

08/01/25

Advanced use cases: training NN on HPC via a **Kubernetes based interface**

Speaker: Raffaele Gerosa

Institute: Università degli studi di Milano-Bicocca and INFN

Chasing the Higgs boson self-coupling

$$V(H) = \frac{1}{2}m_{\rm H}^2 H^2 + \lambda v H^3 + \frac{1}{4}\lambda H^4 - \frac{\lambda}{4}v^4$$

** Expression of the Higgs boson potential when expanded around the VEV

Training NN on HPC via a Kubernetes based interface

Mass term measured with O(100) MeV precision

Training NN on HPC via a Kubernetes based interface

Chasing the Higgs boson self-coupling

$$|\lambda vH^3 + \frac{1}{4}\lambda H^4 - \frac{\lambda}{4}v^4|$$

****** Expression of the Higgs boson potential when expanded around the VEV

It can be *directly probed* via the non-resonant production of *HH pairs*

Training NN on HPC via a Kubernetes based interface

$$\lambda^2 + \lambda v H^3 + \frac{1}{4} \lambda H^4 - \frac{\lambda}{4} v^4$$

** Expression of the Higgs boson potential when expanded around the VEV

It can be *directly probed* via the non-resonant production of *HH pairs*

Training NN on HPC via a Kubernetes based interface

$$\lambda^2 + \lambda v H^3 + \frac{1}{4} \lambda H^4 - \frac{\lambda}{4} v^4$$

Expression of the Higgs boson potential when expanded around the VEV

Quartic coupling

Extremely rare $\rightarrow out of$ reach for HL-LHC

Serves as additional probe for BSM

What are the most sensitive non-resonant HH analyses to Higgs boson self-couplings (k_{λ}, k_{2V}) ?

08/01/25

Jet classification based on anti-k_T R=0.4 jets

• Jet classification: from cluster of particles infere the jet nature i.e. the original parton or the resonance who produced the jet

• In CMS the anti-k_T clustering with R=0.4 is meant/used to cluster the fragmentation + hadronization products of a single parton

Training NN on HPC via a Kubernetes based interface

08/01/25

Jet classification based on anti-k_T R=0.4 jets

• Jet classification: from cluster of particles infere the jet nature i.e. the original parton or the resonance who produced the jet

• In CMS the anti-k_T clustering with R=0.4 is meant/used to cluster the fragmentation + hadronization products of a single parton

• **Disclaimer:** there is a long history and evolution of jet-tagging algorithm that will be neglected in this talk

Training NN on HPC via a Kubernetes based interface

• **Disclaimer:** there is a long history and evolution of jet-tagging algorithm that will be neglected in this talk

Jet as an image ?

08/01/25

- Jets can be interpreted as pixel-like images \bullet taken by a camera called particle detector
- **Cons:** images are sparse and we have \bullet multiple detectors providing heterogeneous informations
- **Conclusion:** we cannot easily use technique \bullet for image classification to solve jet tagging

Training NN on HPC via a Kubernetes based interface

• **Disclaimer:** there is a long history and evolution of jet-tagging algorithm that will be neglected in this talk

Jet as an image ?

08/01/25

Jet as a sequence ?

- A jet is a set of O(10-60) particles \rightarrow sequence
- Each particle has O(50) features
- A jet is intrinsically an un-ordered set of particles with certain relation due to shower and hadronization structure
 - Therefore operations in jet-tagging must be permutation invariant

• **Disclaimer:** there is a long history and evolution of jet-tagging algorithm that will be neglected in this talk

Jet as a sequence ?

- A jet is a set of O(10-60) particles \rightarrow sequence
- Each particle has O(50) features
- A jet is intrinsically an un-ordered set of particles with certain relation due to shower and hadronization structure
- Therefore operations in jet-tagging must be permutation invariant

Jet as a graph of particles \rightarrow GCNN or Transformers

- A jet is a sparse set of particles \rightarrow graph nodes
- *Number of nodes varies* from graph to graph
- Nodes can be related via physics-inspired pairwise features \rightarrow graph edges
- Particles in the jet are product of the shower algorithm which respects conservation of 4-momentum, Lorentzinvariance, etc
- Transformers networks, which are equivalent to fully connected graphs, are state-of art architectures for jet tagging
- Examples of modern jet-tagging networks:
- Particle-Transformer (ParT) [Link]
- Lorentz Geometric-Algebra-Transformer (LGATr) [Link]

