Antideuterons search status

Marta Borchiellini – University of Groningen

04/11/24

Charge confusion study

Aim:

build a charge confusion estimator (Data-driven BDT) to reject background composed by events whose rigidity sign is wrongly reconstructed.

Dataset

Data:

NAIA ISS Data v1.1.0/ISS.B1236/pass8 4 years (2015-2018) + one year (2023) of data

Preselection: antiproton like cut based selection

Features used: 3103 feature from Tracker and ToF detectors

Sample definition:

Signal Sample: events in mass proton range 0.75 < m < 1.25 Gev/c² Background sample: events with low negative rigidity (-20 < R< 0) in the highmass tail (2.36 < m < 5 Gev/c²)

Antiproton-like selection

	Z=1 TOF	0.5 <qtof<1.5 &&="" qlowtof<2.0="" quptof<1.5<="" th=""></qtof<1.5>	
Z=1	Z=1 Tracker	0.5 <q_inntr<1.5.< th=""></q_inntr<1.5.<>	
_ ·	God TOF Z	qup<1.5 && qdw<2.0	
	Good TOF NCluster	NBetaCluster == 4	
TOF	Good TOF chisq	chisqtn < 10 && chisqcn < 10	
	Has Downgoing Track	Beta_tof>0.5	
	Good Inner tracker chisq	chisqInnerX_GBL< 10 && chisqnInnerY_GBL < 10	
	Single track	ntrtrack == 1	
TRACKER	Tracker pattern	L2 && (L3 L4) && (L5 L6) && (L7 L8)	
TRD	XY Hits	At least 3 XY hits	
	Energy deposition	Less than 2.5 MeV deposited in Inner tracker (LayerEDep)	
	Enough TRD hits	NHitsOnTrack >10	
	Likelihood e/p	Likelihood e/p >0.8	
	Likelihood p/He	Likelihood p/He < 0.3	
	Physics Trigger	IsPhysicsTrigger() == True	
	Rigidity for isotope identificat	ion R_innner < 20GV	

3

Beta requirement RICH & TOF

TOF		
Good AGL beta	beta_tof < 0.9	
RICH NAF		
Track in NAF	AF Track in NAF	
NAF beta above threshold	Beta > 0.75 beta < 0.99	
RICH AGL		
Track in AGL	Track in AGL	
AGL beta above threshold	Beta_rich > 0.96	

Refine dataset

Skim ntuples to export relevant features in CSV Balance the samples: apply undersampling to signal data Final dataset: ~32000 events equally divided in signal and background

Refine dataset

Skim ntuples to export relevant features in CSV Balance the samples: apply undersampling to signal data Final dataset: ~32000 events equally divided in signal and background

Ļ	Ļ	Ļ
4 years (2015-2018)		1 year (2023)
Feature Selection (6 months)	Classification (3.5 years)	Validation

Refine dataset

Skim ntuples to export relevant features in CSV Balance the samples: apply undersampling to signal data Final dataset: ~32000 events equally divided in signal and background

Ļ	Ļ	Ļ
4 years (2015-2018)		1 year (2023)
Feature Selection (6 months)	Classification (3.5 years)	Validation

Feature selection

- Discard features dependent on Rigidity
- Apply different algorithms to select the most discriminant features
- Consider «Physics Driven» sets

Refine dataset

Skim ntuples to export relevant features in CSV Balance the samples: apply undersampling to signal data Final dataset: ~32000 events equally divided in signal and background

Ļ	Ļ	Ļ
4 years (2015-2018)		1 year (2023)
Feature Selection (6 months)	Classification (3.5 years)	Validation
 Feature selection Discard features dependent on Rigidity Apply different algorithms to select the most discriminant features Consider «Physics Driven» sets 	 Training + Test 2 BDt for each set of features (XGB vs AdaBoost) Use cross-validation to evaluate performance Test models and produce evaluation plots 	8

Refine dataset

Skim ntuples to export Tracker + ToF features in CSV Balance the samples: apply undersampling to signal data Final dataset: ~32000 events equally divided in signal and background

Ļ	Ļ	Ļ
4 years (2015-2018)		1 year (2023)
Feature Selection (6 months)	Classification (3.5 years)	Validation
 Feature selection Discard features dependent on Rigidity Apply different algorithms to select the most discriminant features Consider «Physics Driven» sets 	 Training + Test 2 BDt for each set of features (XGB vs AdaBoost) Use cross-validation to evaluate performance Test models and produce evaluation plots 	Test Cross-check the models with a completely distinct dataset

Refine dataset

Skim ntuples to export Tracker + ToF features in CSV Balance the samples: apply undersampling to signal data Final dataset: ~32000 events equally divided in signal and background

Ļ	Ļ	Ļ
4 years (2015-2018)		1 year (2023)
Feature Selection (6 months)	Classification (3.5 years)	Validation
 Feature selection Discard features dependent on Rigidity Apply different algorithms to select the most discriminant features Consider «Physics Driven» sets 	 Training + Test 2 BDt for each set of features (XGB vs AdaBoost) Use cross-validation to evaluate performance Test models and produce evaluation plots 	Test Cross-check the models with a completely distinct dataset

Depence on rigidity

Sample definition:

Signal Sample: events in mass proton range 0.75 < m < 1.25 Gev/c² Background sample: events with low negative rigidity (-20 <R< 0) in the highmass tail (2.36 < m <5 Gev/c²)

- The rigidity almost completely characterises the two samples (beta_tof < 0.9 cuts all signal events above ~2.5 GV)
- Leak of information if R or rigiditydependent variables are used for training (BDTs perform perfectly)
- ightarrow Discard variables dependent on rigidity

Statistical tests

We need a way to test the rigidity dependence of ~3000 features

Performed different statistical tests on the complete set of features :

• Spearman correlation

test null hypothesis of no correlation

- Krukal-Wallis (KW)
- Kolmogorov Smirnov (KS)

tests if samples are drawn from the same distribution

We compute the p-value for each of the 3 statistical measures We exclude features with p-value < 0.05.

