
ROOT
modern HEP data analysis

Vincenzo Eduardo Padulano (CERN, EP-SFT)
for the ROOT team

Workshop on "Quasi-Interactive Analysis of Big Data with High Throughput"
Bologna, Italy, 08.01.2025

Outlook

▶ The ROOT project
▶ Current activities
▶ Focus on analysis

2

About me
Vincenzo Eduardo Padulano

▶ PhD in Computer Science, Universitat
Politècnica de València

▶ Staff Computing Engineer, CERN,
EP-SFT

▶ Working in the ROOT team since 2019

3

The ROOT software project

▶ Open-source software framework
● Storage, data analysis, processing, visualization

of big structured datasets

▶ Widely adopted in High Energy Physics
and in other scientific and industrial fields
● Fits and parameters estimations for discoveries

(e.g. the Higgs)
● Thousands of ROOT plots in scientific

publications

4

https://root.cern

https://root.cern

The ROOT team

5

● ROOT is an international
collaboration

● Steady contributions
coming from the
community, and
institutional responsibilities.

https://root.cern/about/team/

https://root.cern/about/team/

The need for strategic thinking

6

Long-term support model

7Plot inspired by M. Mazurek

https://indico.cern.ch/event/1327487/

Highlights of current activities

Requirements and challenges of HENP datasets

9

1. Natural HENP data layout is
jagged arrays of complex types with columnar access pattern

○ HDF5 does not fit well due to its inherent tensor layout
○ Otherwise only found in Big Data (but with limited type support)

2. HENP data organization: global federation of file sets
○ Requires XRootD and HTTP remote data access
○ Extra functionality to build data sets from files:

fast merging, chains, joins

3. Integration in the HENP software landscape
○ Rich type system of experiment central EDMs with 10k+ columns
○ Multi-threaded reading and writing under tight memory constraints
○ Availability in the Python & C++ analysis ecosystem

4. >10 EB of data to be stored over decades
○ Requires excellent compression (lossy and lossless)
○ Data custodianship over time:

backward & forward compatibility, schema evolution, bit-level
checksumming

Dataset schema is the set of
user-defined (C++) classes

https://indico.cern.ch/event/1338689/contributions/6016196/

RNTuple: next-generation data format

▶ A new data format, based on 25+ yrs of experience with the established
TTree data format, with a modern and efficient implementation:
● Smaller files (typically 10% - 50%), higher throughput (often by factors)

● More robust: binary format specification, modern API, fully checksummed

● Efficient support of modern storage systems: NVMe, object stores, async &
parallel I/O

● Forward-looking limits: designed for TB-sized events and PB-sized files

▶ Feature-rich: works with complex experiment EDMs and with
experiment frameworks

▶ Supported at HL-LHC timescale (2030-2040+)

10

Rich type system support

11

Type Class Types EDM Coverage RNTuple Status

PoD
bool, char, std::byte, (u)int[8,16,32,64]_t,
float, double

Flat n-tuple

Reduced
AOD

Full AOD /
ESD / RECO

Available

Records Manually built structs of PoDs

(Nested) vectors
std::vector, RVec, std::array,
C-style fixed-size arrays

Available

String std::string Available

User-defined classes Non-cyclic classes with dictionaries Available

User-defined enums Scoped / unscoped enums with dictionaries Available

User-defined collections Non-associative collection proxy Available

stdlib types
std::pair, std::tuple, std::bitset,
std::(unordered_)(multi)set,
std::(unordered_)(multi)map

Available

Alternating types
std::variant, std::unique_ptr,
std::optional

Available

Streamer I/O All ROOT streamable objects (stored as byte array) Available

Low-precision
floating points

Double32_t, f16

Optimization benefitting all EDMs
Available

Custom precision / range
(bfloat16, TensorFloat-32, other AI formats)

Available

Rich type system support

12

Type Class Types EDM Coverage RNTuple Status

PoD
bool, char, std::byte, (u)int[8,16,32,64]_t,
float, double

Flat n-tuple

Reduced
AOD

Full AOD /
ESD / RECO

Available

Records Manually built structs of PoDs

(Nested) vectors
std::vector, RVec, std::array,
C-style fixed-size arrays

Available

String std::string Available

User-defined classes Non-cyclic classes with dictionaries Available

User-defined enums Scoped / unscoped enums with dictionaries Available

User-defined collections Non-associative collection proxy Available

stdlib types
std::pair, std::tuple, std::bitset,
std::(unordered_)(multi)set,
std::(unordered_)(multi)map

