics motivation beyond this talk …

V(H) =
1
2

m2
HH2 + λvH3 +

1
4

λH4 −
λ
4

v4

H, mH

** Expression of the Higgs boson 	
 potential when expanded around the VEV

Mass term measured with O(100) MeV precision

Trilinear coupling

H
H

HλHHH

It can be directly probed via the non-resonant production of HH pairs

HH

H H

Quartic coupling

Extremely rare → out of
reach for HL-LHC

Serves as additional
probe for BSM

Chasing the Higgs boson self-coupling

Training NN on HPC via a Kubernetes based interface08/01/25 6

Physics motivation beyond this talk …

What are the most sensitive non-resonant HH analyses to Higgs boson self-couplings (kλ,k2V)?

λκ
6− 4− 2− 0 2 4 6 8 10 12

) (
fb

)
bbγγ

→
 B

(H
H

H

H
σ

0

0.5

1

1.5

2

2.5

3

3.5

4
CMS (13 TeV)-1137 fb

95% CL upper limits
Observed
Median expected
68% CL expected
95% CL expected
Theoretical prediction

bbγγ →HH

HH → bb𝛾𝛾
HH → bb𝛕𝛕

HH → 4b: resolved

HH → 4b: boosted

• Sensitivity of hadronic channels HH→4b and HH→bb𝛕h𝛕h limited
by a combination of trigger acceptance, jet tagging performance,
signal-to-background ratio, and background estimation

• These are all areas where ML makes a difference

Training NN on HPC via a Kubernetes based interface08/01/25

What are the most sensitive non-resonant HH analyses to Higgs boson self-couplings (kλ,k2V)?

 7

Physics motivation beyond this talk …

λκ
6− 4− 2− 0 2 4 6 8 10 12

) (
fb

)
bbγγ

→
 B

(H
H

H

H
σ

0

0.5

1

1.5

2

2.5

3

3.5

4
CMS (13 TeV)-1137 fb

95% CL upper limits
Observed
Median expected
68% CL expected
95% CL expected
Theoretical prediction

bbγγ →HH

HH → bb𝛾𝛾
HH → bb𝛕𝛕

HH → 4b: resolved

HH → 4b: boosted

• Sensitivity of hadronic channels HH→4b and HH→bb𝛕h𝛕h limited
by a combination of trigger acceptance, jet tagging performance,
signal-to-background ratio, and background estimation

• These are all areas where ML makes a difference

Cons
eque

nce:
it bec

omes
 nece

ssary
 to ei

ther
train

 big N
Ns on

 large
 data

sets (
jet ta

gging
) or t

rain

sever
al NN

 for b
ackgr

ound
 estim

ation
 (dee

p ens
embl

ing /
 boot

strap
ping

/ k-fo
ld cro

ss va
lidati

on)

using
 an H

PC fa
cility

 may
 beco

me c
rucia

l

In thi
s talk

 I’ll fo
cus o

n jet-
tagg

ing a
s use

-case

Training NN on HPC via a Kubernetes based interface08/01/25 8

 Jet classification based on anti-kT R=0.4 jets

• In CMS the anti-kT clustering with R=0.4 is meant/used to cluster the fragmentation + hadronization products of a single parton

ME partons GEN jets Digi signals PF jets jet tagging

PS+clustering
detector particle flow +	

jet clustering
jet classification

• Jet classification: from cluster of particles infere the jet nature i.e. the original parton or the resonance who produced the jet

Training NN on HPC via a Kubernetes based interface08/01/25 9

 Jet classification based on anti-kT R=0.4 jets

• In CMS the anti-kT clustering with R=0.4 is meant/used to cluster the fragmentation + hadronization products of a single parton

Which classes (types) of jets we want to resolve and identify?

B-had SV

C-had SV

𝛕 ≈ 10-12 s
mb ≈ 4.2 GeV, qb = ± 1/3

𝛕 ≈ 10-13 s
mc ≈ 1.3 GeV, qc = ± 2/3

𝛕 << 10-13 s
mq < 0.1 GeV, q= ± 1/3, 2/3

mg = 0, qg = 0

𝛕 ≈ 10-13 s
m𝛕 = 1.7 GeV, q = ± 1

PV

PV

PV

PV

PV 𝜈s

c-quark
gluon

Isolated leptons (e,μ)

𝛕 ≈ inf

m ≤ 0.1 GeV, q = ±1

b-quark uds-quark Hadronic taus

PV

• Jet classification: from cluster of particles infere the jet nature i.e. the original parton or the resonance who produced the jet

Training NN on HPC via a Kubernetes based interface08/01/25 10

Jet-tagging with ML: representation and state-of-art

• Disclaimer: there is a long history and evolution of jet-tagging algorithm that will be neglected in this talk

Training NN on HPC via a Kubernetes based interface08/01/25 11

Jet-tagging with ML: representation and state-of-art

• Disclaimer: there is a long history and evolution of jet-tagging algorithm that will be neglected in this talk

• Jets can be interpreted as pixel-like images
taken by a camera called particle detector

• Cons: images are sparse and we have
multiple detectors providing heterogeneous
informations

• Conclusion: we cannot easily use technique
for image classification to solve jet tagging

Jet as an image ?

