
Istituto Nazionale di Fisica Nucleare

TDR Status: Vacuum System

8th EuPRAXIA@SPARC_LAB TDR Review Committee WP10 – Vacuum Andrea Liedl

Work Package 10 – Vacuum - within the EuPRAXIA - OBS

EUPRA

TDR Status: Vacuum Status – WP10: Vacuum Andrea liedl – 24/11/25

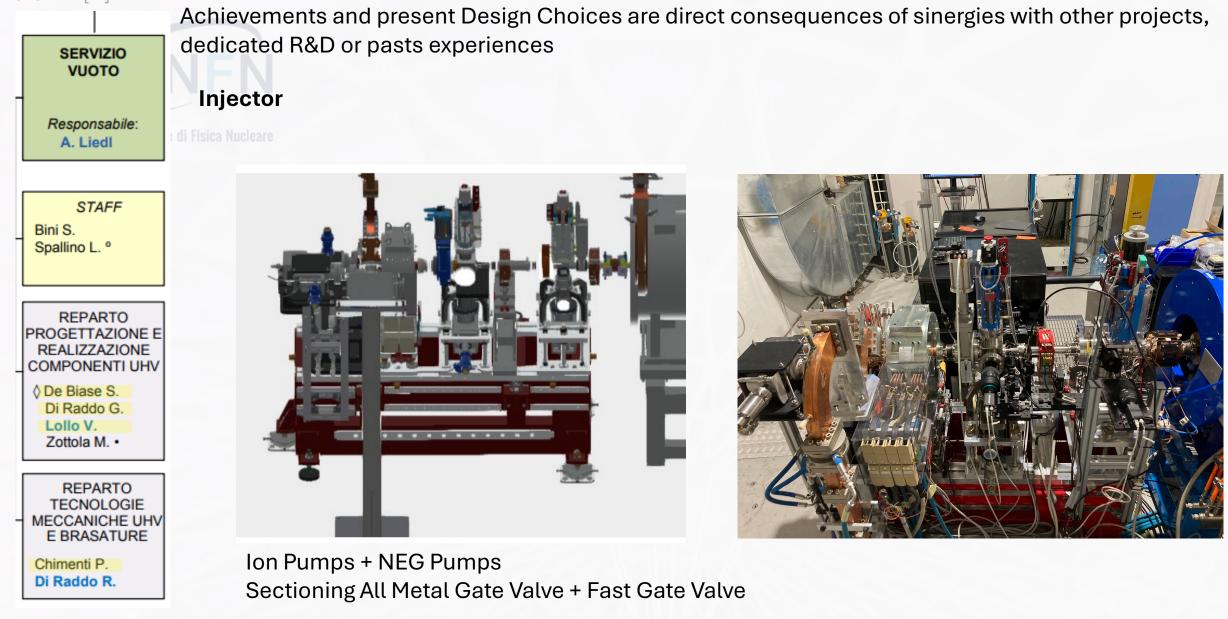
Work Package 10 – Vacuum - within the EuPRAXIA – Responsibility Assignment Matrix

			WA 1	WA 2	WA 3	WA 4	WA 5	WA 6	WA 7	WA 8	WA 9	WA10
			Beam Physics	Injector	Linac	RF	Plasma	FEL	High Power Laser	Users	Infrastr ucture	Diag.
Istituto Nazionale	WP1	Accelerator Physics	x	x	x		x	x	x			x
	WP2	Plasma Physics	x				x		x			x
	WP3	FEL Physics	x					x	x			x
	WP4	Photon & User Beamlines	x					x	x	x		x
	WP5	Secondary Part.Source							x	x		x
	WP6	Plasma module	x				x		x			x
	WP7	Sparc_lab TF					x					x
	WP8	RF Gun & Acc.Structure	x	x	x							x
	WP9	Computing	x									x
	WP10	Vacuum		x	x	x	x		x			x
	WP11	Laser & Cathodes		x					x			x
	WP12	High Power RF & Distribution		x	x	x						

Work Package 10 – Vacuum – Structure/Strategy for the TDR

		WA 1	WA 2	WA 3	WA 4	WA 5	WA 6	WA 7	WA 8	WA 9	WA10
		Beam Physics	Injector	Linac	RF	Plasma	FEL	High Power Laser	Users	Infrastr ucture	Diag.
WP1	Accelerator Physics	×	x	x		x	x	x			×
WP2	Plasma Physics	x				x		x			×
WP3	FEL Physics	x					x	x			x
WP4	Photon & User Beamlines	x					x	x	x		x
WP5	Secondary Part.Source							x	x		x
WP6	Plasma module	x				x		x			×
WP7	Sparc_lab TF					x					x
WP8	RF Gun & Acc.Structure	x	x	x							x
WP9	Computing	x									×
WP10	Vacuum		x	x	x	x		x			x
WP11	Laser & Cathodes		x					x			×
WP12	High Power RF & Distribution		x	x	x						

