Fully connected neural network for background suppression in \overline{He} research

Francesco Rossi

Using He Monte Carlo B1236 L1-focused and L1-L9 focused, and selecting the reconstructed events with R < 0, we identified three sources of charge confusion

Using He Monte Carlo B1236 L1-focused and B1236 L1-L9 focused, and selecting the reconstructed events with R < 0, we identified three sources of charge confusion

Silicon tracker finite resolution

Using He Monte Carlo B1236 L1-focused and B1236 L1-L9 focused, and selecting the reconstructed events with R < 0, we identified three sources of charge confusion

Interactions within the detector

Using He Monte Carlo B1236 L1-focused and B1236 L1-L9 focused, and selecting the reconstructed events with R < 0, we identified three sources of charge confusion

For each source, we select a sample to be used in the training of a Fully Connected Neural Network

Using He Monte Carlo B1236 L1-focused and B1236 L1-L9 focused, and selecting the reconstructed events with R < 0, we identified three sources of charge confusion

Search in the secondaries list looking for inelastic interaction products inside the inner tracker

P. Zuccon added a MC flag for events interacting elastically at gBatch level.

The tag is added every time that a discrete elastic scattering is called. It stores info about the scattering nuclei, scattering angle, initial and final momentum of primary particle.

More info available in NAIA pzv1.2.0 on Gitlab.

```
1'000 naia ntuple produced on Trento AMS server, R_{true} \leq 200 [GV].
```


Search in the secondaries list looking for secondaries produced inside the inner tracker (HasSecondary)

Events are not Had. Inel. Interactions and primary nuclei reaches L2

Propagation of two tracks: $R_{true}(L2)$ and $R_{inner}(<0)$ Build two χ^2 comparing y coordinate with MC true info on each layer.

$$\begin{aligned} \frac{\chi_{R_{inner}}^2}{\chi_{R_{true}}^2} &\leq 0.85 \quad \rightarrow \text{El. scat.} \\ 1.15 &\leq \frac{\chi_{R_{inner}}^2}{\chi_{R_{true}}^2} \quad \rightarrow (\text{HasSecondary}) ? \text{Other} : \text{Spillover} \\ 0.85 &< \frac{\chi_{R_{inner}}^2}{\chi_{R_{true}}^2} \leq 1.15 \rightarrow (\text{HasSecondary}) ? \text{Other} : \text{Spillover} \end{aligned}$$

11/4/2024

R_{inner} < 0 (elastic scattering within inner tracker)

 $\sigma_{hit}^2 = 15 \,\mu m$

N_FlipProp_bin_(104.337868_130.184189)_xy

N_FlipProp_bin_(104.337868_130.184189)_xy

R_{inner} < 0 (elastic scattering within inner tracker)

N_FlipProp_bin_(104.337868_130.184189)_xy

 $\sigma_{hit}^2 = 15 \,\mu \mathrm{m}$

Francesco Rossi - University of Trento

N_FlipProp_bin_(104.337868_130.184189)_xy

R_{inner} < 0 (elastic scattering within inner tracker)

N_FlipProp_bin_(104.337868_130.184189)_xy

 $\sigma_{hit}^2 = 15 \,\mu\mathrm{m}$

R_{inner} < 0 (elastic scattering within inner tracker)

 $\sigma_{hit}^2 = 15 \,\mu m$

Monte carlo selection (He B1236 L1-focused and L1-L9 focused)

IsPhysicsTrigger

TOF hits ≥ 4 $\beta > 0$ $\chi^2_{COO} < 4$

Track number ≥ 1 track pattern L1&L2&(L3|L4)&(L5|L6)&(L7|L8) (≥ 5)

```
charge STD (inner) \in [1.7, 2.4]
charge STD (L1) \in [1.6, 3.0]
Inner fiducial volume
L1 fiducial volume
```

 $\chi_Y^2 < 10$ charge UTOF $\in [1.5, 3.0]$ charge LTOF ≥ 1.5

Sign inner upper half (UH) and lower half (LH)

