EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

Magnets

Lucia Sabbatini / INFN – LNF 8th EuPRAXIA@SPARC_LAB Review Committee 25.11.2024

Functional layout & list of magnets

ΤΥΡΕ	SECTION	QTY	NOTES	ΤΥΡΕ	SECTION	QTY	NOTES	ΤΥΡΕ	SECTION	QTY	NOTES
SOLEN.	INJ (GUN)	1		QUADRUPOLES	INJ (GUN)	2	normal + skew embedded in sol.	STEERERS	INJ (GUN)	2	
	INJ	2	on S-band accelerating sections		INJ	4	w. Steerer, 2 on BPM		INJ	4	HV on S-bands, inside solenoids
DIPOLES	INJ	4	Laser Heater chicane (1 is spectrometer)		LEL	3			INJ	3	w. BPM
	СМР	4	chicane		СМР	8	2 w. Steerer, on BPM		INJ	4	on QUAD, w. BPM
	СМР	1	Spectrometer		HEL	6	1 w. Steerer & BPM		LEL	4	on bellows
	PLS	5	Permanent magnets		PLS	5	Permanent magnets		СМР	3	w. BPM & QUAD
Codice Funzionale							HEL	4			

Naming convention:

Magnets for the gun (1/2)

The EuPRAXIA gun is based on the recent successful experience with the new SPARC_LAB photoinjector. From the magnetic point of view, it integrates a solenoid, a quadrupole, and a steerer:

- ✓ The **solenoid**, designed to compensate for emittance growth, is equipped with remote control for the transverse position adjustment and features:
- an integrated longitudinal field component of 62.6 T mm with an integrated field quality of less than 5x10⁻⁴ in a good field region of 30 mm radius
- a focusing strength (i.e. the field integral of B_z^2 along z direction) of at least 0.015 0 T^{2m}
- minimization of the field on cathode (less than 15G) to avoid undesired emittance growth

Alesini D. et al. "The new SPARC LAB RF photo-injector" 13th Int. Particle Acc. Conf. IPAC2022, doi:10.18429/JACoW-IPAC2022-MOPOMS019 Vannozzi A. et al., "Design and realization of new solenoids for high brightness electron beam injectors", 12th Int. Particle Acc. Conf. IPAC2021

Simulated

Bmax in ++ Config. 3943G Bmax in +- Config. 3629G Yoke Material St.37 IB on Axis 0.0626Tm IFQ 4E-5 Good Field Radius 30 mm $0.0155 \,\mathrm{T}^{2m}$ FS on Axis in +- Conf. Bmax on Cathode 8.5 G Number of Turns per Coil 136 Cooling Water cool Conductor Dim. 5x5/bore 3 mm Water Pressure Drop 3 bar Water Flow Rate 4.2 l/min Water ΔT 25 °C Nominal Current in ++/+- Config. 182/192 A Nominal Voltage 35 V 35 mH Inductance 191 mΩ Resistance

Magnets for the gun (2/2)

- ✓ The normal and a skew quadrupole with variable polarity, embedded in the solenoid, are used for tuning the x-y emittances and compensating for residual transverse beam spot asymmetries. The quadrupole is mounted on the vacuum chamber at the center of the solenoid.
- ✓ The HV steerer is used for trajectory optimization and beam energy measurements. These features enable the bending of the electron beam, with an energy of about 6 MeV, by approximately 19 mrad.

Quadrupole

Maximum gradient	32 mT/m
Lmag	100 mm
Air cooled	

LINAC toroid corrector Vacuum Solenoid valve

Injector: solenoids

EuPRAXIA's solenoids are based on the experience gained within the SABINA project, that provided new solenoids for SPARC_LAB (installed in January 2024):

- **Solenoids** are designed to surround the first two S-band accelerating structures, where velocity bunching RF compression takes place.
- Alignment of the magnetic axis: the required tolerance is 140 μm (i.e. the axis is contained in a cylindrical surface of radius 70 μm relative to the alignment reference frame).
- **Mechanical design**: each one of the 12 coils has a dedicated support for position adjustment and a set of fiducials.
- Measurements & alignment campaign: performed at SigmaPhi.

