

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25

Advanced	use	cases:	training	NN	on	HPC	via	a	
Kubernetes	based	interface

Speaker:	Raffaele	Gerosa

Institute:	Università	degli	studi	di	Milano-Bicocca	and	INFN	

1

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 2

Physics	motivation	beyond	this	talk	…

V(H) =
1
2

m2
HH2 + λvH3 +

1
4

λH4 −
λ
4

v4 **	Expression	of	the	Higgs	boson		
							potential	when	expanded	around	the	VEV

Chasing	the	Higgs	boson	self-coupling

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 3

Physics	motivation	beyond	this	talk	…

V(H) =
1
2

m2
HH2 + λvH3 +

1
4

λH4 −
λ
4

v4

H,	mH

**	Expression	of	the	Higgs	boson		
							potential	when	expanded	around	the	VEV

Mass	term	measured	with	O(100)	MeV	precision

Chasing	the	Higgs	boson	self-coupling

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 4

Physics	motivation	beyond	this	talk	…

V(H) =
1
2

m2
HH2 + λvH3 +

1
4

λH4 −
λ
4

v4

H,	mH

**	Expression	of	the	Higgs	boson		
							potential	when	expanded	around	the	VEV

Mass	term	measured	with	O(100)	MeV	precision

Trilinear	coupling

H
H

HλHHH

It	can	be	directly	probed	via	the	non-resonant	production	of	HH	pairs

Chasing	the	Higgs	boson	self-coupling

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 5

Physics	motivation	beyond	this	talk	…

V(H) =
1
2

m2
HH2 + λvH3 +

1
4

λH4 −
λ
4

v4

H,	mH

**	Expression	of	the	Higgs	boson		
							potential	when	expanded	around	the	VEV

Mass	term	measured	with	O(100)	MeV	precision

Trilinear	coupling

H
H

HλHHH

It	can	be	directly	probed	via	the	non-resonant	production	of	HH	pairs

HH

H H

Quartic	coupling

Extremely	rare	→	out	of	
reach	for	HL-LHC

Serves	as	additional	
probe	for	BSM

Chasing	the	Higgs	boson	self-coupling

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 6

Physics	motivation	beyond	this	talk	…

What	are	the	most	sensitive	non-resonant	HH	analyses	to	Higgs	boson	self-couplings	(kλ,k2V)?

λκ
6− 4− 2− 0 2 4 6 8 10 12

) (
fb

)
bbγγ

→
 B

(H
H

H

H
σ

0

0.5

1

1.5

2

2.5

3

3.5

4
CMS (13 TeV)-1137 fb

95% CL upper limits
Observed
Median expected
68% CL expected
95% CL expected
Theoretical prediction

bbγγ →HH

HH → bb𝛾𝛾
HH → bb𝛕𝛕

HH → 4b: resolved

HH → 4b: boosted

• Sensitivity	of	hadronic	channels	HH→4b	and	HH→bb𝛕h𝛕h	limited	
by	a	combination	of	trigger	acceptance,	jet	tagging	performance,	
signal-to-background	ratio,	and	background	estimation

• These	are	all	areas	where	ML	makes	a	difference

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25

What	are	the	most	sensitive	non-resonant	HH	analyses	to	Higgs	boson	self-couplings	(kλ,k2V)?

 7

Physics	motivation	beyond	this	talk	…

λκ
6− 4− 2− 0 2 4 6 8 10 12

) (
fb

)
bbγγ

→
 B

(H
H

H

H
σ

0

0.5

1

1.5

2

2.5

3

3.5

4
CMS (13 TeV)-1137 fb

95% CL upper limits
Observed
Median expected
68% CL expected
95% CL expected
Theoretical prediction

bbγγ →HH

HH → bb𝛾𝛾
HH → bb𝛕𝛕

HH → 4b: resolved

HH → 4b: boosted

• Sensitivity	of	hadronic	channels	HH→4b	and	HH→bb𝛕h𝛕h	limited	
by	a	combination	of	trigger	acceptance,	jet	tagging	performance,	
signal-to-background	ratio,	and	background	estimation

• These	are	all	areas	where	ML	makes	a	difference

Cons
eque

nce:	
it	bec

omes
	nece

ssary
	to	ei

ther	
train

	big	N
Ns	on

	large
	data

sets	(
jet	ta

gging
)	or	t

rain	

sever
al	NN

	for	b
ackgr

ound
	estim

ation
	(dee

p	ens
embl

ing	/
	boot

strap
ping	

/	k-fo
ld	cro

ss	va
lidati

on)	

using
	an	H

PC	fa
cility

	may
	beco

me	c
rucia

l

In	thi
s	talk

	I’ll	fo
cus	o

n	jet-
tagg

ing	a
s	use

-case

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 8

	Jet	classification	based	on	anti-kT	R=0.4	jets

• In	CMS	the	anti-kT	clustering	with	R=0.4	is	meant/used	to	cluster	the	fragmentation	+	hadronization	products	of	a	single	parton

ME	partons GEN	jets Digi	signals PF	jets jet	tagging

PS+clustering
detector particle	flow	+	

jet	clustering
jet	classification

• Jet	classification:	from	cluster	of	particles	infere	the	jet	nature	i.e.	the	original	parton	or	the	resonance	who	produced	the	jet

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 9

	Jet	classification	based	on	anti-kT	R=0.4	jets

• In	CMS	the	anti-kT	clustering	with	R=0.4	is	meant/used	to	cluster	the	fragmentation	+	hadronization	products	of	a	single	parton

Which	classes	(types)	of	jets	we	want	to	resolve	and	identify?