Training NN on HPC via a Kubernetes based interface08/01/25

• Jets can be interpreted as pixel-like images
taken by a camera called particle detector

• Cons: images are sparse and we have
multiple detectors providing heterogeneous
informations

• Conclusion: we cannot easily use technique
for image classification to solve jet tagging

Jet as an image ?

 12

Jet-tagging with ML: representation and state-of-art

• Disclaimer: there is a long history and evolution of jet-tagging algorithm that will be neglected in this talk

Jet as a sequence ?

• A jet is a set of O(10-60) particles → sequence

• Each particle has O(50) features

• Therefore operations in jet-tagging must be
permutation invariant

• A jet is intrinsically an un-ordered set of
particles with certain relation due to shower
and hadronization structure

Training NN on HPC via a Kubernetes based interface08/01/25 13

Jet-tagging with ML: representation and state-of-art

• Disclaimer: there is a long history and evolution of jet-tagging algorithm that will be neglected in this talk

Jet as a sequence ?

• A jet is a set of O(10-60) particles → sequence

• Each particle has O(50) features

• Therefore operations in jet-tagging must be
permutation invariant

• A jet is intrinsically an un-ordered set of
particles with certain relation due to shower
and hadronization structure

Jet as a graph of particles → GCNN or Transformers

• A jet is a sparse set of particles → graph nodes

• Number of nodes varies from graph to graph

• Nodes can be related via physics-inspired
pairwise features → graph edges

• Particles in the jet are product of the shower algorithm
which respects conservation of 4-momentum, Lorentz-
invariance, etc

• Transformers networks, which are equivalent to fully
connected graphs, are state-of art architectures for
jet tagging

• Examples of modern jet-tagging networks:

• Particle-Transformer (ParT) [Link]
• Lorentz Geometric-Algebra-Transformer (LGATr) [Link]

https://arxiv.org/abs/2202.03772
https://arxiv.org/abs/2411.00446

Training NN on HPC via a Kubernetes based interface08/01/25 14

A real-example: jet-tagging with ParT .. step-1

• Disclaimer: this setup reflects studies I was doing until 1.5 years ago … now BTV-JME are working on a single-framework
based on DeepNTuples for producing the training dataset and B-hive [Link] to run the NN trainings

Production of training Ntuples

• Dataset must be large O(100)M jets as ParT model for AK4-tagging
contains about 2-2.5M hyper-parameters

• Jets from a diverse set of simulated physics processes

• Processes: ttbar, V+jets, QCD multijet, VBF-H, VH, high mass Z’, etc

• Input features for each jet:

• PF-candidates information → PackedPFCandidates
• (μ,e,𝛄) specific features → match with slimmedMuons, etc

• Lost tracks matched to the jet with pT > 1 GeV
• Secondary, kaon, and lambda vertexes matched to the jet

• If PF-candidate is used to build an HPS-𝛕

• Input data-tier: MiniAOD in Run2-UL

Technical implementation

• Processing: CMSSW job using native multithread
(stream producers/filters) with a lock for thread
safety on the output EDAnalyzer

• Inference: this step contains also example on
how to run ParT-inference via the ONNXRuntime
engine of CMSSW

• Execution on the grid via crab3

• See “producing tuples” in the README of

https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/
tree/cmssw_13X_new_features/
TrainingNtupleMakerAK4?
ref_type=heads#producing-training-ntuples

https://gitlab.cern.ch/cms-btv/b-hive
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#producing-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#producing-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#producing-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#producing-training-ntuples

Training NN on HPC via a Kubernetes based interface08/01/25 15

A real-example: jet-tagging with ParT .. step-2

Skimming + preparation of training Ntuples

• Goals:

• jet selection to be applied

• Standalone compiled C++ via scram (CMSSW)
using std::thread for parallel event loop

Technical implementation

• Skim options:

• PF/SV/track/lepton candidate minium pT

• Selection for data-domain adaptation: Zμμ, DY(μ𝛕), dijet, tt(eμ)

• Produce a jet-library for every sample stored in a ROOT TTree in
which every feature of a node (PF/SV/track/lepton) is in a std::vector
with length equal to the number of nodes of that type in the jet