L. Sabbatini, 8th Review Committee, 25.11.2024

PARAMETER	VALUE	PARAMETER	VALUE
Quantity	2	Maximum current (A)	190
Number of coils	12	Maximum voltage – series of 3 coils (V)	100
Bmax in ++ config. (G)	1800	Inductance – series of 3 coils (mH)	13
Integrated Bz on axis (Tm)	0.5273	Maximum pressure drop (Kpa)	200
Integrated field homog. in ++ config	5E-4	Maximum total water flow (m3/h)	3.6
Good Field Radius (mm)	30	Inlet waer temperature (°C)	32
Length (mm)	3000	Max. magnetic axis misalignement (µm)	70
Max field at 300mm (G)	20		

- HV steerers are included at the beginning and end of each S-band accelerating structure to correct the beam position during the acceleration phase.
- Air-dominated $\cos\theta$ steerers, with strict geometrical constraints
- A single design to meet the requirements for both accelerating structures: excitation current is adjusted accordingly to the energy levels and correction angle (Thermal studies and tests indicates that this choice is thermally acceptable).
- Prototypes have been designed, built, tested and installed at SPARC
- Mechanical support are 3D printed

HV steerers for accelerating structures					
B (internal/external)	7 G / 6.7 G				
Integrated field	830/915 Gmm				
Magnetic length L _{mag}	118 / 136 mm				
Deflecting angle θ	2.5 / 2.7 mrad				
Int. field quality ∆∫B/∫B	8 10 ⁻⁴ / 7 10 ⁻⁴				
Current density J	1.7 / 2.4 A/mm ²				
Internal radius	79 mm				
External radius	100 mm				
Longitudinal length	134 mm				

Air dominated steerers

INFN-LNF team has extensive experience in the design, manufacturing and testing of air dominated beam steeres:

- \checkmark Magnetic design with Opera.
- ✓ 3D support designed and printed @LNF (windings commissioned to firm): ideal for specific geometries, or where space is limited or where multiple components need be assembled together (e.g. diagnostics).
- \checkmark Different prototypes steerers have already been realized and are currently used on SPARC.
- \checkmark Magnetic, electrical and thermal measurements performed @LNF.

Frontal View

Del Franco et al. "3D printed beam correctors", 15th Int. Particle Acc. Conf. IPAC2024 Selce A. et al. "Intra-undulators magnets for the SABINA THz FEL line: magnets design, manufacturing and measurements", 15th Int. Particle Acc. Conf. IPAC2024

Laser Heater chicane dipoles

- Preliminary design was based on previous experience on ELI dipoles (similar field, gap, optimization of longitudinal length by reviewing the coils configuration)
- Recent change of layout: the first dipole serves also as spectrometer
 - C dipoles
 - Bipolar power supplies

MAIN PARAMETERS	VALUE
Dipole type	С
Energy (MeV)	250
Gap (mm)	30
Deflection angle (mrad)	235 (13.46°)
Deflection angle as spectrometer	384 (22°)
Magnetic Length (mm)	250
В ₀ (Т)	0.87
B _{spect} (T)	1.38
Overall length (mm)	340

- New design is ongoing
- Cross talk must be verified
- The gap could potentially be reduced, which would help shorten the longitudinal length.

HV steerers (between X-band structures)

- Preliminary layout of the machine required a combined quadrupole + HV steerer between X band structures → works was ongoing
- With reduction in beam pipe diameter, decoupling of these magnets was allowed
- Anyway, the steerers must be located on bellows \rightarrow aperture at least 26mm to be confirmed)

E^t**PRAX**IA

• A preliminary design of the steerer now exists (optimization ongoing), while quadrupoles are still under analysis

Model 1

Model 2 Model 3

	HV steerer				
50	Bmax	115 G			
	Integrated Field	7222 G mm			
	L mag	63 mm			
	L yoke	44 mm			
	L tot	80 mm (to be reduced)			
	Aperture	26 mm			
	Bending angle	0.2 mrad (@1GeV)			