B-had SV

C-had SV

𝛕		≈	10-12	s
mb	≈	4.2	GeV,	qb	=	±	1/3

𝛕		≈	10-13	s
mc	≈	1.3	GeV,	qc	=	±	2/3

𝛕		<<	10-13	s
mq	<	0.1	GeV,	q=	±	1/3,	2/3

mg	=	0,	qg	=	0

𝛕		≈	10-13	s
m𝛕	=	1.7	GeV,	q	=	±	1

PV

PV

PV

PV

PV 𝜈s

c-quark
gluon

Isolated	leptons	(e,μ)

𝛕		≈	inf

m	≤	0.1	GeV,	q	=	±1

b-quark uds-quark Hadronic	taus

PV

• Jet	classification:	from	cluster	of	particles	infere	the	jet	nature	i.e.	the	original	parton	or	the	resonance	who	produced	the	jet

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 10

Jet-tagging	with	ML:	representation	and	state-of-art

• Disclaimer:	there	is	a	long	history	and	evolution	of	jet-tagging	algorithm	that	will	be	neglected	in	this	talk

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 11

Jet-tagging	with	ML:	representation	and	state-of-art

• Disclaimer:	there	is	a	long	history	and	evolution	of	jet-tagging	algorithm	that	will	be	neglected	in	this	talk

• Jets	can	be	interpreted	as	pixel-like	images	
taken	by	a	camera	called	particle	detector

• Cons:	images	are	sparse	and	we	have	
multiple	detectors	providing	heterogeneous	
informations

• Conclusion:	we	cannot	easily	use	technique	
for	image	classification	to	solve	jet	tagging	

Jet	as	an	image	?

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25

• Jets	can	be	interpreted	as	pixel-like	images	
taken	by	a	camera	called	particle	detector

• Cons:	images	are	sparse	and	we	have	
multiple	detectors	providing	heterogeneous	
informations

• Conclusion:	we	cannot	easily	use	technique	
for	image	classification	to	solve	jet	tagging	

Jet	as	an	image	?

 12

Jet-tagging	with	ML:	representation	and	state-of-art

• Disclaimer:	there	is	a	long	history	and	evolution	of	jet-tagging	algorithm	that	will	be	neglected	in	this	talk

Jet	as	a	sequence	?

• A	jet	is	a	set	of	O(10-60)	particles	→	sequence

• Each	particle	has	O(50)	features

• Therefore	operations	in	jet-tagging	must	be	
permutation	invariant

• A	jet	is	intrinsically	an	un-ordered	set	of	
particles	with	certain	relation	due	to	shower	
and	hadronization	structure

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 13

Jet-tagging	with	ML:	representation	and	state-of-art

• Disclaimer:	there	is	a	long	history	and	evolution	of	jet-tagging	algorithm	that	will	be	neglected	in	this	talk

Jet	as	a	sequence	?

• A	jet	is	a	set	of	O(10-60)	particles	→	sequence

• Each	particle	has	O(50)	features

• Therefore	operations	in	jet-tagging	must	be	
permutation	invariant

• A	jet	is	intrinsically	an	un-ordered	set	of	
particles	with	certain	relation	due	to	shower	
and	hadronization	structure

Jet	as	a	graph	of	particles	→	GCNN	or	Transformers

• A	jet	is	a	sparse	set	of	particles	→	graph	nodes

• Number	of	nodes	varies	from	graph	to	graph

• Nodes	can	be	related	via	physics-inspired	
pairwise	features	→	graph	edges

• Particles	in	the	jet	are	product	of	the	shower	algorithm	
which	respects	conservation	of	4-momentum,	Lorentz-
invariance,	etc	

• Transformers	networks,	which	are	equivalent	to	fully	
connected	graphs,	are	state-of	art	architectures	for	
jet	tagging

• Examples	of	modern	jet-tagging	networks:

• Particle-Transformer	(ParT)	[Link]
• Lorentz	Geometric-Algebra-Transformer	(LGATr)	[Link]

https://arxiv.org/abs/2202.03772
https://arxiv.org/abs/2411.00446

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 14

A	real-example:	jet-tagging	with	ParT	..	step-1

• Disclaimer:	this	setup	reflects	studies	I	was	doing	until	1.5	years	ago	…	now	BTV-JME	are	working	on	a	single-framework	
based	on	DeepNTuples	for	producing	the	training	dataset	and	B-hive	[Link]	to	run	the	NN	trainings

Production	of	training	Ntuples	

• Dataset	must	be	large	O(100)M	jets	as	ParT	model	for	AK4-tagging	
contains	about	2-2.5M	hyper-parameters	

• Jets	from	a	diverse	set	of	simulated	physics	processes

• Processes:	ttbar,	V+jets,	QCD	multijet,	VBF-H,	VH,	high	mass	Z’,	etc

• Input	features	for	each	jet:

• PF-candidates	information	→	PackedPFCandidates
• (μ,e,𝛄)	specific	features		→	match	with	slimmedMuons,	etc

• Lost	tracks	matched	to	the	jet	with	pT	>	1	GeV
• Secondary,	kaon,	and	lambda	vertexes	matched	to	the	jet

• If	PF-candidate	is	used	to	build	an	HPS-𝛕

• Input	data-tier:	MiniAOD	in	Run2-UL

Technical	implementation	

• Processing:	CMSSW	job	using	native	multithread	
(stream	producers/filters)	with	a	lock	for	thread	
safety	on	the	output	EDAnalyzer

• Inference:	this	step	contains	also	example	on	
how	to	run	ParT-inference	via	the	ONNXRuntime	
engine	of	CMSSW

• Execution	on	the	grid	via	crab3

• See	“producing	tuples”	in	the	README	of

https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/
tree/cmssw_13X_new_features/
TrainingNtupleMakerAK4?
ref_type=heads#producing-training-ntuples

https://gitlab.cern.ch/cms-btv/b-hive
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#producing-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#producing-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#producing-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#producing-training-ntuples