Available

Alternating types
std::variant, std::unique_ptr,
std::optional

Available

Streamer I/O All ROOT streamable objects (stored as byte array) Available

Low-precision
floating points

Double32_t, f16

Optimization benefitting all EDMs
Available

Custom precision / range
(bfloat16, TensorFloat-32, other AI formats)

Available

Limit of HDF5 and Big Data formats (e.g., Parquet)

RNTuple space savings

13

Contributors to space savings
● More compact on-disk representation of

collections and booleans (trigger bits)
● Same page merging
● Type-based data encoding optimized for

better compression ratio

Example: ATLAS DAOD
RNTuple in ATLAS [1] [2] [3]

Note that due to data preconditioning in
RNTuple, the relative difference between
compression algorithms fades.

More performance studies
● CMS
● LHCb
● Comparison with HDF5 & Parquet (ACAT 21)

M. Foll

https://indico.cern.ch/event/1338689/contributions/6010806/
https://indico.cern.ch/event/1338689/contributions/6010811/
https://indico.cern.ch/event/1338689/contributions/6010824/
https://indico.cern.ch/event/1338689/contributions/6010800/
https://indico.cern.ch/event/1338689/contributions/6010401/
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012118

RNTuple throughput studies

14

Contributors to higher throughput
● Asynchronous prefetching
● Multi-stream disk access through

io_uring
● Code optimization
● New on-disk layout allows for higher

degree of explicit and implicit
parallelization

● New analysis I/O scheduler

Better IMT
scalability CMS

Parallel & Direct I/O writing

Higher analysis
throughput across
various final-stage
ntuple types and
data access modes.

https://indico.cern.ch/event/1338689/contributions/6010800/
https://indico.cern.ch/event/1338689/contributions/6010800/
https://indico.cern.ch/event/1338689/contributions/6010002/

Large scale data analysis with RNTuple

15

With a 100x inflated AGC200
dataset we observe that as
the number of client nodes
increases, the initialization
time gets close the
processing time, resulting in
a breakdown of scalability.

Single Analysis
extremely sparse

reaches avg. INGRES
222 GBit/s

during processing

345 GBit/s

AGC analysis, 100x inflated dataset, 32-core nodes, 2240 cores max

RNTuple CHEP'24
Plenary

https://github.com/root-project/analysis-grand-challenge
https://indico.cern.ch/event/1338689/contributions/6077632/
https://indico.cern.ch/event/1338689/contributions/6077632/

Likelihood building and evaluation
RooFit: C++ library for statistical data analysis in ROOT

▶ Provides tools for model building, fitting and
statistical tests

● Sophisticated binned models with many
nuisance parameters but few data entries

● Unbinned fits of analytic shapes to huge
datasets

▶ Recent development focused on:

● Performance boost (preparing for larger
datasets of HL-LHC)

● More user friendly interfaces and high-level
tools

16

RooFit performance

17

▶ Default CPU backend leverages vectorization
(4.4x speedup on average, see plot on the left)

▶ The GPU backend can drastically speed up fits on large unbinned datasets
▶ See this PyHEP 2023 presentation for more benchmarks

● also compared to zfit and pyhf

CPU and GPU speedup compared to legacy backend

https://indico.cern.ch/event/1252095/contributions/5593550/

Automatic Differentiation in RooFit

▶ RooFit is a framework to build
computation graphs for function
minimization, similar to ML
frameworks such as TensorFlow or
PyTorch

▶ Recently, a new RooFit backend was
added which leverages an automatic
differentiation engine, based on the
clad technology

▶ Result: evaluating analytic likelihood
gradients without compromises

18Rembser et al. ICHEP’24

https://clad.readthedocs.io/en/stable/
https://indico.cern.ch/event/1291157/contributions/5889615/

RooFit + Clad

19Rembser et al. ICHEP’24

https://indico.cern.ch/event/1291157/contributions/5889615/

Python interface
The quality of the ROOT experience for Python users
is a priority
▶ Update to the latest version of cppyy, ROOT's C++-Py

'interoperability engine'
▶ Provide a demo infrastructure to pip install ROOT
▶ Improve the usage of several classes from Python through

"pythonisations"
▶ Teach ROOT through its Python interface, especially for beginners

courses

More actions are planned for the future, e.g.:

▶ Revisit Python tutorials and code examples
▶ Improve and extend the Python interface through pythonisations
▶ Steadily publish ROOT releases on conda
▶ Evolve pip install ROOT to Beta mode during 2025 (e.g. automatic

publication of wheels, multiple wheels…)
20

https://cppyy.readthedocs.io/en/latest/
https://indico.cern.ch/event/1338689/contributions/6010410/