- In the recent past, the magnet design group has deal with PMQs for plasma wake field based experiments at SPARC_LAB test facility.
- For COMB experiment, a design of tunables PMQs [1] based on an optimization and scaling of QUAPEVA PMQs[2]
- For External-Injection experiment (EXIN) proposal at SPARC LAB More challenging requirements in terms of higher gradients and tunability have been achieved with a new design.
- Both the designs are based on a fixed part of Halbach array and rotating magnetized cylinders who can tune the gradient depending on their angular position.
- This will be the baseline for Eupraxia PMQs for beam injection and extraction from the plasma module

0		DESIG FOR COMB	DESIGN FOR EXIN
8	Grad and tuning	480 ± 50 T/m	270 ± 90 T/m
-5	Internal bore aperture	6 mm	10 mm
-10	Dimensions (WxHxL)	125x200x17 mm	45x45x20 mm

3D view of PMQ for COMB experiment

E^[•]PRA IA

^{nt} PMQ cross section for COMB experiment

[1] Vannozzi et al. "New Tunable High Gradient Permanent Magnet Quadrupole for Plasma Wake Field Acceleration at SPARC_LAB" 2020 J. Phys.: Conf. Ser. 1596 012009 [2] F. Marteau, et al., Variable high gradient permanent magnet quadrupole (QUAPEVA), Appl. Phys. Lett. 111, 253503 ; doi: 10.1063/1.4986856

Upgrade of LNF magnetic measurements laboratory

The electrotechnical eng. group

In the last few years, we have been upgrading the laboratory thanks to the external funded projects **LATINO** (cofunded by Regione Lazio) and **IRIS** (funded by PNRR program):

- \checkmark civil engineering
- ✓ new personnel (technicians & technologist)
- $\checkmark\,$ upgrade of existing instruments and development of new benches

Sabbatini L. et al. "Upgrading of the INFN-LNF magnetic measurements laboratory" 15th Int. Particle Acc. Conf. IPAC2024 Vannozzi V. et al. "INFN – LNF Magnetic Measurement Laboratory Status and Upgrade", IMMW 2024 Rossi L. et al. "IRIS – A new distributed Research Infrastructure on Applied Superconductivity", IEEE Transactions on Applied Superconductivity, vol. 34, 3, 1-9, 2024

✓ Rotating coil: optimized for small-bore multipole magnets (CERN-INFN design)

off the shelf components: PCB magnetometer (5 coils, 256 turns each); carbon fiber tube, 26 mm external diameter, 620 mm length; different configurations of PCB and shaft; commercial DC brush-less motor, high-resolution incremental encoder, slip-ring, data acquisition system, open-source software

MAIN FEATURES					
Main integrated gradient					
Absolute accuracy	50 ppm				
repeatability	10 ppm				
High order compensated harmonics					
Accuracy	100 ppm				
repeatability	10 ppm				

✓ Mole Hall probe: a travelling 3-axis probe sliding inside the magnet gap

compact 3-axis Hall probe, mounted on a thin mechanical support; Keysight digital multimeter; system similar to what already built for measuring SABINA's undulators

Lauria A. et al. "Rotating-Coil Measurement System for Small-Bore-Diameter Magnet Characterization", Sensors 2022, 22(21), 8359 CERN-INFN collaboration agreement KR4708/TE

Next tasks & Timeline

- Complete the laser heater dipoles design (Dec. 24)
- Provide a preliminary design for key elements:
 - Quadrupoles between X-band structures (Jan 25)
 - Beam Compressor Chicane dipoles (Jan 25)
 - Spectrometer (Feb. 25)
- TDR writing: a few paragraphs are already prepared
 - ✓ Gun (solenoid, quadrupole, steerer)
 - ✓ Solenoids for S-band accelerating structures & inner steerers
 - ✓ Steerers between X-band structures
 - Additional sections will follow after the definition of the design definition

Acknowledgements

- Alessandro Vannozzi, for sharing the work on magnets and power supplies
- A. Selce, A. Trigilio, for currently learning about magnetic design
- Mario Del Franco, for his support with the 3D layout
- Ilaria Balossino, for supporting the preparation of TDR document