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 15

A	real-example:	jet-tagging	with	ParT	..	step-2

Skimming	+	preparation	of	training	Ntuples

• Goals:

• jet	selection	to	be	applied

• Standalone	compiled	C++	via	scram	(CMSSW)		
using	std::thread	for	parallel	event	loop

Technical	implementation	

• Skim	options:

• PF/SV/track/lepton	candidate	minium	pT	

• Selection	for	data-domain	adaptation:	Zμμ,	DY(μ𝛕),	dijet,	tt(eμ)

• Produce	a	jet-library	for	every	sample	stored	in	a	ROOT	TTree	in	
which	every	feature	of	a	node	(PF/SV/track/lepton)	is	in	a	std::vector	
with	length	equal	to	the	number	of	nodes	of	that	type	in	the	jet

• Define	truth	class	and	truth	kinematics	from	GEN	info

• Python	script	to	launch	skim	step	on	
CondorHT	CERN	batch,	a	job	for	all	files	
in	a	list

• By	default	I/O	on	CERN	EOS	either	via	
XROOTD	or	local	mount-point

• Reduced	compression	w.r.t.	default	
NanoAOD	for	faster	I/O

• Instructions:	

https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/
tree/cmssw_13X_new_features/
TrainingNtupleMakerAK4?ref_type=heads#skim-
training-ntuples

• Caveat:	not	all	parameters	can	be	override	via	command	line	[Link]

• Disclaimer:	this	setup	reflects	studies	I	was	doing	until	1.5	years	ago	…	now	BTV-JME	are	working	on	a	single-framework	
based	on	DeepNTuples	for	producing	the	training	dataset	and	B-hive	[Link]	to	run	the	NN	trainings

https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/blob/cmssw_13X_new_features/TrainingNtupleMakerAK4/bin/makeSkimmedNtuplesForTraining.cpp?ref_type=heads#L22-L68
https://gitlab.cern.ch/cms-btv/b-hive

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 16

A	real-example:	jet-tagging	with	ParT	..	step-2

Skimming	+	preparation	of	training	Ntuples

• Goals:

• jet	selection	to	be	applied

• Standalone	compiled	C++	via	scram	(CMSSW)		
using	std::thread	for	parallel	event	loop

Technical	implementation	

• Skim	options:

• PF/SV/track/lepton	candidate	minium	pT	

• Selection	for	data-domain	adaptation:	Zμμ,	DY(μ𝛕),	dijet,	tt(eμ)

• Produce	a	jet-library	for	every	sample	stored	in	a	ROOT	TTree	in	
which	every	feature	of	a	node	(PF/SV/track/lepton)	is	in	a	std::vector	
with	length	equal	to	the	number	of	nodes	of	that	type	in	the	jet

• Define	truth	class	and	truth	kinematics	from	GEN	info

• Python	script	to	launch	skim	step	on	
CondorHT	CERN	batch,	a	job	for	all	files	
in	a	list

• By	default	I/O	on	CERN	EOS	either	via	
XROOTD	or	local	mount-point

• Reduced	compression	w.r.t.	default	
NanoAOD	for	faster	I/O

• Instructions:	

https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/
tree/cmssw_13X_new_features/
TrainingNtupleMakerAK4?ref_type=heads#skim-
training-ntuples

• Caveat:	not	all	parameters	can	be	override	via	command	line	[Link]

• Disclaimer:	this	setup	reflects	studies	I	was	doing	until	1.5	years	ago	…	now	BTV-JME	are	working	on	a	single-framework	
based	on	DeepNTuples	for	producing	the	training	dataset	and	B-hive	[Link]	to	run	the	NN	trainings

This	
prod

uced
	a	jet

-libra
ry	re

quiri
ng	se

veral
	GB	o

f	disk
	spac

e	…		

in	my
	case

	it	wa
s	up	

to	1.
5	TB	

split	
acros

s	O(5
00)	R

OOT	
files

https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/tree/cmssw_13X_new_features/TrainingNtupleMakerAK4?ref_type=heads#skim-training-ntuples
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/blob/cmssw_13X_new_features/TrainingNtupleMakerAK4/bin/makeSkimmedNtuplesForTraining.cpp?ref_type=heads#L22-L68
https://gitlab.cern.ch/cms-btv/b-hive

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 17

A	real-example:	training	framework

• Training	framework	based	on	a	customised	version	of	the	weaver-core	package	developed	by	Huilin	Qu	for	ParticleNet

• Fully	based	on	python3		and	PyTorch	as	machine-learning	engine
• ROOT	to	awkward	array	conversion	via	uproot,	then	awkward	to	numpy	/	torch	tensors
• Interface	to	internal	operation	via	YAML	configuration	file

• Training	and	test	dataset	selection	via	cut	string
• Definition	of	new	variables	(columns)
• Definition	of	input	feature	transformation	(variable	standardisation)
• Definition	of	class	weights	and	per-jet	sampling	weights	based	on	kinematics	

• Definition	of	truth	labels	(classification	labels)	and	targets	(regression	targets)

• Padding	mode	(wrap	or	zero-padding)	and	length	for	each	input	block	

• NN	architecture	and	loss	function	are	given	as	external	modules

Technical	preparation	of	weaver

• Setup	pip-python	libraries	in	a	conda	environment	→	[Instructions]	
• Example	of	a	weaver	configuration	needed	to	run	a	classification	+	regression	task	→	[YAML	config]
• Example	of	a	ParT	architecture	config	and	loss	definition	→	[YAML	config]

https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul#create-docker-image-for-the-nrp-cluster-kubernetes-basrd
https://github.com/rgerosa/weaver-benchmark/blob/adv_da_attack/data/ak4_transformer_taumuel_classreg_ch.yaml
https://github.com/rgerosa/weaver-benchmark/blob/adv_da_attack/networks/particle_transformer_ak4_class_reg_contrastive_ch.py