Seeing it in action

21

pip install ROOT -i https://root-experimental-python-wheels.web.cern.ch

Bridging Python and C++
ROOT provides a C++ interpreter, cling

▶ Based on LLVM’s clang compiler, now available upstream as clang-repl
▶ But cling still builds on top of clang-repl, the goal is to simplify this

infrastructure
▶ e.g. through CppInterOp, that exposes APIs from Clang and LLVM in a

backward compatible way

Stay even more up-to-date with LLVM versions

▶ ROOT 6.34 (November 2024) is based on LLVM 18.1 (March 2024)
▶ Exploit new features, e.g. performance, C++ standards
▶ Upstream Cling features to the LLVM repo with clang-repl

Continue research on C++ compilers and language interoperability

22

https://clang.llvm.org/
https://clang.llvm.org/docs/ClangRepl.html
https://github.com/compiler-research/CppInterOp
https://compiler-research.org/

Native ROOT data loading for ML
Provide a native data loading abstraction to pipe ROOT data

(TTree, RNTuple) into ML training workflows (e.g. PyTorch, TF)

23

ROOT
Dataset Chunk

Chunk

Chunk
Chunking Batching

Shuffling

Native ROOT data loading for ML
Provide a native data loading abstraction to pipe ROOT data

(TTree, RNTuple) into ML training workflows (e.g. PyTorch, TF)

24

▶ Asynchronous loading (C++ thread)

▶ Supports scalar inputs as well as collections

▶ Native ROOT I/O: can read any HEP EDM, local or remote files

▶ No need for pre-conversion step to other data formats thus no duplication

▶ Integrated with RDataFrame for batch preprocessing

See CHEP’24 presentation

https://indico.cern.ch/event/1338689/contributions/6015940/

Native ROOT data loading for ML

25

Returns two generators that return training

and validation batches as PyTorch tensors.

gen_train, gen_validation =

ROOT.TMVA.Experimental.CreatePyTorchGenerators(

rdataframe, batch_size, chunk_size,

columns=features+labels, target=labels,

max_vec_sizes=100, validation_split=0.3,

)

[...] Create PyTorch model

for x_train, y_train in gen_train:

 # Make prediction and calculate loss

 pred = model(x_train)

 loss = loss_fn(pred, y_train)

Data analysis with ROOT

Data analysis with ROOT

27

ML inference

Condor
SSH

K8s

Slurm
Dask

▶ RDataFrame: entry point to modern
ROOT data analysis

▶ HIgh-level interface

▶ Native parallel execution
● Single node (MT), multi node

RDataFrame analysis interface

28

px py pz eta my_px

Range
Filter

Define

ROOT
(e.g. NanoAOD)

CSV
Apache Arrow
ATLAS’ xAOD

Numpy Arrays

histograms, profiles

data reductions
(mean, sum,..)

new ROOT files

any user-defined
operation

cut-flow reports

Datasource

[1,2,3]

[4,5,6]

[7,8,9]

enable multi-threading

ROOT.EnableImplicitMT()

df = ROOT.RDataFrame(dataset)

[2,3]

[4,6]

df = df.Range(2)

 .Define(“my_px”, “px[eta > 0]”)

filled in a single pass

h1 = df.Histo1D(“my_px”, “w”)

h2 = df.Histo1D(“px”, “w”)

RDataFrame + HPC centers

29

Jülich HPC
● Collaboration with OpenLab
● Slurm jobs (via Dask)
● Presentation

CERN HPC
● Slurm jobs (Spark/Dask)
● ~100 GB/s on 2048 cores
● JGC publication

https://indico.cern.ch/event/1309692/#8-benchmarking-distributed-ana
https://doi.org/10.1007/s10723-023-09645-2

RDataFrame + INFN analysis facility

▶ CMS production
analysis

▶ Before: Python
for-loop with
NanoAODtools,
manual job
submission

▶ After: Interactive
distributed
RDataFrame

▶ O(10) speedup

▶ T. Tedeschi et al.