→ We reject features for which there is less than 5% probability to measure the value of the statistic obtained with the chosen test given the null hypothesis

Statistical tests - results

Number of features passing the tests:

- Spearman correlation: 679
- Krukal-Wallis: 661
- Kolmogorov Smirnov test: 187
- Kolmogorov Smirnov (KS) is still the more conservative
- The KS features seem to be independent of rigidity from visual inspection
- Features don't seem to be very discriminative

Feature selection with KS features

We input in the feature selection + classification pipeline the following features

- A "complete set" of 187 features passing the KS test
- A Physics Driven set composed of 11
 variables
- The set of 12 features used by the Bologna group

N.B. Physics Driven features and Bologna features do not pass the KS test with 0.05 threshold

Technique	Number of features selected
kbest	103
Random forest	53
Pearson's correlation	160
Linear regression	1
Physics driven	11
Bologna	13

Cross-validation metrics (training phase)

Performance metrics for XGBoost BDTs trained with the different feature sets

AdaBoost achieves similar performances

All the methods using subsets of the KS features perform poorly.

ROC curve – kbest

Validation 2015-2018 dataset

Validation 2023 dataset

Efficiencies – kbest

Validation 2015-2018 dataset (XGB)

Validation 2023 dataset (XGB)

Efficiencies – kbest

Validation 2015-2018 dataset (Ada)

Validation 2023 dataset (Ada)

Conclusions

- All the BDT trained with features selected among the KS set perform poorly. XGBoost performs better than AdaBoost in terms of efficiencies
- The BDTs trained with Physics Driven features and Bologna features perform better. However, the features used do not pass the KS test with a threshold of 0.05
- All the models perform way worse on the 2023 dataset
- The definition of background and signal samples based on the mass associated with the current event selection limits the BDT performance as it requires excluding rigidity-dependent features, leaving just the less discriminative to be used.

Future steps

- Tune KS test threshold to know good variables
- Just select features in a physics-driven way
- Release cut on Beta_tod to have more signal events at higher rigidities?
- Use MC events?
- ...?

BACK UP

Background events

Enlarged dataset

Previous dataset:

<u>1 year (2015) + 2months (2023)</u>

Undersampling was applied to the sign sample to even the number of events in the background and signal sample

~ 7400 events in total (3200 Feature selection, 3200 Classification, 1000 Validation test)

Dataset was enlarged to:

4 years (2015-2018) + one year (2023)

Undersampling applied as before

~ 32000 events in total (~ 3200 for Feature Selection , ~ 22600 for Classification,

~ 6000 for Validation test)

Skimming strategy

Goal: reduce the ntuple size otherwise the conversion to csv would take long time an disk space

Size:

~60Mb/ntuple ~115 Gb/month ~1,3Tb/year

→"skimming selection" == antiprotonlike selection

Feature Selection

Machine Learning (ML) feature selection methods used:

- Kbest
- Random Forest
- Linear Regression
- Pearson's Correlation

Feature dataset used for the analysis

We input in the feature selection + classification pipeline the following features

- A "complete set" of 187 features passing the KS test
- A Physics Driven set composed of 11 variables
- The set of 12 features used by the Bologna group

N.B. Physics Driven features and Bologna features do not pass the KS test with 0.05 threshold

Physics Driven

Physics Driven

Bologna features

Bologna features

RECAP

The high performances of the BDTs are caused by a data leak due to rigidity and rigidity-dependent variables that bias their training.

2 parallel options:

- A. Find a quick way to scan all the variables used (Tracker + ToF) to find the ones non-rigiditydependent. (plotting all of them is not feasible)
- B. Release the cut on beta_tof and check if this attenuates the relation between samples definition and rigidity

Spearman correlation

- Key assumptions:
 - * Variables are at least ordinal (can be ranked)
 - * Relationship is monotonic but not necessarily linear
 - * No assumption about the distribution of variables
- Interpretation:
 - * Range: -1 to +1
 - * 0 indicates no monotonic relationship

We exclude features for which we have less than a 5% probability of obtaining the value measured if we assume that the distribution come from the same pop/are independent

Kruskal Wallis

- Key assumptions:
 - * Ordinal or continuous data
 - * Independent observations
 - * No normal distribution assumption
- Interpretation:
- * Tests if samples come from the same distribution

Kolmogorov Smirnov

- Key assumptions:
 - * Continuous data
- * No distributional assumptions (non-parametric)
- * Independent observations
- Interpretation:
 - * Tests if two samples come from the same distribution
 - * Sensitive to differences in both shape and location
 - * More sensitive to differences in the center and less at the tails of distribution
- Test statistic:
- * Maximum distance between cumulative distribution functions
- * Range: 0 to 1. Larger values indicate greater differences

P-value meaning

We exclude features with p-value < 0.05

p-value: probability to measure the value of the statistic obtained with the chosen test, given the null hypothesis

Spearman → probability to measure that value of the statistic if sampling data from independent distributions (feature and rigidity) Kw and ks → probability to measure that value of the statistic if the given distributions are coming from the same population

We reject features for which there is less than 5% probability to measure the computed statistic if the distribution were independent/coming from the same pop
P-value

p-value: probability to measure the value of the statistic obtained with the chosen test, given the null hypothesis

We compute the p-value for each of the 3 statistical measures We exclude features with p-value < 0.05.