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 18

A	real-example:	pre-training	aspects

• Disclaimer:	most	of	the	time,	once	the	input	dataset	is	built,	some	choices	need	to	be	taken	before	feeding	a	NN	with	tensor-like	inputs

Class	balance

• It	is	a	physics	inspired	action	
depending	on	the	final	scope

• Higher	class	weight	to	b	and	
c	will	enhance	heavy-flavour	
tagging	w.r.t.	quark	vs	gluon

• Class	weight	used	in	weaver	
to	up-sample	(w>1)	or	down-
sample	(w<1)	a	class	of	jets

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 19

A	real-example:	pre-training	aspects

• Disclaimer:	most	of	the	time,	once	the	input	dataset	is	built,	some	choices	need	to	be	taken	before	feeding	a	NN	with	tensor-like	inputs

Class	balance

• It	is	a	physics	inspired	action	
depending	on	the	final	scope

• Higher	class	weight	to	b	and	
c	will	enhance	heavy-flavour	
tagging	w.r.t.	quark	vs	gluon

• Class	weight	used	in	weaver	
to	up-sample	(w>1)	or	down-
sample	(w<1)	a	class	of	jets

Jet	kinematic	sampling

• Jet	tagging	performance	depend	on	jet	pT,	
η,	as	well	as	on	the	global	event	
configuration

• The	way	jets	are	sampled	could	bias	the	
performance	towards	a	specific	phase-
space

• A	quite	natural	strategy	is	to	sample	
uniform	in	pT	and	η	every	class

• This	is	done	by	defining	a	1D	or	2D	matrix	
of	weights	binned	in	(X,Y)	observables	for	
every	class	of	jets

• These	weights	are	used	in	the	internal	jet	
sampling	strategy	not	applied	in	the	loss

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 20

A	real-example:	pre-training	aspects

• Disclaimer:	most	of	the	time,	once	the	input	dataset	is	built,	some	choices	need	to	be	taken	before	feeding	a	NN	with	tensor-like	inputs

Class	balance

• It	is	a	physics	inspired	action	
depending	on	the	final	scope

• Higher	class	weight	to	b	and	
c	will	enhance	heavy-flavour	
tagging	w.r.t.	quark	vs	gluon

• Class	weight	used	in	weaver	
to	up-sample	(w>1)	or	down-
sample	(w<1)	a	class	of	jets

• This	is	done	once	for	the	entire	jet-
library	provided	that	the	definition	of	
truth	labels	and	sampling	binning	isn’t	
changed

• Weights	stored	in	the	configuration	file,	
see	for	example	[YAML	config	weights]

• RDF	python	code	that	computes	the	
sampling	weights	[Link]

Technical	example
Jet	kinematic	sampling

• Jet	tagging	performance	depend	on	jet	pT,	
η,	as	well	as	on	the	global	event	
configuration

• The	way	jets	are	sampled	could	bias	the	
performance	towards	a	specific	phase-
space

• A	quite	natural	strategy	is	to	sample	
uniform	in	pT	and	η	every	class

• This	is	done	by	defining	a	1D	or	2D	matrix	
of	weights	binned	in	(X,Y)	observables	for	
every	class	of	jets

• These	weights	are	used	in	the	internal	jet	
sampling	strategy	not	applied	in	the	loss

https://github.com/rgerosa/weaver-benchmark/blob/adv_da_attack/data/ak4_transformer_taumuel_classreg_ch_weight.auto.yaml
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/blob/cmssw_13X_new_features/TrainingNtupleMakerAK4/macros/makeReWeightsPerClass.py?ref_type=heads

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 21

A	real-example:	pre-training	aspects

Feature	engineering	

• Basic	feature	standardisation	can	
help	in	maximising	NN	performance

• Implementation	in	weaver:	for	every	
input	feature	in	each	block	one	can	
define	a	vector	of	parameters

• Disclaimer:	most	of	the	time,	once	the	input	dataset	is	built,	some	choices	need	to	be	taken	before	feeding	a	NN	with	tensor-like	inputs

Class	balance

• It	is	a	physics	inspired	action	
depending	on	the	final	scope

• Higher	class	weight	to	b	and	
c	will	enhance	heavy-flavour	
tagging	w.r.t.	quark	vs	gluon

• Class	weight	used	in	weaver	
to	up-sample	(w>1)	or	down-
sample	(w<1)	a	class	of	jets

• Mean	value	to	shift	to	0
• Variance	value	to	transform	to	variance	1
• Clipping	values	for	outliers	

• Weights	stored	in	the	configuration	file,	
see	for	example	[YAML	config	weights]

• RDF	python	code	that	computes	
standardisation	parameters	[Link]

Jet	kinematic	sampling

• Jet	tagging	performance	depend	on	jet	pT,	
η,	as	well	as	on	the	global	event	
configuration

• The	way	jets	are	sampled	could	bias	the	
performance	towards	a	specific	phase-
space

• A	quite	natural	strategy	is	to	sample	
uniform	in	pT	and	η	every	class

• This	is	done	by	defining	a	1D	or	2D	matrix	
of	weights	binned	in	(X,Y)	observables	for	
every	class	of	jets