Tracker fiducial volume cut: L1: |R|<62cm, |Y|<47cm L2: |R|<62cm, |Y|<40cm L3: |R|<46cm, |Y|<44cm L4: |R|<46cm, |Y|<44cm L5: |R|<46cm, |Y|<36cm L6: |R|<46cm, |Y|<36cm L7: |R|<46cm, |Y|<44cm L8: |R|<46cm, |Y|<44cm

Monte carlo selection (He B1236 L1-focused and L1-L9 focused)

IsPhysicsTrigger

TOF hits ≥ 4 $\beta > 0$ $\chi^2_{COO} < 4$

Track number ≥ 1 track pattern L1&L2&(L3|L4)&(L5|L6)&(L7|L8) (≥ 5)

```
charge STD (inner) \in [1.7, 2.4]
charge STD (L1) \in [1.6, 3.0]
Inner fiducial volume
L1 fiducial volume
```

 $\chi_Y^2 < 10$ charge UTOF $\in [1.5, 3.0]$ charge LTOF ≥ 1.5 **Composition**:

76% Spillover, 21% El. Scat. 2% Had. Inel 0.04% Other

~ $0.9 \cdot 10^6$ training

~ 0. $4 \cdot 10^6$ testing

Input features for Fully Connected Neural Network (FCNN)

- Distance between track hit and strip with max energy deposit on L8.
- Number of hits in L3-L8 inner tracker Y side.
 - Track hit energy deposition on L8.
- Total energy deposition of tracker clusters on L8 Y-side.
 - Ratio between cluster amplitude and its neighbouring 10 strips (L8)
 - Max cluster energy deposit on L8 Y-side.

• ACC clusters

- Number of hits in L3-L8 inner tracker X side.
 - Track hit energy deposition on L7.
- Total energy deposition of tracker clusters on L7 Y-side.
- Ratio between cluster amplitude and its neighbouring 10 strips (L2)
- Max cluster energy deposit on L7 Y-side.

Input features for Fully Connected Neural Network (FCNN)

- Distance between track hit and strip with max energy deposit on L8.
- Number of hits in L3-L8 inner tracker Y side.
 - Track hit energy deposition on L8.
- Total energy deposition of tracker clusters on L8 Y-side.
 - Ratio between cluster amplitude and its neighbouring 10 strips (L8)
 - Max cluster energy deposit on L8 Y-side.

ACC clusters

•

- Number of hits in L3-L8 inner tracker X side.
 - Track hit energy deposition on L7.
- Total energy deposition of tracker clusters on L7 Y-side.
- Ratio between cluster amplitude and its neighbouring 10 strips (L2)
- Max cluster energy deposit on L7 Y-side.

11/4/2024

Fully Connected Neural Network (FCNN) for classification

- FCNN structure:
 - PyTorch

• Loss function: Cross Entropy

Fully Connected Neural Network (FCNN) for classification

- Training (200) epochs on $9\cdot 10^5$ events
- Validation on $4\cdot 10^5$ events
- Training and validation dataset are unbalanced

The classifier predict random probabilities, maybe due to samples unbalance.

The network is not able to distinguish Spillover and El. Scat.

Discriminants

- The network returns a vector of three elements.
 - Each element corresponds to the probability that the current event is belonging to the 1st, 2nd, 3rd or 4th class:

FCNN output= $(p_{spillover}, p_{Had.Inel}, p_{El.Scat.}, p_{Other})$

• The fraction of each class is defined as:

 $f_{Had.inel.} = \frac{\#Had.inel.}{\#Spillover + \#Had.Inel + \#El.scat. + \#Other}$

• The discriminant is defined as

 $D_{Spillover} = \log_{10} \left(\frac{p_{Spillover}}{f_{Had.inel.} \cdot p_{Had.inel.} + f_{El.scat.} \cdot p_{El.scat.} + f_{Other} \cdot p_{Other}} \right)$

Discriminants for spillover and had. Inel.

Discriminant for el. scat.