→ We reject features for which there is less than 5% probability to measure the value of the statistic obtained with the chosen test given the null hypothesis

Statistical tests - results

Number of features passing the tests:

- Spearman correlation: 710
- Krukal-Wallis: 670
- Kolmogorov Smirnov test: 265
- → Choose the Kolmogorov Smirnov (KS) as it is the more conservative

 \rightarrow Plot feature selected by KS as a cross-check: they seem to be rigidity-independent

KS features distributions

Some of the features selected by KS

The distributions for the different rigidity ranges are plotted in different colors.

KS features distributions

vents

103

Some features have a peak at zero due most probably to noncontrolled background events for fits and spans different from the one use din the mass definition (GBL, InnerOnly): investigate if this signature bias the test \rightarrow Cut events at 0 and rerun the tests

Statistical tests – results no events at 0

Number of features passing the tests:

- Spearman correlation: 679
- Krukal-Wallis: 661
- Kolmogorov Smirnov test: 187
- Kolmogorov Smirnov (KS) is still the more conservative
- The features selected this time are fewer and, in part, different from the previous ones
- They seem to be independent from rigidity after visual inspection
- It is already clear that they are not going to discriminate well between background and signal → see plots

The features selected by KS

Bkg events in violet

The features selected by KS

Bkg events in violet

The features selected by KS

Bkg events in violet

The features selected by KS

Bkg events in violet

Cross-validation metrics (training phase)

Accuracy: this metric provides a general measure of the model's ability to correctly predict classes.

Accuracy = (True Positives + True Negatives) / Total Examples

- Precision: This metric focuses on the quality of the model's positive predictions, to avoid the erroneous classification of negative examples as positive Precision = True Positives / (True Positives + False Positives)
- Recall (signal efficiency): focuses on the model's ability to identify positive cases while effectively minimising false negatives. Recall = True Positives / (True Positives + False Negatives)
- F1-score: this metric combines the precision and recall metrics to provide a balanced measure of model performance. It is particularly relevant when the balance between accurately identifying positive cases and minimising false positives and false negatives is essential.

F1-score = 2 X (Precision × Recall)/Precision + Recall

Performance metrics

	complete	rf	linear	kbest	correlation	PhysicsDriven	Bologna
A	0.6173 ±	0.5913 ±	0 541 + 0 0146	0.6085 ±	0.6202 ±	0.8682 ±	0.9934 ±
Accuracy	0.0144	0.0188	0.541 ± 0.0146	0.0242	0.0178	0.0148	0.0028
Duccision	0.6083 ±	0.5848 ±	0.5229 ±	0.5964 ±	0.6095 ±	0.8822 ±	0.9924 ±
Precision	0.0164	0.0184	0.0078	0.0216	0.0172	0.0182	0.0036
Decall	0.6718 ±	$0.6457 \pm$	0.9935 ±	0.695 . 0.0222	0.6808 ±	$0.8518 \pm$	0.0046 . 0.005
Recall	0.0224	0.0194	0.0088	0.685 ± 0.0332	0.0338	0.0286	0.9940 ± 0.003
E1 Coore	0.6383 ±	0 6127 + 0 016	$0.6852 \pm$	0.6275 0.022 0.6421	0.6421 + 0.010	0.8666 ±	0.9935 ±
F1-Score	0.0118	0.0137 ± 0.010	0.0082	0.0575 ± 0.025	st correlation PhysicsDriven $5 \pm$ 0.6202 ± 0.8682 ± 42 0.0178 0.0148 $4 \pm$ 0.6095 ± 0.8822 ± 16 0.0172 0.0182 0.0332 0.6808 ± 0.8518 ± 0.0338 0.0286 \pm 0.6431 ± 0.019 0.8666 ± $0.9 \pm$ 0.6766 ± 0.9412 ± 22 0.0186 0.0126	0.0028	
BOC AUC	0.6726 ±	0.6355 ±	0.5385 ±	0.6609 ±	0.6766 ±	0.9412 ±	0.0002 + 0.001
KUC-AUC	0.0172	0.0212	0.0148	0.0222	0.0186	0.0126	0.9992 ± 0.001

Table 1. Training metrics XGBoost

Table 2. Validation metrics XGBoost None

	complete	rf	linear	kbest	correlation	PhysicsDriven	Bologna
Accuracy	0.624	0.593	0.536	0.621	0.624	0.869	0.993
Precision	0.626	0.595	0.727	0.625	0.627	0.869	0.993
Recall	0.624	0.593	0.536	0.621	0.624	0.869	0.993
F1-Score	0.622	0.592	0.418	0.618	0.623	0.869	0.993
ROC-AUC	0.625	0.594	0.542	0.622	0.625	0.869	0.993