A real-example: jet-tagging with ParT .. step-1

• **Disclaimer:** this setup reflects studies I was doing until 1.5 years ago ... now BTV-JME are working on a single-framework based on **DeepNTuples** for producing the training dataset and **B-hive [Link]** to run the NN trainings

Production of training Ntuples

- Dataset must be large O(100)M jets as ParT model for AK4-tagging contains about **2-2.5M** hyper-parameters
- Jets from a **diverse set** of simulated **physics processes**
- **Processes:** ttbar, V+jets, QCD multijet, VBF-H, VH, high mass Z', etc
- Input features for each jet:
 - PF-candidates information \rightarrow PackedPFCandidates
 - (μ, e, γ) specific features \rightarrow match with slimmed Muons, etc.
 - Lost tracks matched to the jet with $p_T > 1$ GeV
 - Secondary, kaon, and lambda vertexes matched to the jet
 - If PF-candidate is used to build an HPS- τ

A real-example: jet-tagging with ParT .. step-2

• **Disclaimer:** this setup reflects studies I was doing until 1.5 years ago ... now BTV-JME are working on a single-framework based on **DeepNTuples** for producing the training dataset and **B-hive [Link]** to run the NN trainings

Skimming + preparation of training Ntuples

- Goals:
- Produce a **jet-library** for every sample stored in a ROOT TTree in which every feature of a node (PF/SV/track/lepton) is in a std::vector with length equal to the number of nodes of that type in the jet
- Define **truth class** and **truth kinematics** from GEN info
- Skim options:
 - jet selection to be applied
 - PF/SV/track/lepton candidate minium p_T
 - Selection for data-domain adaptation: $Z\mu\mu$, $DY(\mu\tau)$, dijet, tt(e μ)
 - **Caveat:** not all parameters can be override via command line [Link]

Technical implementation

- Standalone compiled C++ via scram (CMSSW) using std::thread for parallel event loop
- Python script to launch skim step on CondorHT CERN batch, a job for all files in a list
- By default I/O on CERN EOS either via XROOTD or local mount-point
- Reduced compression w.r.t. default NanoAOD for faster I/O
- Instructions:

https://gitlab.cern.ch/rgerosa/particlenetstudiesrun2/-/ tree/cmssw 13X new features/ TrainingNtupleMakerAK4?ref type=heads#skimtraining-ntuples

A real-example: jet-tagging with ParT .. step-2

• **Disclaimer:** this setup reflects studies I was doing until 1.5 years ago ... now BTV-JME are working on a single-framework based on **DeepNTuples** for producing the training dataset and **B-hive [Link]** to run the NN trainings

Skimming + preparation of training Ntuples

- Goals:
- Produce a **jet-library** for every sample stored in a ROOT TTree in which every feature of a node (PF/SV/track/lepton) is in a std::vector with length equal to the number of nodes of that type in the jet
- Define truth class and truth kinematics from GEN info
- Skim options:
 - jet selection to be applied
 - PF/SV/track/len
 - Selection for a μ tation: Zµµ, DY(µ τ), dijet, tt(eµ)
 - Caveat: not all **b** ______eters can be override via command line [Link]

08/01/25

A real-example: training framework

- **Training framework** based on a **customised** version of the **weaver-core** package developed by Huilin Qu for ParticleNet
 - Fully based on **python3** and **PyTorch** as machine-learning engine
 - **ROOT** to **awkward** array conversion via **uproot**, then **awkward** to **numpy / torch tensors**
 - Interface to internal operation via **YAML configuration file** \bullet
 - Training and test dataset selection via cut string
 - **Definition** of **new variables** (columns)
 - **Definition** of input **feature transformation** (variable standardisation)
 - Definition of class weights and per-jet sampling weights based on kinematics \bullet
 - **Padding mode** (wrap or zero-padding) and **length** for each input block
 - Definition of **truth labels** (classification labels) and **targets** (regression targets)
 - **NN architecture** and **loss function** are given as external modules

Technical preparation of weaver

- Setup pip-python libraries in a conda environment \rightarrow [Instructions]
- Example of a ParT architecture config and loss definition \rightarrow [YAML config]

Example of a weaver configuration needed to run a classification + regression task \rightarrow [YAML config]

Training NN on HPC via a Kubernetes based interface

Class balance

- It is a physics inspired action depending on the final scope
- Higher class weight to b and c will enhance heavy-flavour tagging w.r.t. quark vs gluon
- Class weight used in weaver to up-sample (w>1) or downsample (w<1) a class of jets</pre>

