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Outlook

▶ The ROOT project
▶ Current activities
▶ Focus on analysis
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About me
Vincenzo Eduardo Padulano

▶ PhD in Computer Science, Universitat 
Politècnica de València

▶ Staff Computing Engineer, CERN, 
EP-SFT

▶ Working in the ROOT team since 2019
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The ROOT software project

▶ Open-source software framework
● Storage, data analysis, processing, visualization 

of big structured datasets

▶ Widely adopted in High Energy Physics                   
and in other scientific and industrial fields
● Fits and parameters estimations for discoveries 

(e.g. the Higgs)
● Thousands of ROOT plots in scientific 

publications
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https://root.cern

https://root.cern


The ROOT team
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● ROOT is an international 
collaboration

● Steady contributions 
coming from the 
community, and 
institutional responsibilities.

https://root.cern/about/team/

https://root.cern/about/team/


The need for strategic thinking
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Long-term support model

7Plot inspired by M. Mazurek

https://indico.cern.ch/event/1327487/


Highlights of current activities



Requirements and challenges of HENP datasets
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1. Natural HENP data layout is 
jagged arrays of complex types with columnar access pattern

○ HDF5 does not fit well due to its inherent tensor layout
○ Otherwise only found in Big Data (but with limited type support)

2. HENP data organization: global federation of file sets
○ Requires XRootD and HTTP remote data access
○ Extra functionality to build data sets from files: 

fast merging, chains, joins

3. Integration in the HENP software landscape
○ Rich type system of experiment central EDMs with 10k+ columns
○ Multi-threaded reading and writing under tight memory constraints
○ Availability in the Python & C++ analysis ecosystem

4. >10 EB of data to be stored over decades
○ Requires excellent compression (lossy and lossless)
○ Data custodianship over time: 

backward & forward compatibility, schema evolution, bit-level 
checksumming

Dataset schema is the set of 
user-defined (C++) classes

https://indico.cern.ch/event/1338689/contributions/6016196/


RNTuple: next-generation data format

▶ A new data format, based on 25+ yrs of experience with the established 
TTree data format, with a modern and efficient implementation:
● Smaller files (typically 10% - 50%), higher throughput (often by factors)

● More robust: binary format specification, modern API, fully checksummed

● Efficient support of modern storage systems: NVMe, object stores, async & 
parallel I/O

● Forward-looking limits: designed for TB-sized events and PB-sized files

▶ Feature-rich: works with complex experiment EDMs and with 
experiment frameworks

▶ Supported at HL-LHC timescale (2030-2040+)
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Rich type system support
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Type Class Types EDM Coverage RNTuple Status

PoD
bool, char, std::byte, (u)int[8,16,32,64]_t, 
float, double

Flat n-tuple

Reduced 
AOD

Full AOD / 
ESD / RECO

Available

Records Manually built structs of PoDs

(Nested) vectors
std::vector, RVec, std::array,
C-style fixed-size arrays

Available

String std::string Available

User-defined classes Non-cyclic classes with dictionaries Available

User-defined enums Scoped / unscoped enums with dictionaries Available

User-defined collections Non-associative collection proxy Available

stdlib types
std::pair, std::tuple, std::bitset, 
std::(unordered_)(multi)set, 
std::(unordered_)(multi)map

Available

Alternating types
std::variant, std::unique_ptr,
std::optional

Available

Streamer I/O All ROOT streamable objects (stored as byte array) Available

Low-precision
floating points

Double32_t, f16

Optimization benefitting all EDMs
Available

Custom precision / range
(bfloat16, TensorFloat-32, other AI formats)

Available



Rich type system support
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Limit of HDF5 and Big Data formats (e.g., Parquet)



RNTuple space savings
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Contributors to space savings
● More compact on-disk representation of 

collections and booleans (trigger bits)
● Same page merging
● Type-based data encoding optimized for 

better compression ratio

Example: ATLAS DAOD
RNTuple in ATLAS [1] [2] [3]

Note that due to data preconditioning in 
RNTuple, the relative difference between 
compression algorithms fades.