30

Legacy Distributed RDF

https://github.com/cms-nanoAOD/nanoAOD-tools
https://doi.org/10.1016/j.cpc.2023.108965

RDataFrame + Analysis Grand Challenge

31

RDF+AGC on CERN HPC

● Demonstrated scalability
● ~50 seconds for the

whole analysis on 256
cores

● CHEP’23 presentation

New! AGC on SWAN, scheduling with Dask on CERN Condor pools!
Rediscovering existing infrastructures and services in a modern way

cvmfs + EOS + CERN batch + ROOT ≟ CERN AF

https://indico.jlab.org/event/459/contributions/11582/
https://cernvm.cern.ch/fs/
https://eos-web.web.cern.ch/eos-web/
https://batchdocs.web.cern.ch/
https://root.cern/

RDataFrame + RNTuple

▶ Bulk, asynchronous I/O and bulk
processing
● Hide network latency
● Enable SIMD on CPU, GPU

offloading

32

Moving to RNTuple with RDF: zero code changes

33

Dimuon analysis tutorial

https://root.cern/doc/master/df102__NanoAODDimuonAnalysis_8py.html

Moving to RNTuple with RDF: zero code changes

34

Dimuon analysis tutorial

https://root.cern/doc/master/df102__NanoAODDimuonAnalysis_8py.html

Outreach

An Open approach to boost collaboration

▶ Open-source and Open-development
● On GitHub, LGPL 2.1
● PR based model with public review process
● Very visible authorship of contributions

▶ Open-planning: https://cern.ch/root-pow
▶ Yearly plan of work (PoW) formed

internally, then discussed with users
▶ You can influence the PoW, with your

input, active engagement and
contributions!

▶ Formal reporting process engaging
experiments

36

https://github.com/root-project/root
https://cern.ch/root-pow
https://indico.cern.ch/event/1459548/
https://indico.cern.ch/category/11833/
https://indico.cern.ch/category/11833/

An Open approach to boost collaboration

▶ Open-source and Open-development
● On GitHub, LGPL 2.1
● PR based model with public review process
● Very visible authorship of contributions

▶ Open-planning: https://cern.ch/root-pow
▶ Yearly plan of work (PoW) formed

internally, then discussed with users
▶ You can influence the PoW, with your

input, active engagement and
contributions!

▶ Formal reporting process engaging
experiments

37

SFT Plans of Work Meeting
22.01.2025

https://github.com/root-project/root
https://cern.ch/root-pow
https://indico.cern.ch/event/1459548/
https://indico.cern.ch/category/11833/
https://indico.cern.ch/category/11833/
https://indico.cern.ch/event/1459548/
https://indico.cern.ch/event/1459548/

Scaling up the ROOT training
▶ CERN Summer Student Course ~200

participants, ~5 per year
▶ With IRIS-HEP and HSF: Python for analysis

course ~90 participants, ~3 per year
▶ Based exclusively on ROOT's Python interface

and notebooks
▶ Besides the value of the trainings themselves:

● Surveys: feedback received now incorporated
in the material

● Several ROOT devs involved: we trained to
train!

38

HSF training centre

ROOT training video

The ROOT team is available to give trainings and
help train the trainers

https://hsf-training.org/training-center/
https://videos.cern.ch/record/2300516

ROOT Hackathons

▶ New in 2024!
▶ An event born for ROOT core devs, open to

everybody
▶ A welcoming, positive and inclusive atmosphere
▶ 1st Hackathon in February 2024

● Nickname “Fixathon”, aim at fixing various github issues
▶ 2nd Hackathon 25-27 November 2024

● Topic: Python, Docs, Tutorials
▶ In presence only, very informal

● Currently cannot provide sponsorships for attendance

39

https://indico.cern.ch/event/1367877/
https://indico.cern.ch/event/1463778/

ROOT Users Workshop 2025
▶ A welcoming, positive and inclusive atmosphere
▶ An opportunity to shape together the future of ROOT!
▶ A venue for ROOT users, world-class experts of scientific computing

and the ROOT core team to exchange ideas and learn from each
other

▶ A rich program of presentations, tutorials, and most importantly,
discussions

40

In Europe
17-21 November 2025

Save the date!

Conclusions

Conclusions

▶ The ROOT core team is here to support you, listen to
your needs and make your data processing and analysis
a success!
● All sustained by a long-term support model, and a rich

result-oriented R&D program
▶ Open approach: open-source, open-development,

open-planning
● For ROOT, collaborations and contributions are essential and

highly valued!
▶ Forward-looking: a core set of modern features to

support HL-LHC and future colliders

42

Useful links

▶ ROOT web page: root.cern
▶ ROOT GitHub: github.com/root-project/root
▶ Careers at CERN: https://careers.cern/
▶ Email: vincenzo.eduardo.padulano@cern.ch

43

https://root.cern
https://github.com/root-project/root
https://careers.cern/
mailto:vincenzo.eduardo.padulano@cern.ch