• Define truth class and truth kinematics from GEN info

• Python script to launch skim step on
CondorHT CERN batch, a job for all files
in a list

• By default I/O on CERN EOS either via
XROOTD or local mount-point

• Reduced compression w.r.t. default
NanoAOD for faster I/O

• Instructions:

https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/
tree/cmssw_13X_new_features/
TrainingNtupleMakerAK4?ref_type=heads#skim-
training-ntuples

• Caveat: not all parameters can be override via command line [Link]

• Disclaimer: this setup reflects studies I was doing until 1.5 years ago … now BTV-JME are working on a single-framework
based on DeepNTuples for producing the training dataset and B-hive [Link] to run the NN trainings

https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/blob/cmssw_13X_new_features/TrainingNtupleMakerAK4/bin/makeSkimmedNtuplesForTraining.cpp?ref_type=heads#L22-L68
https://gitlab.cern.ch/cms-btv/b-hive

Training NN on HPC via a Kubernetes based interface08/01/25 16

A real-example: jet-tagging with ParT .. step-2

Skimming + preparation of training Ntuples

• Goals:

• jet selection to be applied

• Standalone compiled C++ via scram (CMSSW)
using std::thread for parallel event loop

Technical implementation

• Skim options:

• PF/SV/track/lepton candidate minium pT

• Selection for data-domain adaptation: Zμμ, DY(μ𝛕), dijet, tt(eμ)

• Produce a jet-library for every sample stored in a ROOT TTree in
which every feature of a node (PF/SV/track/lepton) is in a std::vector
with length equal to the number of nodes of that type in the jet

• Define truth class and truth kinematics from GEN info

• Python script to launch skim step on
CondorHT CERN batch, a job for all files
in a list

• By default I/O on CERN EOS either via
XROOTD or local mount-point

• Reduced compression w.r.t. default
NanoAOD for faster I/O

• Instructions:

https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/
tree/cmssw_13X_new_features/
TrainingNtupleMakerAK4?ref_type=heads#skim-
training-ntuples

• Caveat: not all parameters can be override via command line [Link]

• Disclaimer: this setup reflects studies I was doing until 1.5 years ago … now BTV-JME are working on a single-framework
based on DeepNTuples for producing the training dataset and B-hive [Link] to run the NN trainings

This
prod

uced
 a jet

-libra
ry re

quiri
ng se

veral
 GB o

f disk
 spac

e … 	

in my
 case

 it wa
s up

to 1.
5 TB

split
acros

s O(5
00) R

OOT
files

https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/blob/cmssw_13X_new_features/TrainingNtupleMakerAK4/bin/makeSkimmedNtuplesForTraining.cpp?ref_type=heads#L22-L68
https://gitlab.cern.ch/cms-btv/b-hive

Training NN on HPC via a Kubernetes based interface08/01/25 17

A real-example: training framework

• Training framework based on a customised version of the weaver-core package developed by Huilin Qu for ParticleNet

• Fully based on python3 and PyTorch as machine-learning engine
• ROOT to awkward array conversion via uproot, then awkward to numpy / torch tensors
• Interface to internal operation via YAML configuration file

• Training and test dataset selection via cut string
• Definition of new variables (columns)
• Definition of input feature transformation (variable standardisation)
• Definition of class weights and per-jet sampling weights based on kinematics

• Definition of truth labels (classification labels) and targets (regression targets)

• Padding mode (wrap or zero-padding) and length for each input block

• NN architecture and loss function are given as external modules

Technical preparation of weaver

• Setup pip-python libraries in a conda environment → [Instructions]
• Example of a weaver configuration needed to run a classification + regression task → [YAML config]
• Example of a ParT architecture config and loss definition → [YAML config]

https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul#create-docker-image-for-the-nrp-cluster-kubernetes-basrd
https://github.com/rgerosa/weaver-benchmark/blob/adv_da_attack/data/ak4_transformer_taumuel_classreg_ch.yaml
https://github.com/rgerosa/weaver-benchmark/blob/adv_da_attack/networks/particle_transformer_ak4_class_reg_contrastive_ch.py

Training NN on HPC via a Kubernetes based interface08/01/25 18

A real-example: pre-training aspects

• Disclaimer: most of the time, once the input dataset is built, some choices need to be taken before feeding a NN with tensor-like inputs

Class balance

• It is a physics inspired action
depending on the final scope

• Higher class weight to b and
c will enhance heavy-flavour
tagging w.r.t. quark vs gluon

• Class weight used in weaver
to up-sample (w>1) or down-
sample (w<1) a class of jets