• **Disclaimer:** most of the time, once the input dataset is built, some choices need to be taken before feeding a NN with tensor-like inputs

Class balance

08/01/25

- It is a physics inspired action depending on the final scope
- Higher class weight to b and c will enhance heavy-flavour tagging w.r.t. quark vs gluon
- Class weight used in weaver to up-sample (w>1) or downsample (w<1) a class of jets</pre>

Jet kinematic sampling

- Jet tagging performance depend on jet p_T, **n**, as well as on the global event configuration
- The way jets are sampled could bias the performance towards a specific phasespace
- A quite **natural strategy** is to **sample uniform** in **p**_T and **η** every class
- This is done by defining a **1D or 2D matrix** of weights binned in (X,Y) observables for every class of jets
- These weights are used in the internal jet sampling strategy not applied in the loss

Disclaimer: most of the time, once the input dataset is built, some choices need to be taken before feeding a NN with tensor-like inputs

Class balance

08/01/25

- It is a physics inspired action depending on the final scope
- Higher class weight to b and c will enhance heavy-flavour tagging w.r.t. quark vs gluon
- Class weight used in weaver to up-sample (w>1) or downsample (w<1) a class of jets</pre>

Jet kinematic sampling

- Jet tagging performance depend on jet p_T, **n**, as well as on the global event configuration
- The way jets are sampled could bias the performance towards a specific phasespace
- A quite **natural strategy** is to **sample uniform** in **p**_T and **n** every class
- This is done by defining a **1D or 2D matrix** of weights binned in (X,Y) observables for every class of jets
- These weights are used in the internal jet sampling strategy not applied in the loss

Training NN on HPC via a Kubernetes based interface

• **Disclaimer:** most of the time, once the input dataset is built, some choices need to be taken before feeding a NN with tensor-like inputs

Technical example

- This is done once for the entire jetlibrary **provided** that the definition of truth labels and sampling binning isn't changed
- **RDF python code** that computes the sampling weights [Link]
- Weights stored in the configuration file, \bullet see for example [YAML config weights]

 \bullet

Class balance

08/01/25

- It is a physics inspired action depending on the final scope
- Higher class weight to b and c will enhance heavy-flavour tagging w.r.t. quark vs gluon
- Class weight used in weaver to up-sample (w>1) or downsample (w<1) a class of jets</pre>

Jet kinematic sampling

- Jet tagging performance depend on jet p_T, **n**, as well as on the global event configuration
- The way jets are sampled could bias the performance towards a specific phasespace
- A quite **natural strategy** is to **sample uniform** in **p**_T and **n** every class
- This is done by defining a **1D or 2D matrix** of weights binned in (X,Y) observables for every class of jets
- These weights are used in the internal jet sampling strategy not applied in the loss

Disclaimer: most of the time, once the input dataset is built, some choices need to be taken before feeding a NN with tensor-like inputs

Feature engineering

- Basic feature standardisation can help in maximising NN performance
- Implementation in weaver: for every input feature in each block one can define a vector of parameters
 - Mean value to shift to 0
 - Variance value to transform to variance 1
 - Clipping values for outliers
- RDF python code that computes standardisation parameters [Link]
- Weights stored in the configuration file, see for example [YAML config weights]

High CPU throughput needed

- Large dataset size O(1TB) that needs to analysed at every epoch \rightarrow *cannot be loaded in memory*
- Iterative PyTorch loader that loads in memory a chunk of every file, converts to torch tensors, apply transformation, defines new columns, and build batches
- The data-loader need to span across different **parallel workers** to keep the pace with the **training loop**

Large RAM needed

- columns, etc

Order of 16 workers needed

08/01/25

Running training: challenges

• Goal: run the training until convergence in order or 4-5 days, a week at maximum for the more complex cases

• Load cyclically a small chunk of each file, pad to a fix dimension, create new

 Instantiate multiple iterative workers for I/ O is more demanding on the memory side • Uncompress files and decided whether to use lower floating point precision

GPU memory and speed

- Mini-batch not ideal cause of larger loss fluctuations and more backward passes
- Larger batches required lot of GPU memory

Parallel on 2 GPUs 24 Gb each or single GPU with 48 Gb

• **Disclaimer:** this is what I was doing up to 1.5 years ago \rightarrow work ongoing to replicate it at Cineca/Leonardo

National research platform (NRP)

