
PocketCoffea
declarative analysis in PyHEP

Davide Valsecchi (ETH Zurich),
Tommaso Tedeschi (INFN Perugia)

INFN Quasi-Interactive Analysis Workshop

09/01/2025

Default CMS
parameters

Predefined
functions

PocketCoffea: declarative analysis with Coffea

2

Base
PocketCoffea

processor

Custom
weights

Custom
functions

Custom user
processor

Parameters

Configuration Datasets

Outputs:
histograms,

columns

Datacards

a single “run”

Weights,
variations

Cut
functions

phasespace
definition

Plots

code PocketCoffea
Analysis

A customizable CMS analysis workflow

3

PocketCoffea implements a Coffea processor containing all the
standard steps of a CMS templated analysis:

○ skimming
○ object preselection and calibration
○ Event preselections
○ Categorization
○ Histogramming
○ Ntuples export

→ Fully configurable from a python dictionary → see next slide

Custom workflow implemented as derived processor class with
predefinite entry points

○ Custom event cleaning
○ Custom object selection
○ Custom variables
○ Custom weights computation

For these customizations, the user needs to expand the Base
processor code and/or the libraries containing the parameters
and cut functions

Skim

Object
cleaning

Event
preselection

Categorization

Histogramming
/ columns

do_after_skim()

do_before_skim()

do_add_variables()

customize_histo()

https://github.com/PocketCoffea/PocketCoffea/blob/main/pocket_coffea/workflows/base.py

Analysis metadata

4

Analysis
metadata

Parameters Configuration

“Phasespace” definition:

- triggers, lumi, event flags
- objects working point,

calibration version, scale factors

Once well defined and tested it can be
shared between groups to have a
common ground.

Analysis “run” definition:

- list of datasets
- categories, weights, variations
- output: histograms and columns

An analysis lives in a set of configuration
which needs to be run in a certain order
(workflow management tools!)

Handled with composable yaml files Python configuration: Configurator object

5

keep track of all the parameters in a single config file

○ Define all the relevant parameters for running:

→ input dataset to process

→ workflow and output folder

→ executor parameters

○ Define cutflow by defining cut functions dynamically

→ skimming, preselections and categorization

○ Define weights to apply by category / by sample

○ Define variations to store by category / by sample

○ List histograms to be produced and parameters:

→ customize binning, labels, etc.

○ Additional analysis-specific parameters can be also defined

Working now to generalize the parameters in the framework to make it
fully analysis independent.

Configuration cuts

histograms

input
dataset

Categorization

6

○ Skimming, preselection, categorization is
handled by Cut objects:

→ Function that can be parametrized and
reused.

○ All the steps are configured from the python cfg
file.

○ Implemented different flavour of categorization
→ Standard
→ “Cartesian” combination of binnings (for

differential analysis)

○ Supporting both 1D and 2D masks:
→ we can analyze the “jet” collection

instead of working event-by-event

Histogram configuration

7

Histograms are assembled in the
configuration and filled automatically

- Special axis attributes are used to
defined what to use for filling:

- coll: collection “Electron”
- field: “pT”
- pos: 0 (index of the object in the

collection, if None, accumulate all
objects)

Filling custom histograms all the time
without changing the processor code

Useful defaults and factory
methods are also provided

Arrays export

8

Collections from the NanoAOD can be
exported to parquet

- done with a very similar code as in
HiggsDNA

- Configured from the configuration
file: by sample, category

Planned improvements on the arrays
export:

- Export systematic variations (trivial
feature to add)

- Export only “changed” columns for
systematic variations

Useful defaults and factory
methods are also provided

Parameters

9

docs,
code

The idea is to have some CMS defaults ready for the users and then add additional files or modify the existing
one:

- Completely free schema (keeping a meaningful structure for default objects)

- Easy to build on top of another configuration

- Each analysis run saves its own parameters set for reuse

- Composable: many groups can share a set of common files without copy and paste errors

- Add parameters programmatically: e.g. by an workflow stop

https://pocketcoffea.readthedocs.io/en/latest/parameters.html
https://github.com/PocketCoffea/PocketCoffea/blob/main/pocket_coffea/parameters/defaults.py

Defaults
The defaults contain configs for UL Run2: live in
pocket_coffea.parameters

- lumi and pileup
- Event flags
- Jet calibrations: different versions

(with or w/o JER, with or w/o uncertainties)
- Jet scale factors
- Lepton scale factors

They do not include:

- trigger configuration
- objects preselections

These must be defined by each analysis
(zmumu example)

10

https://github.com/PocketCoffea/PocketCoffea/blob/main/pocket_coffea/parameters
https://github.com/PocketCoffea/PocketCoffea/blob/main/pocket_coffea/parameters/lumi.yaml
https://github.com/PocketCoffea/PocketCoffea/blob/main/pocket_coffea/parameters/pileup.yaml
https://github.com/PocketCoffea/PocketCoffea/blob/main/pocket_coffea/parameters/event_flags.yaml
https://github.com/PocketCoffea/PocketCoffea/blob/main/pocket_coffea/parameters/jets_calibration.yaml
https://github.com/PocketCoffea/PocketCoffea/blob/main/pocket_coffea/parameters/jet_scale_factors.yaml
https://github.com/PocketCoffea/PocketCoffea/blob/main/pocket_coffea/parameters/lepton_scale_factors.yaml
https://github.com/PocketCoffea/AnalysisConfigs/blob/main/configs/zmumu/params/triggers.yaml

Analysis example During the CAT hackathon we prepared a very simple example on Z→ μμ .