Training NN on HPC via a Kubernetes based interface08/01/25 19

A real-example: pre-training aspects

• Disclaimer: most of the time, once the input dataset is built, some choices need to be taken before feeding a NN with tensor-like inputs

Class balance

• It is a physics inspired action
depending on the final scope

• Higher class weight to b and
c will enhance heavy-flavour
tagging w.r.t. quark vs gluon

• Class weight used in weaver
to up-sample (w>1) or down-
sample (w<1) a class of jets

Jet kinematic sampling

• Jet tagging performance depend on jet pT,
η, as well as on the global event
configuration

• The way jets are sampled could bias the
performance towards a specific phase-
space

• A quite natural strategy is to sample
uniform in pT and η every class

• This is done by defining a 1D or 2D matrix
of weights binned in (X,Y) observables for
every class of jets

• These weights are used in the internal jet
sampling strategy not applied in the loss

Training NN on HPC via a Kubernetes based interface08/01/25 20

A real-example: pre-training aspects

• Disclaimer: most of the time, once the input dataset is built, some choices need to be taken before feeding a NN with tensor-like inputs

Class balance

• It is a physics inspired action
depending on the final scope

• Higher class weight to b and
c will enhance heavy-flavour
tagging w.r.t. quark vs gluon

• Class weight used in weaver
to up-sample (w>1) or down-
sample (w<1) a class of jets

• This is done once for the entire jet-
library provided that the definition of
truth labels and sampling binning isn’t
changed

• Weights stored in the configuration file,
see for example [YAML config weights]

• RDF python code that computes the
sampling weights [Link]

Technical example
Jet kinematic sampling

• Jet tagging performance depend on jet pT,
η, as well as on the global event
configuration

• The way jets are sampled could bias the
performance towards a specific phase-
space

• A quite natural strategy is to sample
uniform in pT and η every class

• This is done by defining a 1D or 2D matrix
of weights binned in (X,Y) observables for
every class of jets

• These weights are used in the internal jet
sampling strategy not applied in the loss

https://github.com/rgerosa/weaver-benchmark/blob/adv_da_attack/data/ak4_transformer_taumuel_classreg_ch_weight.auto.yaml
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/blob/cmssw_13X_new_features/TrainingNtupleMakerAK4/macros/makeReWeightsPerClass.py?ref_type=heads

Training NN on HPC via a Kubernetes based interface08/01/25 21

A real-example: pre-training aspects

Feature engineering

• Basic feature standardisation can
help in maximising NN performance

• Implementation in weaver: for every
input feature in each block one can
define a vector of parameters

• Disclaimer: most of the time, once the input dataset is built, some choices need to be taken before feeding a NN with tensor-like inputs

Class balance

• It is a physics inspired action
depending on the final scope

• Higher class weight to b and
c will enhance heavy-flavour
tagging w.r.t. quark vs gluon

• Class weight used in weaver
to up-sample (w>1) or down-
sample (w<1) a class of jets

• Mean value to shift to 0
• Variance value to transform to variance 1
• Clipping values for outliers

• Weights stored in the configuration file,
see for example [YAML config weights]

• RDF python code that computes
standardisation parameters [Link]

Jet kinematic sampling

• Jet tagging performance depend on jet pT,
η, as well as on the global event
configuration

• The way jets are sampled could bias the
performance towards a specific phase-
space

• A quite natural strategy is to sample
uniform in pT and η every class

• This is done by defining a 1D or 2D matrix
of weights binned in (X,Y) observables for
every class of jets

• These weights are used in the internal jet
sampling strategy not applied in the loss

https://github.com/rgerosa/weaver-benchmark/blob/adv_da_attack/data/ak4_transformer_taumuel_classreg_ch_weight.auto.yaml
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/blob/cmssw_13X_new_features/TrainingNtupleMakerAK4/macros/makeInputTransfCoefficients.py?ref_type=heads

Training NN on HPC via a Kubernetes based interface08/01/25 22

Running training: challenges

• Goal: run the training until convergence in order or 4-5 days, a week at maximum for the more complex cases

• Large dataset size O(1TB) that needs to
analysed at every epoch → cannot be
loaded in memory

High CPU throughput needed

• Iterative PyTorch loader that loads in
memory a chunk of every file, converts
to torch tensors, apply transformation,
defines new columns, and build batches

• The data-loader need to span across
different parallel workers to keep the
pace with the training loop

• Load cyclically a small chunk of each file,
pad to a fix dimension, create new
columns, etc

Large RAM needed

Order of 16 workers needed

• Instantiate multiple iterative workers for I/
O is more demanding on the memory side

Order of 64-72 Gb per training

• Uncompress files and decided whether to
use lower floating point precision

GPU memory and speed

• Mini-batch not ideal cause of
larger loss fluctuations and more
backward passes