Prospects

- Propagator does not take into account energy losses and multiple scattering.
- Study alternative label definition in the MC sample.
- Investigate new input features to discriminate between spillover and elastic scattering.
- Rigidity dependence of the input variables.
- Reweight the MC; more on checks on agreement between MC and data
- Train the network on balanced dataset and validate on unbalanced sample.
- Improve data statics (~ 40 bartel rotations to be analyzed).
- MC B1306 is not focused, interesting to integrate the P.Z. flag for elastic interactions.
- Modify NAIA to save each secondary produced by hadronic (inelastic and elastic) interactions.
- Study possible alternative ML techniques as anomaly detection.

Prospects

- Propagator does not take into account energy losses and multiple scattering.
- Study alternative label definition in the MC sample.
- Investigate new input features to discriminate between spillover and elastic scattering.
- Rigidity dependence of the input variables.
- Reweight the MC; more on checks on agreement between MC and data
- Train the network on balanced dataset and validate on unbalanced sample.
- Improve data statics (~ 40 bartel rotations to be analyzed).
- MC B1306 is not focused, interesting to integrate the P.Z. flag for elastic interactions.
- Modify NAIA to save each secondary produced by hadronic (inelastic and elastic) interactions.
- Study possible alternative ML techniques as anomaly detection.

Thank you for your attention!

Backup

Monte Carlo label defintion

- 1. Check for secondary production due to the primary particle within the inner tracker (HasSecondary)
- 2. Check for inelastic interactions (HasHadInel).
 - 1. If true the event is tagged as Had. Inel.
 - 1. Otherwise:
 - 1. If primary reaches L2 propagate two different tracks inside the inner tracker: $R_{true}(L2)$ and $R_{inner}(<0)$.
 - 1. Build two χ^2 comparing y coordinate with MC true info on each layer.
 - 2. Check the χ^2 ratio, i.e.:

$$\frac{\chi_{R_{inner}}^2}{\chi_{R_{true}}^2} \le 0.85 \rightarrow \text{El. scat.}$$

$$1.15 \le \frac{\chi_{R_{inner}}^2}{\chi_{R_{true}}^2} \rightarrow (\text{HasSecondary}) ? \text{Other} : \text{Spillover}$$

$$0.85 < \frac{\chi_{R_{inner}}^2}{\chi_{R_{true}}^2} \le 1.15 \rightarrow (\text{HasSecondary}) ? \text{Other} : \text{Spillover}$$

Known problems: no MS and E losses in propagator

2. Otherwise, tagged the event as Other

Monte carlo selection (He B1236 L1-focused and L1-L9 focused)

IsPhysicsTrigger

TOF hits ≥ 4 $\beta > 0.2$ $\chi^2_{COO} < 4$

Track number ≥ 1 track pattern L1&L2&(L3|L4)&(L5|L6)&(L7|L8) (≥ 5)

```
charge STD (inner) \in [1.7, 2.4]
charge STD (L1) \in [1.6, 3.0]
Inner fiducial volume
L1 fiducial volume
```

 $\chi_Y^2 < 10$ charge UTOF $\in [1.5, 3.0]$ charge LTOF ≥ 1.5

Sign inner upper half (UH) and lower half (LH)

Tracker fiducial volume cut: L1: |R|<62cm, |Y|<47cm L2: |R|<62cm, |Y|<40cm L3: |R|<46cm, |Y|<44cm L4: |R|<46cm, |Y|<44cm L5: |R|<46cm, |Y|<36cm L6: |R|<46cm, |Y|<36cm L7: |R|<46cm, |Y|<44cm L8: |R|<46cm, |Y|<44cm