Performance metrics

	complete	rf	linear	kbest	correlation	PhysicsDriven	Bologna
A	0.6274 ±	0.5998 ±	0 541 + 0 0146	0.6276 ±	0.6318 ±	$0.8543 \pm$	0.9891 ±
Accuracy	0.0218	0.0284	0.541 ± 0.0146	0.0184	0.0256	0.0186	0.0028
Duccision	0.6039 ±	0.5824 ±	0.5229 ±	$0.6007 \pm$	$0.6074 \pm$	0.8646 ±	0.9912 ±
Precision	0.0216	0.0242	0.0078	0.0164	0.0228	0.0202	0.0044
Pacall	0.7526 ±	0.7222 ±	0.9935 ±	0.7743 ±	0.7581 ±	0.8422 ±	0.0071 . 0.005
Recall	0.0296	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9871 ± 0.005				
E1 Cooro	0.6696 ± 0.017	17 0.6448 ± 0.023	$0.6852 \pm$	$0.6764 \pm$	0.6743 ±	0.8532 ± 0.019	0.9891 ±
F1-Score			0.0082	0.0146	0.0212		0.0028
POC AUC	0 6826 + 0 024	0.6444 ±	0.5385 ±	$0.6815 \pm$	0.6853 ±	0.0287 ± 0.012	0.9982 ±
KOC-AUC	0.0000 ± 0.024	0.0344	0.0148	0.0124	0.0256	0.9267 ± 0.013	0.0016

Table 3. Training metrics AdaBoost

Table 4. Validation metrics AdaBoost None

	complete	rf	linear	kbest	correlation	PhysicsDriven	Bologna
Accuracy	0.641	0.596	0.536	0.632	0.638	0.856	0.989
Precision	0.654	0.604	0.727	0.646	0.650	0.857	0.989
Recall	0.641	0.596	0.536	0.632	0.638	0.856	0.989
F1-Score	0.635	0.590	0.418	0.624	0.631	0.856	0.989
ROC-AUC	0.643	0.598	0.542	0.633	0.639	0.856	0.989 48

Performance metrics

	complete	rf	linear	kbest	correlation	PhysicsDriven	Bologna
Accuracy	0.526	0.543	0.535	0.569	0.502	0.500	0.512
Precision	0.550	0.566	0.713	0.569	0.558	0.750	0.618
Recall	0.526	0.543	0.535	0.569	0.502	0.500	0.512
F1-Score	0.463	0.497	0.412	0.568	0.344	0.334	0.371
ROC-AUC	0.526	0.543	0.535	0.569	0.502	0.500	0.512

Table 5. Validation metrics XGBoost 2023

Table 6. Validation metrics AdaBoost 2023

	complete	rf	linear	kbest	correlation	PhysicsDriven	Bologna
Accuracy	0.501	0.515	0.535	0.526	0.529	0.501	0.513
Precision	0.576	0.668	0.713	0.534	0.579	0.667	0.706
Recall	0.501	0.515	0.535	0.526	0.529	0.501	0.513
F1-Score	0.339	0.371	0.412	0.494	0.442	0.335	0.365
ROC-AUC	0.501	0.515	0.535	0.526	0.529	0.501	0.513

Features importance – Random Forest

Features importance – Random Forest

51

Probability of being classified as signal- kbest

Validation 2015-2018 dataset

Validation 2023 dataset

Probability of being classified as signal- kbest

Validation 2015-2018 dataset

Validation 2023 dataset

Decision score functions – kbest

Validation 2015-2018 dataset (XGB)

Validation 2023 dataset (XGB)

Decision score functions – kbest

Validation 2015-2018 dataset (Ada)

Validation 2023 dataset (Ada)

ROC curve – kbest

Validation 2015-2018 dataset

Validation 2023 dataset

ROC curve – kbest

Validation 2015-2018 dataset

Validation 2023 dataset

Efficiencies – kbest

Validation 2015-2018 dataset (XGB)

Validation 2023 dataset (XGB)

Efficiencies – kbest

Validation 2015-2018 dataset (Ada)

Validation 2023 dataset (Ada)

ROC curve – Random Forest

Validation 2015-2018 dataset

Validation 2023 dataset

Efficiencies – Random Forest

Validation 2015-2018 dataset

Validation 2023 dataset

All features

Boxplots (training metrics)

XGBoost 1.00.9 0.9 --_**_** Accuracy 2.0 Precision 0.7 0.6 0.6 -0.5 0.5 correlation PhysicsDriven complete correlation PhysicsDriven complete kbest linear kbest 1.001.0000.950.9750.950 0.90 ____ 0.85 Recall 0.925 0.900 0.800.8750.750.850 0.70 0.8250.65kbest linear correlation PhysicsDriven complete kbest linear correlation PhysicsDriven complete

AdaBoost achieves similar performances (as seen in the previous slides), but the feature importances are very different from the two algorithms

Features distributions

Rigidities

Plotted rigidities distribution for the two samples for different fits (span = Inner Tracker)

→ The rigidity almost completely characterizes the event of the two samples

i.e. low R (R < 2.5 GV) == signal events high R (2.5 GV < R < 20 GV) == bkg events

No true for every span

Rigidities

Rigidities

Other features: dependence on rigidity?