- US network of computing centers lead by UCSD [Link]
- Sites are linked together under a common Kubernetes cluster
- GPUs available ~ 1.5k
- Five **CEPH** clusters with S3 access allowing for **O(10)** Pb storage
- Typical machine: O(128) CPUs, O(540) Gb RAM, 5 TB SSD, 8 GPU
- Description of cluster and its use:

https://docs.nationalresearchplatform.org/

• Monitor job / pod resources via Grafana webpages

Solution is to use an HPC facility

Training NN on HPC via a Kubernetes based interface

	CPL	Limits %
		34.8%
		0.00734%
		30.0%
		0%
		Last *
dcd4b7-nhbsp		344 KiB
6000-487xz		93.5 GiB
nt		18.0 GiB
54-4-64-4-baseline-a6ac3f5c-n4pwm		10.3 GiB
34-4-64-4-baseline-e6a1ccd0-kwkxp		10.4 GiB
ent-d8b5f8444-fvgv6		259 MiB
e (Cache)	Memory Usag	ge (Swap)
67.2 GiB		0 B
59.7 MiB		0 В
37.3 GiB		ОВ
4 KiB		ОВ
4110		

4.31%

Running over a Kubernetes cluster

manual job submission / description

Training environment \rightarrow docker image

- **Docker image:** it starts from default centos/RHEL/ ubuntu + cuda images from NVIDIA
- Additional software: git, rsync, krb5, + xrootd (in case I/O with CERN is needed)
- **Conda env** with packages needed by weaver-core
- Docker file [Link]
- Docker image uploaded to gitlab registry of a repository interfaced with the cluster
- Commands needed to create and upload the docker image from a local computer [Link]

• **Disclaimer:** I am old enough to avoid modern solutions like jupyter-notebooks ... thus I still work with python scripts and use

Persistent volume and data transfer from CERN

- Persistent volume of O(2.5) TB on the CEPH cluster [Link]
- Generate CERN kerberos keytab and upload as KUBE secret
- Copy files without pwd in the KUBE job [Link]

Example of training job submission

- weaver-core not included in the docker image: it is pulled from github at job starting \rightarrow allows to update packages
- weaver train.py script takes several input parameters to customise the job
- Training submission command [Link]

Training NN on HPC via a Kubernetes based interface

Running over a Kubernetes cluster: example

• *Kubectl config YAML file* is made by several sections

job name and docker container to pull

apiVersion: batch/v1 kind: Job metadata: name: weaver-job-ak4-transformer-cont-ch spec: template: spec: containers: - name: process image: gitlab-registry.nrp-nautilus.io/rgerosa/particlenetrun2ul/weaver_cuda121_torch212_alma9:latest command: ["/bin/sh","-c"]

node affinity: type of hardware, etc. \rightarrow 48 Gb GPUs

job resources, volumes, shared memory

args section of the config express the commands to be executed

https://gitlab.nrp-nautilus.io/rgerosa/particlenetrun2ul/-/blob/main/ak4_training_latest/ config 1gpu 48gb/weaver-job-ak4-transformer-cont-ch.yaml?ref type=heads#L12-L53

Training NN on HPC via a Kubernetes based interface

Final results: heavy flavour tagging

Training NN on HPC via a Kubernetes based interface

Disclaimer: in the plots shown, performance is not necessarily the best to-date \rightarrow they are meant to provide a glance of the performance

ParT show the capability of being:

- Better than DeepTau on ID ullet
- Better than HPS in decay mode assignment \bullet
- **Recover inefficiencies** in HPS reconstruction \bullet

Final results: hadronic τ_h

Disclaimer: in the plots shown, performance is not necessarily the best to-date \rightarrow they are meant to provide a glance of the performance

Training NN on HPC via a Kubernetes based interface

08/01/25

Final results: jet p_T regression and per-jet resolution

Disclaimer: this was a rather experimental task I was trying ... a kind of promising but not in production .. showing it just for fun

• Implemented without chaining the network layout but by adding a regression term to the loss-function

Final results: improve description with data-domain

- Jet tagging outputs are calibrated in-situ with data using data control regions (CRs)
- Known as **b/c-tagging** efficiency **scale factors** → measured via **iterative simultaneous fit**
- SFs can be significantly different from unity \rightarrow impact on analysis performance

Disclaimer: this was a rather experimental task I was trying ... a kind of promising but not in production .. showing it just for fun

Final results: improve description with data-domain

Disclaimer: this was a rather experimental task I was trying ... a kind of promising but not in production .. showing it just for fun