Monte carlo selection

Events that passed each single cut

NoCut	500491312	1
RTIGood	500491312	1
RTIIsInSAA(0)	500491312	1
RTILiveTimeFraction(0.5)	500491312	1
RTIMaxIGRFCutoff(1.2)	500227657	0.9581
IsPhysicsTrigger	220888791	0.4428
NTOFBetaClusters(4)	171550001	0.3434
BetaPos(0.2)	169748467	0.3411
BetaChi2Coo(4)	123648484	0.2471
NTrTracks(1)	123648484	0.2471
CheckTrackPattern(5)	88062811	0.1739
HasGBLFitInner	87993945	0.1785
HasGBLFitInnerL1	80523904	0.1540
ChargeInnerTrackerYJ(1.7,2.4)	74476455	0.1513
ChargeLayer1(1.6,3)	73880952	0.1478
CheckFiducialInner	67828295	0.1373
IsInsideL1Fiducial	65066199	0.1307
Chi2Y_GBL_InnerOnly(10)	62374412	0.1245
ChargeUpperTof(1.5,3)	61801388	0.1233
ChargeLowerTof(1.5,30)	61325352	0.1224
HasGBLFitUHInner	59564150	0.1191
HasGBLFitLHInner	59554190	0.1191
SignUHandLH	48911442	0.0978
		1 2

MC with large angle scattering flag

Selection

Selezione comune attualmente usata

IsPhysicsTrigger β>0 TOF hits = 4Chi2Coo < 4Track number >= 1 charge YJ (inner) c [1.7, 2.4] Inner fiducial volume charge YJ (L1) € [1.6, 3.0] track pattern 5/8 (L1-inner) $\chi_{Y}^{2} < 10$ charge (UTOF) € [1.5, 3.0] charge (LTOF) > 1.5 $(R_{UH}, R_{LH} < 0)$ oppure $(R_{UH}, R_{LH} > 0)$

NoCut	15376772	1	
RTIGood	15376772	1	
RTIIsInSAA(0)	15376772	1	-
RTILiveTimeFraction(0.5)	15376772	1	-
IsPhysicsTrigger	7526862	0.4892	
BetaPos(0.2)	6383353	0.4148	
NTOFBetaClusters(4)	5849648	0.3801	
BetaChi2Coo(4)	4476765	0.2907	
NTrTracks(1)	4476765	0.2907	-
HasGBLFitInner	4472418	0.2904	
ChargeInnerTrackerYJ(1.7,2.4)	3905926	0.2535	
CheckFiducialInner	3311273	0.2149	
ChargeLayer1(1.6,3)	2997280	0.1946	
IsInsideL1Fiducial	2997274	0.1946	
CheckTrackPattern(5)	2680073	0.1740	
Chi2Y_GBL_InnerOnly(10)	2573763	0.1672	
ChargeUpperTof(1.5,3)	2550871	0.1657	
ChargeLowerTof(1.5,30)	2529516	0.1642	
HasGBLFitUHInner	2434282	0.1581	
HasGBLFitLHInner	2433791	0.1580	
SignUHandLH	2379294	0.1545	
0	1		2

R_{inner} < 0 _____ 696 eventi

Distribution of the scattering angle (R < 0)

$(R_{inner} < 0)$ and elasti scattering inside the inner tracker

 $R_{gen} \in [0, 50[$ $\log_{10}(R_{gen}) < 1.67$

$(R_{inner} < 0)$ and elastic scattering inside the inner tracker

$R_{gen} \in [50, 100[$ $\log_{10}(R_{gen}) < 2.0$

$(R_{inner} < 0)$ and elastic scattering inside the inner tracker

 $R_{gen} \in [150, 200[$ $\log_{10}(R_{gen}) < 2.30$

(*R*_{inner} < 0) and elastic ^{2.5} scattering inside the inner tracker ^{2.5} MC_N_elScatPtKinkVSRtrue Entries Mean x Mean y Std Dev x Std Dev y

0.5

MC elastic scattering momentum variation in module

1.002 1.004 1.006 1.008 1.01

| P_T |/| P_T |

0.99 0.992 0.994 0.996 0.998

242

1.000

1.893

7.178e-4

0.5709

Distribution of the scattering angle (R > 0)

$(R_{inner} > 0)$ and elastic scattering inside the inner tracker

$R_{gen} \in [50, 100[$ $\log_{10}(R_{gen}) < 2.0$

$(R_{inner} > 0)$ and elastic scattering inside the inner tracker

 $R_{gen} \in [50, 100[$ $\log_{10}(R_{gen}) < 2.0$

11/4/2024

$(R_{inner} < 0)$ and elastic scattering inside the inner tracker

 $R_{gen} \in [100, 150[$ $\log_{10}(R_{gen}) < 2.18$

$(R_{inner} < 0)$ and elasticscattering inside theinner tracker

 $R_{gen} \in [150, 200[\log_{10}(R_{gen}) < 2.30]$

11/4/2024

11/4/2024

MC and ISS-data comparison

Distance between track hit and strip with max energy deposit on L8.