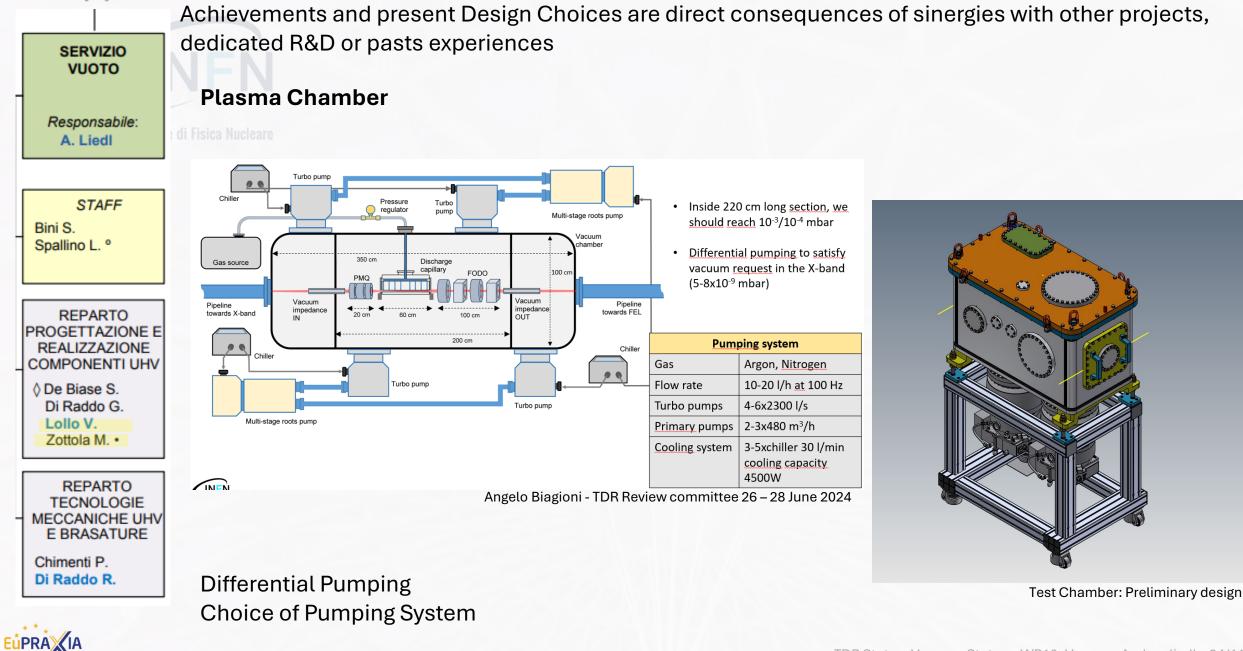
"WA Chapter"

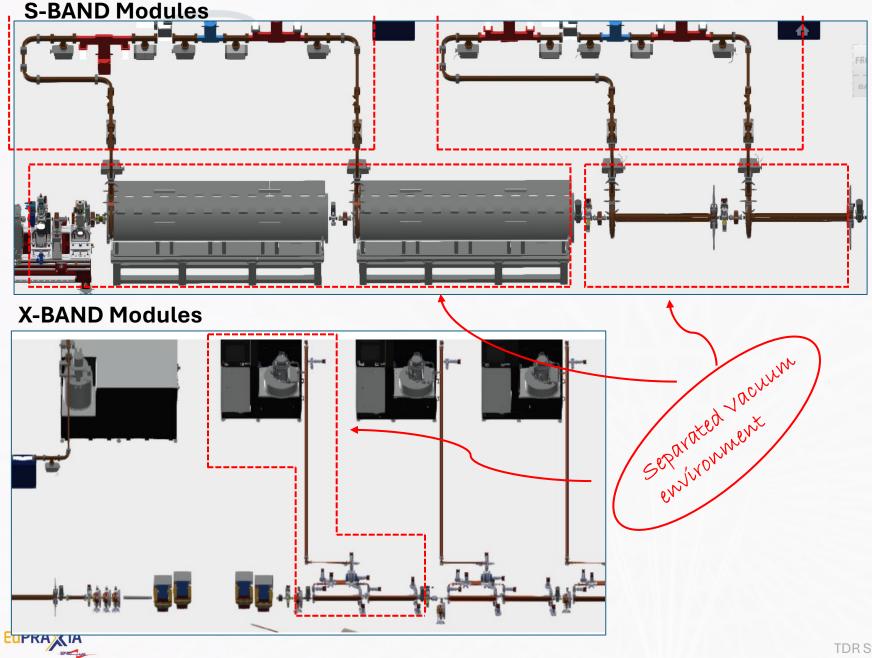

• A paragraph containing details (Technical choices, Prototypes, Results...etc...) specifically for that Area

"Vacuum System Chapter"

- Technical Approches for the Vacuum Systems
- Procedures
- Devices

•


[...] Workpackages must be intended as the INFNLNF services that provide resources and technologies in order to implement the tasks related to the WA [...]


[...] Workpackages must be intended as the INFNLNF services that provide resources and technologies in order to implement the tasks related to the WA [...]

[...] Workpackages must be intended as the INFNLNF services that provide resources and technologies in order to implement the tasks related to the WA [...]

LINAC Vacuum System - Layout Principles

Flanges generally based on metal, Cu OFHC, Gaskets:

- S Band LIL Flange
- Xband International Flange
 - Circular Flange
- Linac beam pipe QCF40

Sectioning Valve

All metal UHV Sectioning Gate
 Valve

Pumping System

- Ion Pumps
- NEG Pumps

Vacuum Sensor

Cold Cathode Gauges

LINAC Vacuum System - Layout Principles

.

Reduction of specific outgassing rate of components

Design Constraints:

- Conductance Limited Areas
- Dust, contamination sensitive AREA
- Different Pumping System
 - ••• istituto Nazionale di Fisica Nucleare

Cleaning and Heat Treatment

- Specific acceptance Test after production
- UHV Cleaning
 Procedure
- Ex-Situ Bake-out

Storaging

- Internal Nitrogen/controlled Vacuum condition between production and installation
- Close and Dust reduced storage areas/rooms

Installation

- Reduce air exposure time
- Local "clean room" for installation of sensitive devices

Pumping System and Pumping Down

• Different procedures for the different areas

CONCLUSION AND TDR WRITING STATUS

TDR Writing status is

- advanced for a "WA chapter",
- at quite starting point for the others and for the general vacuum system chapter

The R&D and other strategy approaches for the vacuum systems are in advanced phase due to the specific work or well based previous experience

Thank You for Your attention!