• These	weights	are	used	in	the	internal	jet	
sampling	strategy	not	applied	in	the	loss

https://github.com/rgerosa/weaver-benchmark/blob/adv_da_attack/data/ak4_transformer_taumuel_classreg_ch_weight.auto.yaml
https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/blob/cmssw_13X_new_features/TrainingNtupleMakerAK4/macros/makeInputTransfCoefficients.py?ref_type=heads

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 22

Running	training:	challenges

• Goal:	run	the	training	until	convergence	in	order	or	4-5	days,	a	week	at	maximum	for	the	more	complex	cases

• Large	dataset	size	O(1TB)	that	needs	to	
analysed	at	every	epoch	→	cannot	be	
loaded	in	memory

High	CPU	throughput	needed

• Iterative	PyTorch	loader	that	loads	in	
memory	a	chunk	of	every	file,	converts	
to	torch	tensors,	apply	transformation,	
defines	new	columns,	and	build	batches

• The	data-loader	need	to	span	across	
different	parallel	workers	to	keep	the	
pace	with	the	training	loop

• Load	cyclically	a	small	chunk	of	each	file,	
pad	to	a	fix	dimension,	create	new	
columns,	etc		

Large	RAM	needed

Order	of	16	workers	needed

• Instantiate	multiple	iterative	workers	for	I/
O	is	more	demanding	on	the	memory	side

Order	of	64-72	Gb	per	training

• Uncompress	files	and	decided	whether	to	
use	lower	floating	point	precision

GPU	memory	and	speed

• Mini-batch	not	ideal	cause	of	
larger	loss	fluctuations	and	more	
backward	passes

• Larger	batches	required	lot	of	
GPU	memory

Parallel	on	2	GPUs	24	Gb	each	or	
single	GPU	with	48	Gb

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 23

Solution	is	to	use	an	HPC	facility
• Disclaimer:	this	is	what	I	was	doing	up	to	1.5	years	ago	→	work	ongoing	to	replicate	it	at	Cineca/Leonardo

National	research	platform	(NRP)

• US	network	of	computing	centers	lead	by	UCSD	[Link]

• Sites	are	linked	together	under	a	common	Kubernetes	cluster
• GPUs	available	~	1.5k
• Five	CEPH	clusters	with	S3	access	allowing	for	O(10)	Pb	storage

• Typical	machine:	O(128)	CPUs,	O(540)	Gb	RAM,	5	TB	SSD,	8	GPU

• Description	of	cluster	and	its	use:

https://docs.nationalresearchplatform.org/

• Monitor	job	/	pod	resources	via	Grafana	webpages

https://dash.nrp-nautilus.io/
https://docs.nationalresearchplatform.org/

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 24

Running	over	a	Kubernetes	cluster

• Disclaimer:	I	am	old	enough	to	avoid	modern	solutions	like	jupyter-notebooks	…	thus	I	still	work	with	python	scripts	and	use	
manual	job	submission	/	description

Training	environment	→	docker	image

• Docker	image:	it	starts	from	default	centos/RHEL/
ubuntu	+	cuda	images	from	NVIDIA	

• Additional	software:	git,	rsync,	krb5,	+	xrootd	(in	case	
I/O	with	CERN	is	needed)

• Conda	env	with	packages	needed	by	weaver-core

• Docker	image	uploaded	to	gitlab	registry	of	a	
repository	interfaced	with	the	cluster	

• Docker	file	[Link]

• Commands	needed	to	create	and	upload	the	
docker	image	from	a	local	computer	[Link]	

Persistent	volume	and	data	transfer	from	CERN

• Persistent	volume	of	O(2.5)	TB	on	the	CEPH	cluster	[Link]

• Generate	CERN	kerberos	keytab	and	upload	as	KUBE	secret	

• Copy	files	without	pwd	in	the	KUBE	job	[Link]

Example	of	training	job	submission

• weaver-core	not	included	in	the	docker	image:	it	is	pulled	
from	github	at	job	starting	→	allows	to	update	packages	

• weaver	train.py	script	takes	several	input	parameters	to	
customise	the	job

• Training	submission	command	[Link]

https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/blob/main/Dockerfile?ref_type=heads
https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul#create-docker-image-for-the-nrp-cluster-kubernetes-basrd
https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/tree/main?ref_type=heads#persistent-volume-used-to-store-data
https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/tree/main?ref_type=heads#copy-files-from-cern-to-nrp-cluster-or-viceversa
https://github.com/rgerosa/weaver-core/blob/adv_da_attack/weaver/train.py#L18-L180
https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/tree/main?ref_type=heads#submit-a-weaver-training-job

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 25

Running	over	a	Kubernetes	cluster:	example

• Kubectl	config	YAML	file	is	made	by	several	sections

job	name	and	docker	container	to	pull

node	affinity:	type	of	hardware,	etc.		→	48	Gb	GPUs

job	resources,	volumes,	shared	memory	

https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/blob/main/ak4_training_latest/
config_1gpu_48gb/weaver-job-ak4-transformer-cont-ch.yaml?ref_type=heads#L12-L53

args	section	of	the	config	express	the	commands	to	be	executed

https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/blob/main/ak4_training_latest/config_1gpu_48gb/weaver-job-ak4-transformer-cont-ch.yaml?ref_type=heads#L12-L53
https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/blob/main/ak4_training_latest/config_1gpu_48gb/weaver-job-ak4-transformer-cont-ch.yaml?ref_type=heads#L12-L53

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 26

Final	results:	heavy	flavour	tagging

P(b	vs	c)	=	P(b)/(P(b)+P(c))

P(b	vs	uds)	=	P(b)/(P(b)+P(uds))

P(b	vs	g)	=	P(b)/(P(b)+P(g))
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Signal efficiency
4−10