ACC clusters

Number of hits in L3-L8 inner tracker Y side.

Number of hits in L3-L8 inner tracker X side.

Francesco Rossi

Track hit energy deposition on L8.

Track hit energy deposition on L7.

Francesco Rossi

Total energy deposition of tracker clusters on L7 Y-side .

Ratio between cluster amplitude and its neighbouring 10 strips (L8)

Ratio between cluster amplitude and its neighbouring 10 strips (L2)

Francesco Rossi

ISS selections for skimming and analysis

ISS-data skimming cutflow

-		
No cut	1.3638e+10	1
RTI good	1.36258e+10	0.999109
SAA	1.28328e+10	0.941883
LiveTimeFraction > 0.5	1.27602e+10	0.936756
Zenith < 40 deg	1.27443e+10	0.93578
Physics Trigger	1.20464e+10	0.887975
NBetaClusters > 4	7.89321e+09	0.581799
Beta > 0	6.61817e+09	0.487718
BetaChi2Coo < 8	6.15594e+09	0.453648
NTracks >= 1	6.15594e+09	0.453648
Track pattern 5/8	1.65662e+09	0.122044
GBL fit Inner	1.65602e+09	0.121999
GBL fit InL1	1.41551e+09	0.104254
Inner CH [1.7, 2.4]	1.60342e+08	0.0118012
L1 CH [1.6, 3.0]	1.54294e+08	0.0113556
Inner fiducial volume	1.43048e+08	0.01053
L1 fiducial volume	1.3741e+08	0.0101151
ChiSq Inner < 20	1.32873e+08	0.00978084
Ċ)	1 2

```
RTIgood = 0
isInSAA
LiveTimeFraction > 0.5
Zenith < 40 deg
```

IsPhysicsTrigger

TOF hits ≥ 4 $\beta > 0$ $\chi^2_{COO} < 8$

Track number ≥ 1 charge STD (inner) $\in [1.7, 2.4]$ Inner fiducial volume charge STD (L1) $\in [1.6, 3.0]$ track pattern L1&L2&(L3|L4)&(L5|L6)&(L7|L8) (≥ 5)

 $\chi_{Y}^{2} < 20$

Tracker fiducial volume cut: L1: |R|<62cm, |Y|<47cm L2: |R|<62cm, |Y|<40cm L3: |R|<46cm, |Y|<44cm L4: |R|<46cm, |Y|<44cm L5: |R|<46cm, |Y|<36cm L6: |R|<46cm, |Y|<36cm L7: |R|<46cm, |Y|<44cm L8: |R|<46cm, |Y|<44cm

ISS-data analysis cutflow

Events that passed each single cut

	400007500	4
NoCut	129027523	1
RTIGood	129027522	0.9934
RTIIsInSAA(0)	129027522	0.9934
RTILiveTimeFraction(0.5)	128498662	0.9879
RTIMaxIGRFCutoff(1.2)	116341190	0.8941
IsPhysicsTrigger	116341190	0.8941
NTOFBetaClusters(4)	116341190	0.8941
BetaPos(0.2)	116341028	0.8941
BetaChi2Coo(4)	114566686	0.8804
NTrTracks(1)	114566686	0.8804
CheckTrackPattern(5)	114566686	0.8804
HasGBLFitInner	114566686	0.8804
HasGBLFitInnerL1	114566686	0.8804
ChargeInnerTrackerYJ(1.7,2.4)	113643991	0.8733
ChargeLayer1(1.6,3)	113218442	0.8701
CheckFiducialInner	113218025	0.8701
IsInsideL1Fiducial	113218024	0.8701
Chi2Y_GBL_InnerOnly(10)	109520915	0.8416
ChargeUpperTof(1.5,3)	108300092	0.8323
ChargeLowerTof(1.5,30)	107384487	0.8252
HasGBLFitUHInner	104075720	0.7997
HasGBLFitLHInner	104057083	0.7995
SignUHandLH	103846950	0.7979
()	1 2