• Larger batches required lot of
GPU memory

Parallel on 2 GPUs 24 Gb each or	
single GPU with 48 Gb

Training NN on HPC via a Kubernetes based interface08/01/25 23

Solution is to use an HPC facility
• Disclaimer: this is what I was doing up to 1.5 years ago → work ongoing to replicate it at Cineca/Leonardo

National research platform (NRP)

• US network of computing centers lead by UCSD [Link]

• Sites are linked together under a common Kubernetes cluster
• GPUs available ~ 1.5k
• Five CEPH clusters with S3 access allowing for O(10) Pb storage

• Typical machine: O(128) CPUs, O(540) Gb RAM, 5 TB SSD, 8 GPU

• Description of cluster and its use:

https://docs.nationalresearchplatform.org/

• Monitor job / pod resources via Grafana webpages

https://dash.nrp-nautilus.io/
https://docs.nationalresearchplatform.org/

Training NN on HPC via a Kubernetes based interface08/01/25 24

Running over a Kubernetes cluster

• Disclaimer: I am old enough to avoid modern solutions like jupyter-notebooks … thus I still work with python scripts and use
manual job submission / description

Training environment → docker image

• Docker image: it starts from default centos/RHEL/
ubuntu + cuda images from NVIDIA

• Additional software: git, rsync, krb5, + xrootd (in case
I/O with CERN is needed)

• Conda env with packages needed by weaver-core

• Docker image uploaded to gitlab registry of a
repository interfaced with the cluster

• Docker file [Link]

• Commands needed to create and upload the
docker image from a local computer [Link]

Persistent volume and data transfer from CERN

• Persistent volume of O(2.5) TB on the CEPH cluster [Link]

• Generate CERN kerberos keytab and upload as KUBE secret

• Copy files without pwd in the KUBE job [Link]

Example of training job submission

• weaver-core not included in the docker image: it is pulled
from github at job starting → allows to update packages

• weaver train.py script takes several input parameters to
customise the job

• Training submission command [Link]

https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/blob/main/Dockerfile?ref_type=heads
https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul#create-docker-image-for-the-nrp-cluster-kubernetes-basrd
https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/tree/main?ref_type=heads#persistent-volume-used-to-store-data
https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/tree/main?ref_type=heads#copy-files-from-cern-to-nrp-cluster-or-viceversa
https://github.com/rgerosa/weaver-core/blob/adv_da_attack/weaver/train.py#L18-L180
https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/tree/main?ref_type=heads#submit-a-weaver-training-job

Training NN on HPC via a Kubernetes based interface08/01/25 25

Running over a Kubernetes cluster: example

• Kubectl config YAML file is made by several sections

job name and docker container to pull

node affinity: type of hardware, etc. → 48 Gb GPUs

job resources, volumes, shared memory

https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/blob/main/ak4_training_latest/
config_1gpu_48gb/weaver-job-ak4-transformer-cont-ch.yaml?ref_type=heads#L12-L53

args section of the config express the commands to be executed

https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/blob/main/ak4_training_latest/config_1gpu_48gb/weaver-job-ak4-transformer-cont-ch.yaml?ref_type=heads#L12-L53
https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/blob/main/ak4_training_latest/config_1gpu_48gb/weaver-job-ak4-transformer-cont-ch.yaml?ref_type=heads#L12-L53

Training NN on HPC via a Kubernetes based interface08/01/25 26

Final results: heavy flavour tagging

P(b vs c) = P(b)/(P(b)+P(c))

P(b vs uds) = P(b)/(P(b)+P(uds))

P(b vs g) = P(b)/(P(b)+P(g))
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Signal efficiency
4−10

3−10

2−10

1−10

1

Ba
ck

gr
ou

nd
 e

ffi
ci

en
cy

DeepJet
PNET

| < 2.5η < 60 GeV, 0.0 < |
T

30 < p

b vs uds
b vs g
b vs c

14 TeV

CMS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

4−10

3−10

2−10

1−10

1

Ba
ck

gr
ou

nd
 e

ffi
ci

en
cy

DeepJet
PNET

| < 2.5η < 120 GeV, 0.0 < |
T

90 < p

b vs uds
b vs g
b vs c

14 TeV

CMS

P(c vs b) = P(c)/(P(c)+P(b))

P(c vs uds) = P(c)/(P(c)+P(uds))

P(c vs g) = P(c)/(P(c)+P(g))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