More performance studies
● CMS
● LHCb
● Comparison with HDF5 & Parquet (ACAT 21)

M. Foll

https://indico.cern.ch/event/1338689/contributions/6010806/
https://indico.cern.ch/event/1338689/contributions/6010811/
https://indico.cern.ch/event/1338689/contributions/6010824/
https://indico.cern.ch/event/1338689/contributions/6010800/
https://indico.cern.ch/event/1338689/contributions/6010401/
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012118


RNTuple throughput studies
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Contributors to higher throughput
● Asynchronous prefetching
● Multi-stream disk access through 

io_uring
● Code optimization
● New on-disk layout allows for higher 

degree of explicit and implicit 
parallelization

● New analysis I/O scheduler

Better IMT 
scalability CMS

Parallel & Direct I/O writing

Higher analysis 
throughput across 
various final-stage 
ntuple types and 
data access modes.

https://indico.cern.ch/event/1338689/contributions/6010800/
https://indico.cern.ch/event/1338689/contributions/6010800/
https://indico.cern.ch/event/1338689/contributions/6010002/


Large scale data analysis with RNTuple
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With a 100x inflated AGC200 
dataset we observe that as 
the number of client nodes 
increases, the initialization 
time gets close the 
processing time, resulting in 
a breakdown of scalability.

Single Analysis 
extremely sparse 

reaches avg. INGRES
222 GBit/s 

during processing

345 GBit/s 

AGC analysis, 100x inflated dataset, 32-core nodes, 2240 cores max

RNTuple CHEP'24 
Plenary

https://github.com/root-project/analysis-grand-challenge
https://indico.cern.ch/event/1338689/contributions/6077632/
https://indico.cern.ch/event/1338689/contributions/6077632/


Likelihood building and evaluation
RooFit: C++ library for statistical data analysis in ROOT

▶ Provides tools for model building, fitting and 
statistical tests

● Sophisticated binned models with many 
nuisance parameters but few data entries

● Unbinned fits of analytic shapes to huge 
datasets

▶ Recent development focused on:

● Performance boost (preparing for larger 
datasets of HL-LHC)

● More user friendly interfaces and high-level 
tools
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RooFit performance
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▶ Default CPU backend leverages vectorization
(4.4x speedup on average, see plot on the left)

▶ The GPU backend can drastically speed up fits on large unbinned datasets 
▶ See this PyHEP 2023 presentation for more benchmarks

● also compared to zfit and pyhf

CPU and GPU speedup compared to legacy backend

https://indico.cern.ch/event/1252095/contributions/5593550/


Automatic Differentiation in RooFit

▶ RooFit is a framework to build 
computation graphs for function 
minimization, similar to ML 
frameworks such as TensorFlow or 
PyTorch

▶ Recently, a new RooFit backend was 
added which leverages an automatic 
differentiation engine, based on the 
clad technology

▶ Result: evaluating analytic likelihood 
gradients without compromises

18Rembser et al. ICHEP’24

https://clad.readthedocs.io/en/stable/
https://indico.cern.ch/event/1291157/contributions/5889615/


RooFit + Clad

19Rembser et al. ICHEP’24

https://indico.cern.ch/event/1291157/contributions/5889615/


Python interface
The quality of the ROOT experience for Python users 
is a priority
▶ Update to the latest version of cppyy, ROOT's C++-Py 

'interoperability engine'
▶ Provide a demo infrastructure to pip install ROOT
▶ Improve the usage of several classes from Python through 

"pythonisations"
▶ Teach ROOT through its Python interface, especially for beginners 

courses

More actions are planned for the future, e.g.:

▶ Revisit Python tutorials and code examples
▶ Improve and extend the Python interface through pythonisations
▶ Steadily publish ROOT releases on conda
▶ Evolve pip install ROOT to Beta mode during 2025 (e.g. automatic 

publication of wheels, multiple wheels…)
20

https://cppyy.readthedocs.io/en/latest/
https://indico.cern.ch/event/1338689/contributions/6010410/


Seeing it in action
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pip install ROOT -i https://root-experimental-python-wheels.web.cern.ch