ISS-data analysis cutflow

L1Inner = Rig. [L1-inner] IGRFCutoff = rti_info.MaxIGRFCutoff[40°][ch_sign] Hist = Rig. Histogram with binning from <u>He_7_5y</u>

if (L1Inner <= hist->GetBinLowEdge(hist->FindBin(1.2 * IGRFCutoff)+1))

Do I have to consider positive or negative charges?

NoCut RTIGood RTIIsInSAA(0) RTILiveTimeFraction(0.5) RTIMaxIGRFCutoff(1.2) **IsPhysicsTrigger** NTOFBetaClusters(4) BetaPos(0.2) BetaChi2Coo(4) NTrTracks(1 CheckTrackPattern(5) HasGBLFitInner HasGBLFitInnerL1 ChargeInnerTrackerYJ(1.7,2.4) ChargeLayer1(1.6,3) CheckFiducialInner IsInsideL1Fiducial Chi2Y GBL InnerOnly(10) ChargeUpperTof(1.5,3) ChargeLowerTof(1.5,30) HasGBLFitUHInner HasGBLFitLHInner SignUHandLH

ISS-data analysis cutflow

	NoCut	
	RTIGood	
	RTIIsInSAA(0)	
	RTILiveTimeFraction(0.5)	
	RTIMaxIGRFCutoff(1.2)	
	IsPhysicsTrigger	
	NTOFBetaClusters(4)	
	BetaPos(0.2)	
	BetaChi2Coo(4)	
	NTrTracks(1)	
	CheckTrackPattern(5)	
	HasGBLFitInner	
	HasGBLFitInnerL1	
Cha	rgeInnerTrackerYJ(1.7,2.4)	
	ChargeLayer1(1.6,3)	
	CheckFiducialInner	
_	IsInsideL1Fiducial	
	Chi2Y_GBL_InnerOnly(10)	
	ChargeUpperTof(1.5,3)	
	ChargeLowerTof(1.5,30)	
	HasGBLFitUHInner	
	HasGBLFitLHInner	
	SignUHandLH	
	0	

= Rig. [UH-inner]
= Rig. [LH-inner]
= Rig. [inner]

 $\begin{aligned} \text{If}(\text{Inner} > 0) &\rightarrow (\text{UH} > 0, \text{LH} > 0) \\ \text{If}(\text{Inner} < 0) &\rightarrow (\text{UH} < 0, \text{LH} < 0) \end{aligned}$

Measured inner tracker rigidity:

Measured inner tracker rigidity < 0:

55

FCNN input features (old selection)

Input features 1

- Distance between track hit and strip with max energy deposit on L8.
- Ratio between strip energy deposition and and its neighbouring 10 strips, on L8.
- Number of hits in L3-L8 inner tracker Y side.
- Track hit energy deposition on L8.

Input features 2

- Total energy deposition on L8.
- Max energy deposit on a single strip on L7.
- Ratio between strip energy deposition and and its neighbouring 10 strips, on L2.
- Number of hits in L3-L8 inner tracker X side.

Input features 3

- Track hit energy deposition on L7.
- Total energy deposition on L7.
- Number of fired ACC.
- Max energy deposit on a single strip on L8.

Correlation matrix and features ranking

Feature ranking Hit on track E (L8) Max strip E (L8) SR (L8) Strip E (L8) ACC Clusters Y Clusters X Max strip E (L7) Max strip distance (L8) ┿ Strip E (L7) ┿╋╋ More relevant SR (L2) ⊷ Hit on track E (L7) 10-3 10^{-2} 10^{-1} Feature importance

Correlation matrix

11/4/2024