3−10

2−10

1−10

1

Ba
ck

gr
ou

nd
 e

ffi
ci

en
cy

DeepJet
PNET

| < 2.5η < 60 GeV, 0.0 < |
T

30 < p

b vs uds
b vs g
b vs c

14 TeV

CMS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

4−10

3−10

2−10

1−10

1

Ba
ck

gr
ou

nd
 e

ffi
ci

en
cy

DeepJet
PNET

| < 2.5η < 120 GeV, 0.0 < |
T

90 < p

b vs uds
b vs g
b vs c

14 TeV

CMS

P(c	vs	b)	=	P(c)/(P(c)+P(b))

P(c	vs	uds)	=	P(c)/(P(c)+P(uds))

P(c	vs	g)	=	P(c)/(P(c)+P(g))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

4−10

3−10

2−10

1−10

1

Ba
ck

gr
ou

nd
 e

ffi
ci

en
cy

DeepJet
PNET

| < 2.5η < 60 GeV, 0.0 < |
T

30 < p

c vs uds
c vs g
c vs b

14 TeV

CMS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

4−10

3−10

2−10

1−10

1

Ba
ck

gr
ou

nd
 e

ffi
ci

en
cy

DeepJet
PNET

| < 2.5η < 120 GeV, 0.0 < |
T

90 < p

c vs uds
c vs g
c vs b

14 TeV

CMS

Tagging	performance	improves	with	pT	and	better	in	central	barrel

Bk
g.
	e
ffi
ci
en

cy
Bk
g.
	e
ffi
ci
en

cy
Disclaimer:	in	the	plots	shown,	performance	is	not	necessarily	the	best	to-date	→	they	are	meant	to	provide	a	glance	of	the	performance	

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 27

Final	results:	hadronic	𝛕h

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

4−10

3−10

2−10

1−10

1

Ba
ck

gr
ou

nd
 e

ffi
ci

en
cy

| < 1.0η < 60 GeV, 0.0 < |
T

30 < p

tau-h vs uds
tau-h vs g
tau-h vs c
tau-h vs b

14 TeV

CMS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

4−10

3−10

2−10

1−10

1

Ba
ck

gr
ou

nd
 e

ffi
ci

en
cy

| < 1.0η < 250 GeV, 0.0 < |
T

120 < p

tau-h vs uds
tau-h vs g
tau-h vs c
tau-h vs b

14 TeV

CMS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

4−10

3−10

2−10

1−10

1

Ba
ck

gr
ou

nd
 e

ffi
ci

en
cy

| < 2.5η < 90 GeV, 1.5 < |
T

60 < p

tau-h vs uds
tau-h vs g
tau-h vs c
tau-h vs b

14 TeV

CMS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

4−10

3−10

2−10

1−10

1

Ba
ck

gr
ou

nd
 e

ffi
ci

en
cy

| < 2.5η < 250 GeV, 1.5 < |
T

120 < p

tau-h vs uds
tau-h vs g
tau-h vs c
tau-h vs b

14 TeV

CMS

P(𝛕h	vs	b)	=	P(𝛕h)/(P(𝛕h)+P(b))

P(𝛕h	vs	c)	=	P(𝛕h)/(P(𝛕h)+P(c))

P(𝛕h	vs	uds)	=	P(𝛕h)/(P(𝛕h)+P(uds))

P(𝛕h	vs	g)	=	P(𝛕h)/(P(𝛕h)+Pg))
Tagging	performance	improves	with	pT	and	better	in	central	barrel

Bk
g.
	e
ffi
ci
en

cy
ParT	show	the	capability	of	being:	
• Better	than	DeepTau	on	ID	
• Better	than	HPS	in	decay	mode	assignment	
• Recover	inefficiencies	in	HPS	reconstruction

Disclaimer:	in	the	plots	shown,	performance	is	not	necessarily	the	best	to-date	→	they	are	meant	to	provide	a	glance	of	the	performance	

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 28

Final	results:	jet	pT	regression	and	per-jet	resolution	

Disclaimer:	this	was	a	rather	experimental	task	I	was	trying	…	a	kind	of	promising	but	not	in	production	..	showing	it	just	for	fun

• Implemented	without	chaining	the	network	layout	but	by	adding	a	regression	term	to	the	loss-function

L = CrossEntropy(x, xtruth) + λ × log(cosh(y − ytarget) + γ × [ρ0.16(z − ytarget) + ρ0.84(k − ytarget)]

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
gen
T

/p
T

p

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

a.
u.

Peak = 0.950
Mean = 0.917

 = 0.166effσ

FWHM = 0.349

b-jet

Peak = 1.024
Mean = 0.999

 = 0.142effσ

FWHM = 0.289

| < 0.5η < 60 GeV, 0.0 < |
T

40 < p

NoRegression

PNETRegression

13 TeV

CMS

210
 [GeV]

T
p

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26
>

ge
n

T
/p T

/<
p

ef
f

σ
| < 0.5ηNoRegression 0.0 < |
| < 1.0ηNoRegression 0.5 < |
| < 1.5ηNoRegression 1.0 < |

| < 2.0ηNoRegression 1.5 < |
| < 2.5ηNoRegression 2.0 < |

| < 0.5ηPNETRegression 0.0 < |
| < 1.0ηPNETRegression 0.5 < |
| < 1.5ηPNETRegression 1.0 < |
| < 2.0ηPNETRegression 1.5 < |

| < 2.5ηPNETRegression 2.0 < |

| < 0.5ηNoRegression 0.0 < |
| < 1.0ηNoRegression 0.5 < |
| < 1.5ηNoRegression 1.0 < |

| < 2.0ηNoRegression 1.5 < |
| < 2.5ηNoRegression 2.0 < |

| < 0.5ηPNETRegression 0.0 < |
| < 1.0ηPNETRegression 0.5 < |
| < 1.5ηPNETRegression 1.0 < |
| < 2.0ηPNETRegression 1.5 < |

| < 2.5ηPNETRegression 2.0 < |

13 TeV

CMS

Regression	vs	No	regression	

jet-tagging jet	pT	regression jet	pT	resolution	estimator

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 29

Final	results:	improve	description	with	data-domain

Disclaimer:	this	was	a	rather	experimental	task	I	was	trying	…	a	kind	of	promising	but	not	in	production	..	showing	it	just	for	fun