Bridging Python and C++
ROOT provides a C++ interpreter, cling

▶ Based on LLVM’s clang compiler, now available upstream as clang-repl
▶ But cling still builds on top of clang-repl, the goal is to simplify this 

infrastructure
▶ e.g. through CppInterOp, that exposes APIs from Clang and LLVM in a 

backward compatible way

Stay even more up-to-date with LLVM versions

▶ ROOT 6.34 (November 2024) is based on LLVM 18.1 (March 2024)
▶ Exploit new features, e.g. performance, C++ standards
▶ Upstream Cling features to the LLVM repo with clang-repl

Continue research on C++ compilers and language interoperability
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https://clang.llvm.org/
https://clang.llvm.org/docs/ClangRepl.html
https://github.com/compiler-research/CppInterOp
https://compiler-research.org/


Native ROOT data loading for ML
Provide a native data loading abstraction to pipe ROOT data 

(TTree, RNTuple) into ML training workflows (e.g. PyTorch, TF)
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ROOT
Dataset Chunk

Chunk

Chunk
Chunking Batching

Shuffling



Native ROOT data loading for ML
Provide a native data loading abstraction to pipe ROOT data 

(TTree, RNTuple) into ML training workflows (e.g. PyTorch, TF)

24

▶ Asynchronous loading (C++ thread)

▶ Supports scalar inputs as well as collections

▶ Native ROOT I/O: can read any HEP EDM, local or remote files

▶ No need for pre-conversion step to other data formats thus no duplication

▶ Integrated with RDataFrame for batch preprocessing

See CHEP’24 presentation

https://indico.cern.ch/event/1338689/contributions/6015940/


Native ROOT data loading for ML
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# Returns two generators that return training

# and validation batches as PyTorch tensors.

gen_train, gen_validation = 

ROOT.TMVA.Experimental.CreatePyTorchGenerators(

rdataframe, batch_size, chunk_size,

columns=features+labels, target=labels,

max_vec_sizes=100, validation_split=0.3,

)

# [...] Create PyTorch model

for x_train, y_train in gen_train:

    # Make prediction and calculate loss

    pred = model(x_train)

    loss = loss_fn(pred, y_train)



Data analysis with ROOT



Data analysis with ROOT
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ML inference

Condor
SSH

K8s

Slurm
Dask

▶ RDataFrame: entry point to modern 
ROOT data analysis

▶ HIgh-level interface

▶ Native parallel execution
● Single node (MT), multi node



RDataFrame analysis interface
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px py pz eta my_px

Range
Filter

Define

ROOT
(e.g. NanoAOD)

CSV
Apache Arrow
ATLAS’ xAOD

Numpy Arrays

histograms, profiles

data reductions 
(mean, sum,..)

new ROOT files

any user-defined 
operation

cut-flow reports

Datasource

[1,2,3]

[4,5,6]

[7,8,9]

# enable multi-threading

ROOT.EnableImplicitMT()

df = ROOT.RDataFrame(dataset)

[2,3]

[4,6]

df = df.Range(2)

           .Define(“my_px”, “px[eta > 0]”)

# filled in a single pass

h1 = df.Histo1D(“my_px”, “w”)

h2 = df.Histo1D(“px”, “w”)



RDataFrame + HPC centers
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Jülich HPC
● Collaboration with OpenLab
● Slurm jobs (via Dask)
● Presentation

CERN HPC
● Slurm jobs (Spark/Dask)
● ~100 GB/s on 2048 cores
● JGC publication

https://indico.cern.ch/event/1309692/#8-benchmarking-distributed-ana
https://doi.org/10.1007/s10723-023-09645-2


RDataFrame  + INFN analysis facility

▶ CMS production 
analysis

▶ Before: Python 
for-loop with 
NanoAODtools, 
manual job 
submission

▶ After: Interactive 
distributed 
RDataFrame

▶ O(10) speedup

▶ T. Tedeschi et al.
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Legacy Distributed RDF

https://github.com/cms-nanoAOD/nanoAOD-tools
https://doi.org/10.1016/j.cpc.2023.108965


RDataFrame + Analysis Grand Challenge
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RDF+AGC on CERN HPC