Need to check also for rigidity dependence on the other features

Start to check rigidity dependence in features selected by RF

- Plot correlation matrix of rigidity variables plus other features to see if there is a correlation
- Plot feature distribution for different rigidity bins

Rigidity Choutko InnerOnly Rigidity_Choutko_UpperHalfInner Rigidity_Choutko_LowerHalfInner -Rigidity_Kalman_InnerOnly -Rigidity_Kalman_UpperHalfInner Rigidity_Kalman_LowerHalfInner Rigidity_GBL_InnerOnly Rigidity_GBL_UpperHalfInner Rigidity ChoutkoNoMS InnerOnly Rigidity GBLNoMS InnerOnly InvRigErr_Choutko_InnerOnly -InvRigErr_Choutko_UpperHalfInner -InvRigErr Choutko LowerHalfInner RigidityTOI Kalman InnerOnly RigidityRICH_Kalman_InnerOnly RigidityRICH_Kalman_InnerOnly RigidityTOI Kalman_UpperHalfInner InvRigErr_Kalman_UpperHalfInner RigidityRICH_Kalman_UpperHalfInner RigidityTOI_Kalman_LowerHalfInner RigidityRICH_Kalman_LowerHalfInner RigidityRiCH Kalman_LowerHailmine finRigErr GBL_InnerOnly -InvRigErr GBL_LowerHalfInner-InvRigErr GBL LowerHalfInner-TrTRackresidual 12 GBL InnerOnly -TrTRackresidual 2 GBLNoMS_InnerOnly -TTRackresidual 12 GBL towerHalfInner_Y TTRackresidual 13 GBL towerHalfInner_Y TrTRackresidual 14 GBL UpperHalfInner_Y TTRackresidual_14_GBL_UpperHalfInner_Y TrTRackresidual_14_GBL_LowerHallInner_1 TrTRackresidual_16_GBL_UpperHalfInner_Y TrTRackresidual_17_GBL_LowerHalfInner_Y TrRackresidual I7 GBL LowerHalfInner Y TrRackresidual I8 GBL LowerHalfInner Y TrRackresidual I8 GBL LowerHalfInner Y PartialRigidity 12 Choutko PartialRigidity 12 Choutko PartialRigidity 12 Choutko PartialRigidity 12 Kaiman PartialRigidity 12 Kaiman PartialRigidity 12 Kaiman PartialRigidity 13 GBL PartialRigidity 13 GBL PartialRigidity 13 GBL PartialRigidity 13 GBL PartialRigidity 14 GBL PartialInvRigErr 14 GBL PartialInvRigErr 15 GBL PartialInvRigErr 16 Kaiman PartialInvRigErr 16 Kaiman PartialInvRigErr 17 Choutko PartialRigidity 17 CBL PartialRigidity 17 GBL PartialRigidity 17 GBL PartialRigidity 17 GBL PartialInvRigErr 16 Kaiman PartialInvRigErr 17 Choutko PartialRigidity 16 Choutko PartialRigidity 16 GBL PartiaRigidity 16 GBL PartiaRigity 16 GBL PartiaRigidity 16 GBL PartiaRigity 16 GB TrTRackresidual 18 GBL InnerOnly Y

- 0.75

- 0.5

- 0.25

- ೧

- -0.25

- -0.5

- -0.75

Partial TrTrackResiduals

Inv Rig Err

InvRigErr_Choutko_InnerOnly	1.00		0.99						
InvRigErr_Choutko_UpperHalfInner		1.00							
InvRigErr_Choutko_LowerHalfInner	0.99		1.00						
InvRigErr_Kalman_InnerOnly				1.00		0.99		0.98	
InvRigErr_Kalman_UpperHalfInner					1.00		0.98		
InvRigErr_GBL_InnerOnly-				0.99		1.00		0.99	
InvRigErr_GBL_UpperHalfInner					0.98		1.00		
InvRigErr_GBL_LowerHalfInner	0.96			0.98		0.99		1.00	
Rigidity_GBL_InnerOnly									1.00
	InvRigErr_Choutko_InnerOnly	nvRigErr_Choutko_UpperHalfInner	nvRigErr_Choutko_LowerHalfInner	InvRigErr_Kalman_InnerOnly	InvRigErr_Kalman_UpperHalfInner	InvRigErr_GBL_InnerOnly	InvRigErr_GBL_UpperHalfInner	InvRigErr_GBL_LowerHalfInner	Rigidity_GBL_InnerOnly -

- 0.5

Rigidity RICH

Rigidity TOI

RigidityTOI_Kalman_InnerOnly	1.00	0.83	0.94	1.00
RigidityTOI_Kalman_UpperHalfInner-		1.00		0.83
RigidityTOI_Kalman_LowerHalfInner			1.00	0.94
Rigidity_GBL_InnerOnly	1.00			1.00
	RigidityTOL_Kalman_InnerOnly	RigidityTOL_Kalman_UpperHalfInner -	RigidityTOl_Kalman_LowerHalfInner -	Rigidity_GBL_InnerOnly -

0.75

- 0.5

- 0.25

0

- +0.25

+0.5

-0.75

TrTRackresidual_I2_GBL_InnerOnly_Y	- 1.00								-0.73
TrTRackresidual_I2_GBLNoMS_InnerOnly_Y	0.78	1.00							-0.90
TrTRackresidual_I3_GBL_LowerHalfInner_Y	0.91								-0.70
TrTRackresidual_I3_GBLNoMS_InnerOnly_Y	0.66		1.00						-0.80
TrTRackresidual_I4_GBL_UpperHalfInner_Y	0.70								-0.69
TrTRackresidual_I4_GBL_LowerHalfInner_Y	0.87								-0.69
TrTRackresidual_I6_GBL_UpperHalfInner_Y	-0.62				1.00				0.80
TrTRackresidual_I7_GBL_InnerOnly_Y	-0.75					1.00	0.99		0.66
TrTRackresidual_I7_GBL_LowerHalfInner_Y	-0.74								0.67
TrTRackresidual_I8_GBL_InnerOnly_Y	-0.80							1.00	0.67