• Jet	tagging	outputs	are	calibrated	in-situ	with	data	using	data	control	regions	(CRs)

• Known	as	b/c-tagging	efficiency	scale	factors	→	measured	via	iterative	simultaneous	fit

• SFs	can	be	significantly	different	from	unity	→	impact	on	analysis	performance

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 30

Final	results:	improve	description	with	data-domain

Disclaimer:	this	was	a	rather	experimental	task	I	was	trying	…	a	kind	of	promising	but	not	in	production	..	showing	it	just	for	fun

Data-domain	adaptation

• Train	a	first	model	solely	on	simulation
• Select	data	and	simulation	events	from	CRs	
that	are	“pure”	in	a	certain	class	of	jet	

• Example	CRs:	ttbar(eμ),	DY(μ𝛕h),	Z(μμ),	dijet

• Train	the	network	again	together	with	a	binary	
classifier	in	each	CR	that	distinguishes	data	
from	simulation

• Invert	gradient	to	penalize	the	loss	function	
when	data	are	distinguished	from	MC	→	
domain	adaptation

L = Lclass + λ ⋅ Lreg + η ⋅ Lqnt + k ⋅ (Lμμ + Leμ + Lμτ + Ldijet + Ltt+c)

1

10

210

310

410

510

610

710

810

Ev
en

ts

Data

Top g-jets

Top uds-jets

Top c-jets

Top b-jets

 (13 TeV)-159.8 fb

CMS

0 1 2 3 4 5 6 7 8

Transformed PNET P(b)/P(b+c+uds+g)

0.6
0.8

1
1.2
1.4

D
at

a/
Pr

ed
.

1

10

210

310

410

510

610

710

810

Ev
en

ts

Data

Top g-jets

Top uds-jets

Top c-jets

Top b-jets

 (13 TeV)-159.8 fb

CMS

0 1 2 3 4 5 6 7 8

Transformed PNET P(b)/P(b+c+uds+g)

0.6
0.8

1
1.2
1.4

D
at

a/
Pr

ed
.

without	data-domain with	data-domain

• Jet	tagging	outputs	are	calibrated	in-situ	with	data	using	data	control	regions	(CRs)

• Known	as	b/c-tagging	efficiency	scale	factors	→	measured	via	iterative	simultaneous	fit

• SFs	can	be	significantly	different	from	unity	→	impact	on	analysis	performance

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 31

Final	results:	improve	description	with	data-domain

Disclaimer:	this	was	a	rather	experimental	task	I	was	trying	…	a	kind	of	promising	but	not	in	production	..	showing	it	just	for	fun

• Jet	tagging	outputs	are	calibrated	in-situ	with	data	using	data	control	regions	(CRs)

• Known	as	b/c-tagging	efficiency	scale	factors	→	measured	via	iterative	simultaneous	fit

• SFs	can	be	significantly	different	from	unity	→	impact	on	analysis	performance

0.6 0.8 1 1.2 1.4 1.6 1.8
w(data)/w(mc)

4−10

3−10

2−10

1−10

1

a.
u.

ParTNoJECNew3D

ParTNoJECNew5D

ParTNoJECNewDyn

| < 2.5η < 25000 GeV, 0.0 < |
T

25 < p

µdata vs mc e

13 TeV

CMS

In	inference	for	every	MC	event	
P(data)/P(MC)	can	be	computed		
giving	an	unbinned	SF	proxy

1

10

210

310

410

510

610

710

810

Ev
en

ts

Data

Top g-jets

Top uds-jets

Top c-jets

Top b-jets

 (13 TeV)-159.8 fb

CMS

0 1 2 3 4 5 6 7 8

Transformed PNET P(b)/P(b+c+uds+g)

0.6
0.8

1
1.2
1.4

D
at

a/
Pr

ed
.

With	data-domain

Data-domain	adaptation

• Train	a	first	model	solely	on	simulation
• Select	data	and	simulation	events	from	CRs	
that	are	“pure”	in	a	certain	class	of	jet	

• Example	CRs:	ttbar(eμ),	DY(μ𝛕h),	Z(μμ),	dijet

• Train	the	network	again	together	with	a	binary	
classifier	in	each	CR	that	distinguishes	data	
from	simulation

• Invert	gradient	to	penalize	the	loss	function	
when	data	are	distinguished	from	MC	→	
domain	adaptation

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 32

Conclusions	and	outlooks

• Availability	of	high	performance	analysis	facilities	will	be	crucial	for	the	development	of	our	field	towards	HL-LHC	and	FCC

• Today	I	focused	on	a	single	use	case	about	data-preparation,	ML	training,	and	inference	for	jet-tagging

• Execution	of	the	task	from	A	to	Z	without	R&D	requires:

• O(5)	days	for	dataset	preparation	starting	from	MiniAOD

• O(1)	week	for	training	+	testing	on	NRP

• O(5)	days	for	validation	in	data	from	MiniAOD

• With	improved	workflows	for	high	rate	data	preparation	and	a	validation,	as	well	as	improved	pipelines	and	
hardware	for	ML,	a	large	speedup	and	a	more	efficiency	use	of	resources	is	certainly	possible

• This	will	immensely	help	CMS	POGs	that	are	short	in	person-power,	dedicated	analysis	facilities	and	connected	resources

• If	some	of	you	is	interest	in	helping	to	test	and	automatise	a	procedure	to	run	such	kind	of	task	with	INFN	resource	contact	me!