4−10

3−10

2−10

1−10

1

Ba
ck

gr
ou

nd
 e

ffi
ci

en
cy

DeepJet
PNET

| < 2.5η < 60 GeV, 0.0 < |
T

30 < p

c vs uds
c vs g
c vs b

14 TeV

CMS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

4−10

3−10

2−10

1−10

1

Ba
ck

gr
ou

nd
 e

ffi
ci

en
cy

DeepJet
PNET

| < 2.5η < 120 GeV, 0.0 < |
T

90 < p

c vs uds
c vs g
c vs b

14 TeV

CMS

Tagging performance improves with pT and better in central barrel

Bk
g.
 e
ffi
ci
en

cy
Bk
g.
 e
ffi
ci
en

cy
Disclaimer: in the plots shown, performance is not necessarily the best to-date → they are meant to provide a glance of the performance

Training NN on HPC via a Kubernetes based interface08/01/25 27

Final results: hadronic 𝛕h

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

4−10

3−10

2−10

1−10

1

Ba
ck

gr
ou

nd
 e

ffi
ci

en
cy

| < 1.0η < 60 GeV, 0.0 < |
T

30 < p

tau-h vs uds
tau-h vs g
tau-h vs c
tau-h vs b

14 TeV

CMS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

4−10

3−10

2−10

1−10

1

Ba
ck

gr
ou

nd
 e

ffi
ci

en
cy

| < 1.0η < 250 GeV, 0.0 < |
T

120 < p

tau-h vs uds
tau-h vs g
tau-h vs c
tau-h vs b

14 TeV

CMS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

4−10

3−10

2−10

1−10

1

Ba
ck

gr
ou

nd
 e

ffi
ci

en
cy

| < 2.5η < 90 GeV, 1.5 < |
T

60 < p

tau-h vs uds
tau-h vs g
tau-h vs c
tau-h vs b

14 TeV

CMS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

4−10

3−10

2−10

1−10

1

Ba
ck

gr
ou

nd
 e

ffi
ci

en
cy

| < 2.5η < 250 GeV, 1.5 < |
T

120 < p

tau-h vs uds
tau-h vs g
tau-h vs c
tau-h vs b

14 TeV

CMS

P(𝛕h vs b) = P(𝛕h)/(P(𝛕h)+P(b))

P(𝛕h vs c) = P(𝛕h)/(P(𝛕h)+P(c))

P(𝛕h vs uds) = P(𝛕h)/(P(𝛕h)+P(uds))

P(𝛕h vs g) = P(𝛕h)/(P(𝛕h)+Pg))
Tagging performance improves with pT and better in central barrel

Bk
g.
 e
ffi
ci
en

cy
ParT show the capability of being:	
• Better than DeepTau on ID	
• Better than HPS in decay mode assignment	
• Recover inefficiencies in HPS reconstruction

Disclaimer: in the plots shown, performance is not necessarily the best to-date → they are meant to provide a glance of the performance

Training NN on HPC via a Kubernetes based interface08/01/25 28

Final results: jet pT regression and per-jet resolution

Disclaimer: this was a rather experimental task I was trying … a kind of promising but not in production .. showing it just for fun

• Implemented without chaining the network layout but by adding a regression term to the loss-function

L = CrossEntropy(x, xtruth) + λ × log(cosh(y − ytarget) + γ × [ρ0.16(z − ytarget) + ρ0.84(k − ytarget)]

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
gen
T

/p
T

p

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

a.
u.

Peak = 0.950
Mean = 0.917

 = 0.166effσ

FWHM = 0.349

b-jet

Peak = 1.024
Mean = 0.999

 = 0.142effσ

FWHM = 0.289

| < 0.5η < 60 GeV, 0.0 < |
T

40 < p

NoRegression

PNETRegression

13 TeV

CMS

210
 [GeV]

T
p

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26
>

ge
n

T
/p T

/<
p

ef
f

σ
| < 0.5ηNoRegression 0.0 < |
| < 1.0ηNoRegression 0.5 < |
| < 1.5ηNoRegression 1.0 < |

| < 2.0ηNoRegression 1.5 < |
| < 2.5ηNoRegression 2.0 < |

| < 0.5ηPNETRegression 0.0 < |
| < 1.0ηPNETRegression 0.5 < |
| < 1.5ηPNETRegression 1.0 < |
| < 2.0ηPNETRegression 1.5 < |

| < 2.5ηPNETRegression 2.0 < |

| < 0.5ηNoRegression 0.0 < |
| < 1.0ηNoRegression 0.5 < |
| < 1.5ηNoRegression 1.0 < |

| < 2.0ηNoRegression 1.5 < |
| < 2.5ηNoRegression 2.0 < |

| < 0.5ηPNETRegression 0.0 < |
| < 1.0ηPNETRegression 0.5 < |
| < 1.5ηPNETRegression 1.0 < |
| < 2.0ηPNETRegression 1.5 < |

| < 2.5ηPNETRegression 2.0 < |

13 TeV

CMS

Regression vs No regression

jet-tagging jet pT regression jet pT resolution estimator

Training NN on HPC via a Kubernetes based interface08/01/25 29

Final results: improve description with data-domain

Disclaimer: this was a rather experimental task I was trying … a kind of promising but not in production .. showing it just for fun