TrTRackresidual I8 GBL LowerHalfInner Y - 0.79 -0.78 -0.69 -0.61 -0.59 -0.65 0.62 0.81 0.82 0.98 1.00

Rigidity_GBL_InnerOnly												1.00	
	TrTRackresidual_I2_GBL_InnerOnly_Y	TRackresidual_12_GBLNoMS_InnerOnly_Y	rTRackresidual_I3_GBL_LowerHalfInner_Y	TRackresidual_I3_GBLNoMS_InnerOnly_Y	rTRackresidual_I4_GBL_UpperHalfInner_Y	rTRackresidual_I4_GBL_LowerHalfInner_Y	rTRackresidual_16_GBL_UpperHalfInner_Y	TrTRackresidual_I7_GBL_InnerOnly_Y	rTRackresidual_I7_GBL_LowerHalfInner_Y	TrTRackresidual_I8_GBL_InnerOnly_Y	rTRackresidual_I8_GBL_LowerHalfInner_Y	Rigidity_GBL_InnerOnly	

- 0.75

- 0.5

-0.25

0

- -0.25

- -0.5

- -0.75

TrTrackResiduals

TrTrackResiduals

76

Partial TrTrackResiduals

TrTRackresidual_I2_GBL_InnerOnly_Y	1.00	0.78	0.91	0.66	0.70	0.87	-0.62 -0	0.75 -	0.74 -(0.80 -0.7	79 -0.73	-1					
TrTRackresidual_I2_GBLNoMS_InnerOnly_Y	0.78	1.00	0.72								78 -0.90	- 0.75			1		Background sample low B
TrTRackresidual_I3_GBL_LowerHalfInner_Y	0.91		1.00			0.88					69 -0.70			10	3	++++	Signal sample low R
TrTRackresidual_I3_GBLNoMS_InnerOnly_Y	0.66	0.84	0.77	1.00		0.68					61 -0.80	- 0.5			1		Total sample low R
TrTRackresidual_I4_GBL_UpperHalfInner_Y				0.79	1.00	0.88					59 -0.69	- 0.25					Background sample mid B
TrTRackresidual_I4_GBL_LowerHalfInner_Y	0.87				0.88	1.00					65 -0.69					++++	Signal sample mid B
TrTRackresidual_I6_GBL_UpperHalfInner_Y	-0.62		-0.59		-0.64	-0.58	1.00				62 0.80	- 0		ស 10	2		Total sample mid R
TrTRackresidual_I7_GBL_InnerOnly_Y	-0.75					-0.62	0.61 1	00 (D.99 C		81 0.66	0.25		U Ə		0000	Background sample high
TrTRackresidual_17_GBL_LowerHalfInner_Y	-0.74						0.62 C).99]	L.00 C		82 0.67		r	Š	1	++++	Signal sample highR
TrTRackresidual_18_GBL_InnerOnly_Y	-0.80						0.62		0.80 1		98 0.67	0.5		ш 10	1		Total sample highR
TrTRackresidual 18 GBL LowerHalfInner Y	-0.79								0.82 C		00 0.69	0.75					
Rigidity GBL InnerOnly	-0.73								D.67 0	.67 0.6	69 1.00						
	Rackresidual_I2_GBL_InnerOnly_Y	esidual_l2_GBLNoMS_InnerOnly_Y	esidual_I3_GBL_LowerHalfInner_Y	esidual_I3_GBLNoMS_InnerOnly_Y	esidual_I4_GBL_UpperHalfInner_Y	esidual_I4_GBL_LowerHalfInner_Y	esidual_l6_GBL_UpperHalfInner_Y	Rackresidual_I7_GBL_InnerOnly_Y	esidual_I7_GBL_LowerHalfInner_Y	Rackresidual_18_GBL_InnerOnly_Y- esidual_18_GBL_LowerHalfInner Y-	Rigidity_GBL_InnerOnly	-1		10	0	-0.3 Tr	
	TrT	TrTRackn	TrTRackr	TrTRackn	TrTRackr	TrTRackr	TrTRackr	TrT	TrTRackr	TrT TrTRackn							77