● Demonstrated scalability
● ~50 seconds for the 

whole analysis on 256 
cores

● CHEP’23 presentation

New! AGC on SWAN, scheduling with Dask on CERN Condor pools!
Rediscovering existing infrastructures and services in a modern way

cvmfs + EOS + CERN batch + ROOT ≟ CERN AF

https://indico.jlab.org/event/459/contributions/11582/
https://cernvm.cern.ch/fs/
https://eos-web.web.cern.ch/eos-web/
https://batchdocs.web.cern.ch/
https://root.cern/


RDataFrame + RNTuple

▶ Bulk, asynchronous I/O and bulk 
processing
● Hide network latency
● Enable SIMD on CPU, GPU 

offloading
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Moving to RNTuple with RDF: zero code changes
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Dimuon analysis tutorial

https://root.cern/doc/master/df102__NanoAODDimuonAnalysis_8py.html


Moving to RNTuple with RDF: zero code changes
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Dimuon analysis tutorial

https://root.cern/doc/master/df102__NanoAODDimuonAnalysis_8py.html


Outreach



An Open approach to boost collaboration

▶ Open-source and Open-development
● On GitHub, LGPL 2.1
● PR based model with public review process
● Very visible authorship of contributions

▶ Open-planning: https://cern.ch/root-pow
▶ Yearly plan of work (PoW) formed 

internally, then discussed with users
▶ You can influence the PoW, with your 

input, active engagement and 
contributions!

▶ Formal reporting process engaging 
experiments

36

https://github.com/root-project/root
https://cern.ch/root-pow
https://indico.cern.ch/event/1459548/
https://indico.cern.ch/category/11833/
https://indico.cern.ch/category/11833/
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SFT Plans of Work Meeting
22.01.2025

https://github.com/root-project/root
https://cern.ch/root-pow
https://indico.cern.ch/event/1459548/
https://indico.cern.ch/category/11833/
https://indico.cern.ch/category/11833/
https://indico.cern.ch/event/1459548/
https://indico.cern.ch/event/1459548/


Scaling up the ROOT training
▶ CERN Summer Student Course ~200 

participants, ~5 per year
▶ With IRIS-HEP and HSF: Python for analysis 

course ~90 participants, ~3 per year
▶ Based exclusively on ROOT's Python interface 

and notebooks
▶ Besides the value of the trainings themselves:

● Surveys: feedback received now incorporated 
in the material

● Several ROOT devs involved: we trained to 
train!
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HSF training centre

ROOT training video

The ROOT team is available to give trainings and 
help train the trainers

https://hsf-training.org/training-center/
https://videos.cern.ch/record/2300516


ROOT Hackathons

▶ New in 2024!
▶ An event born for ROOT core devs, open to 

everybody
▶ A welcoming, positive and inclusive atmosphere
▶ 1st Hackathon in February 2024

● Nickname “Fixathon”, aim at fixing various github issues
▶ 2nd Hackathon 25-27 November 2024

● Topic: Python, Docs, Tutorials
▶ In presence only, very informal

● Currently cannot provide sponsorships for attendance
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https://indico.cern.ch/event/1367877/
https://indico.cern.ch/event/1463778/


ROOT Users Workshop 2025
▶ A welcoming, positive and inclusive atmosphere
▶ An opportunity to shape together the future of ROOT!
▶ A venue for ROOT users, world-class experts of scientific computing 

and the ROOT core team to exchange ideas and learn from each 
other

▶ A rich program of presentations, tutorials, and most importantly, 
discussions

40

In Europe
17-21 November 2025

Save the date!



Conclusions



Conclusions

▶ The ROOT core team is here to support you, listen to 
your needs and make your data processing and analysis 
a success!
● All sustained by a long-term support model, and a rich 

result-oriented R&D program
▶ Open approach: open-source, open-development, 

open-planning
● For ROOT, collaborations and contributions are essential and 

highly valued!
▶ Forward-looking: a core set of modern features to 

support HL-LHC and future colliders
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Useful links

▶ ROOT web page: root.cern
▶ ROOT GitHub: github.com/root-project/root
▶ Careers at CERN: https://careers.cern/
▶ Email: vincenzo.eduardo.padulano@cern.ch
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https://root.cern
https://github.com/root-project/root
https://careers.cern/
mailto:vincenzo.eduardo.padulano@cern.ch