• Jet tagging outputs are calibrated in-situ with data using data control regions (CRs)

• Known as b/c-tagging efficiency scale factors → measured via iterative simultaneous fit

• SFs can be significantly different from unity → impact on analysis performance

Training NN on HPC via a Kubernetes based interface08/01/25 30

Final results: improve description with data-domain

Disclaimer: this was a rather experimental task I was trying … a kind of promising but not in production .. showing it just for fun

Data-domain adaptation

• Train a first model solely on simulation
• Select data and simulation events from CRs
that are “pure” in a certain class of jet

• Example CRs: ttbar(eμ), DY(μ𝛕h), Z(μμ), dijet

• Train the network again together with a binary
classifier in each CR that distinguishes data
from simulation

• Invert gradient to penalize the loss function
when data are distinguished from MC →
domain adaptation

L = Lclass + λ ⋅ Lreg + η ⋅ Lqnt + k ⋅ (Lμμ + Leμ + Lμτ + Ldijet + Ltt+c)

1

10

210

310

410

510

610

710

810

Ev
en

ts

Data

Top g-jets

Top uds-jets

Top c-jets

Top b-jets

 (13 TeV)-159.8 fb

CMS

0 1 2 3 4 5 6 7 8

Transformed PNET P(b)/P(b+c+uds+g)

0.6
0.8

1
1.2
1.4

D
at

a/
Pr

ed
.

1

10

210

310

410

510

610

710

810

Ev
en

ts

Data

Top g-jets

Top uds-jets

Top c-jets

Top b-jets

 (13 TeV)-159.8 fb

CMS

0 1 2 3 4 5 6 7 8

Transformed PNET P(b)/P(b+c+uds+g)

0.6
0.8

1
1.2
1.4

D
at

a/
Pr

ed
.

without data-domain with data-domain

• Jet tagging outputs are calibrated in-situ with data using data control regions (CRs)

• Known as b/c-tagging efficiency scale factors → measured via iterative simultaneous fit

• SFs can be significantly different from unity → impact on analysis performance

Training NN on HPC via a Kubernetes based interface08/01/25 31

Final results: improve description with data-domain

Disclaimer: this was a rather experimental task I was trying … a kind of promising but not in production .. showing it just for fun

• Jet tagging outputs are calibrated in-situ with data using data control regions (CRs)

• Known as b/c-tagging efficiency scale factors → measured via iterative simultaneous fit

• SFs can be significantly different from unity → impact on analysis performance

0.6 0.8 1 1.2 1.4 1.6 1.8
w(data)/w(mc)

4−10

3−10

2−10

1−10

1

a.
u.

ParTNoJECNew3D

ParTNoJECNew5D

ParTNoJECNewDyn

| < 2.5η < 25000 GeV, 0.0 < |
T

25 < p

µdata vs mc e

13 TeV

CMS

In inference for every MC event
P(data)/P(MC) can be computed
giving an unbinned SF proxy

1

10

210

310

410

510

610

710

810

Ev
en

ts

Data

Top g-jets

Top uds-jets

Top c-jets

Top b-jets

 (13 TeV)-159.8 fb

CMS

0 1 2 3 4 5 6 7 8

Transformed PNET P(b)/P(b+c+uds+g)

0.6
0.8

1
1.2
1.4

D
at

a/
Pr

ed
.

With data-domain

Data-domain adaptation

• Train a first model solely on simulation
• Select data and simulation events from CRs
that are “pure” in a certain class of jet

• Example CRs: ttbar(eμ), DY(μ𝛕h), Z(μμ), dijet

• Train the network again together with a binary
classifier in each CR that distinguishes data
from simulation

• Invert gradient to penalize the loss function
when data are distinguished from MC →
domain adaptation

Training NN on HPC via a Kubernetes based interface08/01/25 32

Conclusions and outlooks

• Availability of high performance analysis facilities will be crucial for the development of our field towards HL-LHC and FCC

• Today I focused on a single use case about data-preparation, ML training, and inference for jet-tagging

• Execution of the task from A to Z without R&D requires:

• O(5) days for dataset preparation starting from MiniAOD

• O(1) week for training + testing on NRP

• O(5) days for validation in data from MiniAOD

• With improved workflows for high rate data preparation and a validation, as well as improved pipelines and
hardware for ML, a large speedup and a more efficiency use of resources is certainly possible

• This will immensely help CMS POGs that are short in person-power, dedicated analysis facilities and connected resources

• If some of you is interest in helping to test and automatise a procedure to run such kind of task with INFN resource contact me!