Partial Rigidity

PartialRigidity_I2_Choutko	1.00	0.88	0.94	0.73	0.67	0.73	0.77	0.72	0.64	0.66	0.71	0.70	0.98
PartialRigidity_I2_Kalman	0.88	1.00											0.88
PartialRigidity_I2_GBL	0.94		1.00										
PartialRigidity_I3_GBL	0.73			1.00	0.94	0.52							
PartialRigidity_I3_GBLNoMS	0.67				1.00	0.47			0.50	0.49	0.51	0.52	
PartialRigidity_I4_GBL	0.73			0.52	0.47	1.00			0.52	0.52			
PartialRigidity_I5_Choutko	0.77						1.00						
PartialRigidity_I6_Kalman	0.72							1.00					
PartialRigidity_I7_Kalman	0.64				0.50	0.52			1.00	0.97	0.44	0.45	
PartialRigidity_I7_GBL	0.66				0.49	0.52			0.97	1.00	0.42	0.43	
PartialRigidity_18_Choutko	0.71				0.51				0.44	0.42	1.00	0.98	
PartialRigidity_I8_GBL	0.70				0.52				0.45	0.43	0.98	1.00	
Rigidity_GBL_InnerOnly	0.98	0.88											1.00
	artialRigidity_l2_Choutko	artialRigidity_l2_Kalman	PartialRigidity_l2_GBL	PartialRigidity_l3_GBL	tialRigidity_l3_GBLNoMS	PartialRigidity_l4_GBL	artialRigidity_l5_Choutko	artialRigidity_l6_Kalman	artialRigidity_I7_Kalman	PartialRigidity_I7_GBL	artialRigidity_l8_Choutko	PartialRigidity_l8_GBL	Rigidity_GBL_InnerOnly

- 0.75

- 0.5

- 0.25

- 0

--0.25

- -0.5

- -0.75

Partial Rigidity

0.43	0.98 0.70	1.00 0.70	0.70
0.43	0.98	1.00	
0.42	1.00	0.98	
1.00	0.42	0.43	
0.97	0.44	0.45	
0.52			
0.49	0.51	0.52	
			0.94
			0.88
			0.98
	 I. 0.66 I. 0.64 I. 0.65 I. 0.53 I. 0.53 I. 0.52 I. 0.55 I. 0.55 I. 0.55 I. 0.57 I. 0.57	0.66 0.71 0.64 0.65 0.65 0.68 0.53 0.56 0.4 0.53 0.53 0.56 0.53 0.51 0.54 0.55 0.55 0.57 0.55 0.57 0.59 0.57	0.66 0.71 0.70 0.64 0.65 0.67 0.65 0.68 0.69 0.53 0.56 0.56 0.54 0.55 0.56 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57

- 0.75

- 0.5

- 0.25

- 0

--0.25

- -0.5

-0.75

Partial Inv Rig Err

ċ

PartialInvRigErr_I2_Choutko	1.00												
PartialInvRigErr_I2_Kalman	0.92	1.00											
PartialInvRigErr_I3_Choutko	0.89		1.00										
PartialInvRigErr_I4_GBL	0.84			1.00									
PartialInvRigErr_I5_Kalman	0.88				1.00	0.97							
PartialInvRigErr_I5_GBL	0.91				0.97	1.00							
PartialInvRigErr_I6_Choutko	0.91						1.00						
PartialInvRigErr_I6_Kalman	0.88							1.00					
PartialInvRigErr_I7_Choutko	0.79								1.00				
PartialInvRigErr_I7_GBL	0.80									1.00			
PartialInvRigErr_I8_Kalman	0.81										1.00	0.97	
PartialInvRigErr_I8_GBL	0.84										0.97	1.00	
Rigidity_GBL_InnerOnly	-0.93												1.00

- 0.75

- 0.5

-0.25

- -0.25

-0.5

-0.75

~

Partial Inv Rig Err

	PartialInvRigErr_l2_Choutko	PartiallnvRigErr_l2_Kalman	PartialInvRigErr_I3_Choutko	PartialInvRigErr_l4_GBL	PartiallnvRigErr_l5_Kalman	PartialInvRigErr_I5_GBL	PartialInvRigErr_l6_Choutko	PartiallnvRigErr_l6_Kalman	PartialInvRigErr_I7_Choutko	PartialInvRigErr_I7_GBL	PartiallnvRigErr_l8_Kalman	PartialInvRigErr_l8_GBL	Rigidity_GBL_InnerOnly
Rigidity_GBL_InnerOnly	-0.93												1.00
PartialInvRigErr_I8_GBL											0.97	1.00	-0.88
PartialInvRigErr_I8_Kalman											1.00	0.97	-0.86
PartialInvRigErr_I7_GBL										1.00			-0.87
PartialInvRigErr_I7_Choutko									1.00				-0.81
PartialInvRigErr_I6_Kalman	0.88							1.00					-0.89
PartialInvRigErr_I6_Choutko	0.91						1.00						-0.89
PartialInvRigErr_I5_GBL	0.91				0.97	1.00							-0.92
PartialInvRigErr_I5_Kalman	0.88				1.00	0.97							-0.90
PartialInvRigErr_I4_GBL			0.77	1.00									-0.91
PartialInvRigErr_I3_Choutko	0.89		1.00										-0.86
PartialInvRigErr_l2_Kalman	0.92	1.00											-0.93
PartialInvRigErr_I2_Choutko	1.00												-0.93