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 33

backup	slides

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 34

Ingredients	prior	to	jet-tagging

• Clustering	is	an	unsupervised	task	as	we	don’t	know	what	
the	result	will	be	before	running	it

• Clustering	aggregates	particles	via	a	logic	based	on	a	
distance	(metric)	between	particles	or	their	clusters

• Clustering	is	an-iterative	procedure	that	produces	
recombinations	until	a	condition	in	satisfied	

• Jets	serve	two	purposes:	(a)	observables	that	one	can	
predict	and	measure,	(b)	tools	to	extract	properties	of	a	
final	state	→	constraints	are	infrared	and	ultra-violet	safety

• The	anti-kT	jet	clustering	takes	just	one	parameter	called	R	
distance	that	defines	nearest	neighbours	of	each	particle

dij = min(
1

p2
T,i

,
1

p2
T,j

) × ΔR2/R2

Jet	defintion	aka	jet	clustering

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 35

Ingredients	prior	to	jet-tagging

• Clustering	is	an	unsupervised	task	as	we	don’t	know	what	
the	result	will	be	before	running	it

• Clustering	aggregates	particles	via	a	logic	based	on	a	
distance	(metric)	between	particles	or	their	clusters

• Clustering	is	an-iterative	procedure	that	produces	
recombinations	until	a	condition	in	satisfied	

• Jets	serve	two	purposes:	(a)	observables	that	one	can	
predict	and	measure,	(b)	tools	to	extract	properties	of	a	
final	state	→	constraints	are	infrared	and	ultra-violet	safety

• The	anti-kT	jet	clustering	takes	just	one	parameter	called	R	
distance	that	defines	nearest	neighbours	of	each	particle

dij = min(
1

p2
T,i

,
1

p2
T,j

) × ΔR2/R2

Jet	defintion	aka	jet	clustering

But	w
e	nee

d	inp
ut	pa

rticle
s	to	c

luste
r

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 36

Ingredients	prior	to	jet-tagging

• Clustering	is	an	unsupervised	task	as	we	don’t	know	what	
the	result	will	be	before	running	it

• Clustering	aggregates	particles	via	a	logic	based	on	a	
distance	(metric)	between	particles	or	their	clusters

• Clustering	is	an-iterative	procedure	that	produces	
recombinations	until	a	condition	in	satisfied	

• Jets	serve	two	purposes:	(a)	observables	that	one	can	
predict	and	measure,	(b)	tools	to	extract	properties	of	a	
final	state	→	constraints	are	infrared	and	ultra-violet	safety

• The	anti-kT	jet	clustering	takes	just	one	parameter	called	R	
distance	that	defines	nearest	neighbours	of	each	particle

dij = min(
1

p2
T,i

,
1

p2
T,j

) × ΔR2/R2

Jet	defintion	aka	jet	clustering

But	w
e	nee

d	inp
ut	pa

rticle
s	to	c

luste
r

Particle-flow	reconstruction

• Particle-flow	(PF)	provides	an	improved	event	description	by	
correlating	single	detector	measurements

• PF-candidates	in	offline	reconstruction:
• Leptons	(muons	and	electrons)	and	photons

JINST	12	(2017)	P10003

• Charged	hadrons:	everything	interpreted	as	pion	(𝛑±)
• Neutral	hadrons	(neutrons,	KL0)

• Useful	info	outside	PF-candidate	collection:

• Tracks	not	linked	to	any	PF-object	→	lost	tracks

• V0	candidates:	KS	and	lambdas

https://doi.org/10.1088/1748-0221/12/10/P10003

Training	NN	on	HPC	via	a	Kubernetes	based	interface08/01/25 37

Ingredients	prior	to	jet-tagging

• Clustering	is	an	unsupervised	task	as	we	don’t	know	what	
the	result	will	be	before	running	it

• Clustering	aggregates	particles	via	a	logic	based	on	a	
distance	(metric)	between	particles	or	their	clusters

• Clustering	is	an-iterative	procedure	that	produces	
recombinations	until	a	condition	in	satisfied	

• Jets	serve	two	purposes:	(a)	observables	that	one	can	
predict	and	measure,	(b)	tools	to	extract	properties	of	a	
final	state	→	constraints	are	infrared	and	ultra-violet	safety

• The	anti-kT	jet	clustering	takes	just	one	parameter	called	R	
distance	that	defines	nearest	neighbours	of	each	particle

dij = min(
1

p2
T,i

,
1

p2
T,j

) × ΔR2/R2

Jet	defintion	aka	jet	clustering

But	w
e	nee

d	inp
ut	pa

rticle
s	to	c

luste
r

Particle-flow	reconstruction

• Particle-flow	(PF)	provides	an	improved	event	description	by	
correlating	single	detector	measurements

• PF-candidates	in	offline	reconstruction:
• Leptons	(muons	and	electrons)	and	photons

JINST	12	(2017)	P10003

• Charged	hadrons:	everything	interpreted	as	pion	(𝛑±)
• Neutral	hadrons	(neutrons,	KL0)

• Useful	info	outside	PF-candidate	collection:

• Tracks	not	linked	to	any	PF-object	→	lost	tracks

• V0	candidates:	KS	and	lambdas
Pleas

e	for
get	a

bout
	Nan

oAOD
s	…	y

ou	

need
	lowe

r	leve
l	inpu

ts	in	
MiniAO

Ds

https://doi.org/10.1088/1748-0221/12/10/P10003