Training NN on HPC via a Kubernetes based interface08/01/25 33

backup slides

Training NN on HPC via a Kubernetes based interface08/01/25 34

Ingredients prior to jet-tagging

• Clustering is an unsupervised task as we don’t know what
the result will be before running it

• Clustering aggregates particles via a logic based on a
distance (metric) between particles or their clusters

• Clustering is an-iterative procedure that produces
recombinations until a condition in satisfied

• Jets serve two purposes: (a) observables that one can
predict and measure, (b) tools to extract properties of a
final state → constraints are infrared and ultra-violet safety

• The anti-kT jet clustering takes just one parameter called R
distance that defines nearest neighbours of each particle

dij = min(
1

p2
T,i

,
1

p2
T,j

) × ΔR2/R2

Jet defintion aka jet clustering

Training NN on HPC via a Kubernetes based interface08/01/25 35

Ingredients prior to jet-tagging

• Clustering is an unsupervised task as we don’t know what
the result will be before running it

• Clustering aggregates particles via a logic based on a
distance (metric) between particles or their clusters

• Clustering is an-iterative procedure that produces
recombinations until a condition in satisfied

• Jets serve two purposes: (a) observables that one can
predict and measure, (b) tools to extract properties of a
final state → constraints are infrared and ultra-violet safety

• The anti-kT jet clustering takes just one parameter called R
distance that defines nearest neighbours of each particle

dij = min(
1

p2
T,i

,
1

p2
T,j

) × ΔR2/R2

Jet defintion aka jet clustering

But w
e nee

d inp
ut pa

rticle
s to c

luste
r

Training NN on HPC via a Kubernetes based interface08/01/25 36

Ingredients prior to jet-tagging

• Clustering is an unsupervised task as we don’t know what
the result will be before running it

• Clustering aggregates particles via a logic based on a
distance (metric) between particles or their clusters

• Clustering is an-iterative procedure that produces
recombinations until a condition in satisfied

• Jets serve two purposes: (a) observables that one can
predict and measure, (b) tools to extract properties of a
final state → constraints are infrared and ultra-violet safety

• The anti-kT jet clustering takes just one parameter called R
distance that defines nearest neighbours of each particle

dij = min(
1

p2
T,i

,
1

p2
T,j

) × ΔR2/R2

Jet defintion aka jet clustering

But w
e nee

d inp
ut pa

rticle
s to c

luste
r

Particle-flow reconstruction

• Particle-flow (PF) provides an improved event description by
correlating single detector measurements

• PF-candidates in offline reconstruction:
• Leptons (muons and electrons) and photons

JINST 12 (2017) P10003

• Charged hadrons: everything interpreted as pion (𝛑±)
• Neutral hadrons (neutrons, KL0)

• Useful info outside PF-candidate collection:

• Tracks not linked to any PF-object → lost tracks

• V0 candidates: KS and lambdas

https://doi.org/10.1088/1748-0221/12/10/P10003

Training NN on HPC via a Kubernetes based interface08/01/25 37

Ingredients prior to jet-tagging

• Clustering is an unsupervised task as we don’t know what
the result will be before running it

• Clustering aggregates particles via a logic based on a
distance (metric) between particles or their clusters

• Clustering is an-iterative procedure that produces
recombinations until a condition in satisfied

• Jets serve two purposes: (a) observables that one can
predict and measure, (b) tools to extract properties of a
final state → constraints are infrared and ultra-violet safety

• The anti-kT jet clustering takes just one parameter called R
distance that defines nearest neighbours of each particle

dij = min(
1

p2
T,i

,
1

p2
T,j

) × ΔR2/R2

Jet defintion aka jet clustering

But w
e nee

d inp
ut pa

rticle
s to c

luste
r

Particle-flow reconstruction

• Particle-flow (PF) provides an improved event description by
correlating single detector measurements

• PF-candidates in offline reconstruction:
• Leptons (muons and electrons) and photons

JINST 12 (2017) P10003

• Charged hadrons: everything interpreted as pion (𝛑±)
• Neutral hadrons (neutrons, KL0)

• Useful info outside PF-candidate collection:

• Tracks not linked to any PF-object → lost tracks

• V0 candidates: KS and lambdas
Pleas

e for
get a

bout
 Nan

oAOD
s … y

ou

need
 lowe

r leve
l inpu

ts in
MiniAO

Ds

https://doi.org/10.1088/1748-0221/12/10/P10003