Demonstrate how to define an analysis in a independent repository.

11

datasets definition

Custom parameters

custom functions

configuration

user processor

Analysis output

- Full dump of the parameters

- Human-readable dump of the
configuration files in json

- Pickled Configurator object for easy
rerunning

- output parquet file

https://github.com/PocketCoffea/AnalysisConfigs/tree/main/configs/zmumu

Reproducibility

12

To be able to reproduce the analysis for a given
configuration:

➔ a pickled version of the configurator object is stored
in the output folder

➔ the config.pkl can be loaded by the processor to run
the analysis with the exact same parameters

Human readable configuration dump

→ a json version of the analysis config is also saved
→ the file contains all metadata also about used

functions
→ one can check all the analysis steps without looking

at the code.

Datasets handling

13

The full list of files for each sample is needed as input of coffea.

build_dataset.py dataset input jsondataset definition json

Full docs: https://pocketcoffea.readthedocs.io/en/latest/examples.html#dataset-creation

handling in a compact way multiple years,
multiple samples

https://pocketcoffea.readthedocs.io/en/latest/examples.html#dataset-creation

Workflow orchestration with Law
Law is a workflow management system to define and run complex analyses. PocketCoffea is
used to configure and run single analysis step.

Now available: law tasks for PocketCoffea analysis steps

- alternative way of running your PocketCoffea configurations, chaining them for automation
and clear dependencies

- Example: extract templates → compute SF → rerun templates → plot validations

Thanks to Felix Zinn for introducing this feature in 0.9.5!
14

CreateDataset Run Plot

Your custom
operation

Analysis Facilities integration
Thanks to Dask, PocketCoffea can be scaled
in many analysis facilities,

Supported analysis facilities:

- Purdue
- INFN AF
- Coffea casa
- Swan @ CERN

There will be a talk this afternoon with an
example on the CMS INFN analysis facility

15

PocketCoffea
@INFN AF
Produced a specific
executor:

Takes care of
uploading
(asynchronously)
proxyfile to the
nodes and setting
the environment
properly

16

PocketCoffea
@INFN AF
Produced a specific
executor:

Takes care of
uploading
(asynchronously)
proxyfile to the
nodes and setting
the environment
properly

17

PocketCoffea
@INFN AF
Produced a specific
executor:

Takes care of
uploading
(asynchronously)
proxyfile to the
nodes and setting
the environment
properly

18

PocketCoffea’s Z->μμ

19

19

First tests with a Coffea-based analysis:

● 2018 Z->μμ using PocketCoffea
configuration layer:
○ object preselections, skim, event

selection, computation of basic scale
factors with their variations and
histogramming

● Dataset:
○ Data + DY: 1.2 TB

■ 1.2 bln events
■ stored at Legnaro
■ chunksize 4mln

Benchmark run on the same 96 CPUs at
Legnaro production tier2 site as RDF’s
benchmark

19

With chunksize 4mln,
user CPU usage at
80/90% and network
read throughput at
400/500 MB/s:

● we are efficiently
using the CPU,
throughput is
smaller wrt
RDF’s benchmark
due to the
different
workload

https://github.com/PocketCoffea/AnalysisConfigs/tree/main/configs/zmumu

PocketCoffea’s 2018 TTBar flow

20

3 different benchmarks (run on the same 96 CPUs at Legnaro production tier2 site
as RDF’s benchmark) of increasing complexity:

Dataset: 2018 UL NanoAOD TTBar ~1TB, 476mln events, stored at Legnaro

Chunksize: 1mln

Small: objects and event preselection, scale factors with just 1 variation, no
subsamples, 2 categories, 1 variation, 5 histograms

Medium: objects and event preselections, scale factors and their 7 variations, 3
subsamples, 4 categories, 5 histograms

Large: objects and event preselections, scale factors and their 7 variations, 3
subsamples, 14 categories, 5 histograms

CPU usage at 90%, throughput between 250-500 MB/s: the larger the workload,
smaller reading throughput

20

small medium
large

MB/s

Demo!

hub: https://cms-it-hub.cloud.cnaf.infn.it/

image: ghcr.io/comp-dev-cms-ita/jupyterlab:AF20-alma9-v0.0.10-rc9

code: https://github.com/ttedeschi/workshop2025_demo/tree/main/PocketCoffea

21

https://cms-it-hub.cloud.cnaf.infn.it/
https://github.com/ttedeschi/workshop2025_demo/tree/main/PocketCoffea