Final results: improve description with data-domain

Disclaimer: this was a rather experimental task I was trying ... a kind of promising but not in production .. showing it just for fun

- Availability of high performance analysis facilities will be crucial for the development of our field towards HL-LHC and FCC • Today I focused on a single use case about data-preparation, ML training, and inference for jet-tagging
- Execution of the task from A to Z without R&D requires:
 - O(5) days for dataset preparation starting from MiniAOD
 - O(1) week for training + testing on NRP
 - O(5) days for validation in data from MiniAOD
- With improved workflows for high rate data preparation and a validation, as well as improved pipelines and hardware for ML, *a large speedup and a more efficiency use of resources is certainly possible*
- This will immensely help CMS POGs that are short in person-power, dedicated analysis facilities and connected resources
- If some of you is interest in helping to test and automatise a procedure to run such kind of task with INFN resource contact me!

backup slides

- **Clustering** is an **unsupervised task** as we don't know what the result will be before running it
- **Clustering** aggregates **particles** via a logic based on a **distance (metric)** between particles or their clusters
- **Clustering** is **an-iterative procedure** that produces \bullet recombinations until a condition in satisfied
- Jets serve two purposes: (a) observables that one can predict and measure, (b) **tools** to extract properties of a final state \rightarrow constraints are **infrared** and **ultra-violet safety**
- The **anti-k_T jet clustering** takes just one parameter called R distance that defines nearest neighbours of each particle

$$d_{ij} = min(\frac{1}{p_{T,i}^2}, \frac{1}{p_{T,j}^2}) \times \Delta R^2/R^2$$

Ingredients prior to jet-tagging

Training NN on HPC via a Kubernetes based interface

- **Clustering** is an **unsupervised task** as we don't know what the result will be before running it
- **Clustering** aggregates **particles** via a logic based on a ulletdistance (metric) between particles or their cluster
- Clustering is an-iterative procedure the \bullet recombinations until a condition
- But we need input particles to cluster Jets serve two \bullet predict and aints are infrared and ultra-violet safety fir
- The **anti-k_T jet clustering** takes just one parameter called R ulletdistance that defines nearest neighbours of each particle

$$d_{ij} = min(\frac{1}{p_{T,i}^2}, \frac{1}{p_{T,j}^2}) \times \Delta R^2/R^2$$

Ingredients prior to jet-tagging

Training NN on HPC via a Kubernetes based interface

- **Clustering** is an **unsupervised task** as we don't know what the result will be before running it
- **Clustering** aggregates **particles** via a logic based on a lacksquaredistance (metric) between particles or their cluster
- Clustering is an-iterative procedure the \bullet recombinations until a condition
- But we need input particles to cluster سر Jets serve two \bullet predict aints are infrared and ultra-violet safety
- The **anti-k_T jet clustering** takes just one parameter called R \bullet distance that defines nearest neighbours of each particle

$$d_{ij} = min(\frac{1}{p_{T,i}^2}, \frac{1}{p_{T,j}^2}) \times \Delta R^2/R^2$$

Particle-flow reconstruction

- Particle-flow (PF) provides an improved event description by correlating single detector measurements
- PF-candidates in offline reconstruction:
 - Leptons (muons and electrons) and photons
 - Charged hadrons: everything interpreted as pion (π^{\pm})
 - Neutral hadrons (neutrons, KL⁰)
- Useful info outside PF-candidate collection:
 - Tracks not linked to any PF-object \rightarrow lost tracks
 - V₀ candidates: K_s and lambdas

- **Clustering** is an **unsupervised task** as we don't know what the result will be before running it
- **Clustering** aggregates **particles** via a logic based on a lacksquaredistance (metric) between particles or their cluster
- Clustering is an-iterative procedure the \bullet recombinations until a condition
- But we need input particles to cluster Jets serve two pu lacksquarepredict aints are infrared and ultra-violet safety
- The **anti-k_T jet clustering** takes just one parameter called R \bullet distance that defines nearest neighbours of each particle

$$d_{ij} = min(\frac{1}{p_{T,i}^2}, \frac{1}{p_{T,j}^2}) \times \Delta R^2/R^2$$

Particle-flow reconstruction

- Particle-flow (PF) provides an improved event description by correlating single detector measurements
- PF-candidates in offline reconstruction:
- please forget about NanoAODS ... You please forget about NanoAODS ... You riedse ivise level inputs in MiniAODS need lower level maar Useful المعنى