0.75

0.5

0.25

-0.25

-0.5

-0.75

Physics Driven Features

TrTrackCharge_Inner_STD	1.00	0.25	0.02	0.09	-0.14	-0.03	-0.05	-0.07	-0.10	0.03	-0.13	-0.35		1
TrTrackChargeRMS_Inner_STD	0.25	1.00	0.01	0.01	0.12	-0.02	-0.00	-0.01	0.08	0.09	0.01	0.09		0.75
TrChiSq_Choutko_InnerOnly_Y	0.02	0.01	1.00	0.00	-0.10	0.08	0.65	0.53	0.01	0.01	-0.03	-0.05		
Charge_Total	0.09	0.01	0.00	1.00	0.04	0.03	-0.01	-0.00	0.21	0.02	0.29	-0.02		0.5
BetaTof_BetaH	-0.14	0.12	-0.10	0.04	1.00	0.03	0.07	0.06	0.12	0.09	0.18	0.83		0.25
InnerL1_rigiditycomp	-0.03	-0.02	0.08	0.03	0.03	1.00	0.02	0.09	0.02	0.03	0.02	0.07		
LowerUpper_rigiditycomp	-0.05	-0.00		-0.01	0.07	0.02	1.00		0.04	0.03	0.03	0.13		0
InnerPartiall2_rigiditycomp	-0.07	-0.01	0.53	-0.00	0.06	0.09	0.58	1.00	0.05	0.04	0.04	0.14		-0.25
TrkLowtof_chargecomp-	-0.10	0.08	0.01	0.21	0.12	0.02	0.04	0.05	1.00	0.14	0.34	0.22		
TrkUptof_chargecomp	0.03	0.09	0.01	0.02	0.09	0.03	0.03	0.04	0.14	1.00	0.26	0.15		-0.5
LowUptof_chargecomp	-0.13	0.01	-0.03	0.29	0.18	0.02	0.03	0.04	0.34	0.26	1.00	0.27		-0.75
Rigidity_GBL_InnerOnly	-0.35	0.09	-0.05	-0.02	0.83	0.07	0.13	0.14	0.22	0.15	0.27	1.00		
	TrTrackCharge_Inner_STD	TrTrackChargeRMS_Inner_STD	TrChiSq_Choutko_InnerOnly_Y	Charge_Total	BetaTof_BetaH -	InnerL1_rigiditycomp	LowerUpper_rigiditycomp -	InnerPartiall2_rigiditycomp	TrkLowtof_chargecomp	TrkUptof_chargecomp	LowUptof_chargecomp -	Rigidity_GBL_InnerOnly		-1

Physics Driven Features

Bologna group features

- 0.5

- 0.25

- 0

- -0.25

- -0.5

- -0.75

PartialRigidity_Asim_I1_GBL	1.00	0.15	0.22	0.21	0.20	0.17	0.26	0.27	0.14	-0.06	-0.03	-0.02	0.06	0.02
PartialRigidity_Asim_I2_GBL	0.15	1.00	0.46	0.46	0.45	0.41	0.47	0.51	0.01	0.02	0.01	0.01	-0.05	-0.15
PartialRigidity_Asim_I3_GBL	0.22	0.46	1.00	0.46	0.49	0.45			0.02	-0.07	-0.05	-0.03	-0.00	-0.05
PartialRigidity_Asim_I4_GBL	0.21	0.46	0.46	1.00	0.50	0.44			0.02	-0.09	-0.05	-0.03	0.00	-0.04
PartialRigidity_Asim_I5_GBL	0.20	0.45	0.49	0.50	1.00	0.35			0.03	-0.07	-0.05	-0.03	-0.01	-0.04
PartialRigidity_Asim_I6_GBL	0.17	0.41	0.45	0.44	0.35	1.00	0.50	0.51	0.04	-0.07	-0.04	-0.04	-0.00	-0.04
PartialRigidity_Asim_I7_GBL	0.26	0.47				0.50	1.00		0.00	-0.06	-0.03	-0.03	-0.01	-0.05
PartialRigidity_Asim_I8_GBL	0.27	0.51				0.51		1.00	0.03	-0.02	-0.01	-0.01	-0.02	-0.05
PartialRigidity_Asim_I9_GBL	0.14	0.01	0.02	0.02	0.03	0.04	0.00	0.03	1.00	-0.02	-0.01	-0.01	0.03	0.04
NClustersum_X_Onemm	-0.06	0.02	-0.07	-0.09	-0.07	-0.07	-0.06	-0.02	-0.02	1.00	0.50	0.38	-0.01	-0.14
NClustersum_X_Onecm	-0.03	0.01	-0.05	-0.05	-0.05	-0.04	-0.03	-0.01	-0.01	0.50	1.00		-0.00	-0.09
NClustersum_X_Twocm	-0.02	0.01	-0.03	-0.03	-0.03	-0.04	-0.03	-0.01	-0.01	0.38		1.00	-0.01	-0.07
TrChiSq_GBL_InnerOnly_X	0.06	-0.05	-0.00	0.00	-0.01	-0.00	-0.01	-0.02	0.03	-0.01	-0.00	-0.01	1.00	0.20
Rigidity_GBL_InnerOnly	0.02	-0.15	-0.05	-0.04	-0.04	-0.04	-0.05	-0.05	0.04	-0.14	-0.09	-0.07	0.20	1.00
	tialRigidity_Asim_l1_GBL	tialRigidity_Asim_l2_GBL	tialRigidity_Asim_l3_GBL -	tialRigidity_Asim_l4_GBL	tialRigidity_Asim_l5_GBL -	tialRigidity_Asim_l6_GBL ⁻	tialRigidity_Asim_l7_GBL -	tialRigidity_Asim_l8_GBL	tialRigidity_Asim_l9_GBL	NClustersum_X_Onemm	NClustersum_X_Onecm	NClustersum_X_Twocm -	rChiSq_GBL_InnerOnly_X	Rigidity_GBL_InnerOnly -

 $PartialRigidity_Asim_l_i_GBL = \frac{(PartialRigidityl_i_GBL - reconstructedR)}{(PartialRigidityl_i_GBL - reconstructedR)}$ reconstructedR

Bologna group features

Bologna group features

