

November 6th 2024 Discussion about European Strategy for INFN

The EIC project

Annalisa D'Angelo, Lucilla Lanza University of Rome Tor Vergata & INFN Rome Tor Vergata Rome – Italy

Outline:

- Physics case: color confinement and strong QCD
- TMD and DVCS N spin structure and 3D image and the role of the glue
- The ePIC detector
- The Timeline
- The ePIC collaboration

• Quark & gluon longitudinal momentum fractions have been well mapped out - Nucleon spin &

mass have large contributions from quark-gluon dynamics, described by QCD

Proton

1975

 $0.3⁵$

Proton

2015

Largest fraction of energy in proton (x) carried by 3 valence quarks $(2u,d)$, but very small fraction of proton spin

Where we are:

fraction of energy

Proton

early 1900s

• Elastic lepton scattering determined the nucleon's charge & magnetism distributions in sphere with $\langle r_{ch} \rangle \approx 0.84$ fm

Proton

in a nucleus

Deep Inelastic Scattering (DIS)

 $Q^2 = s \cdot x \cdot y$

- s center-of-mass energy squared
- Q^2 resolution power
- x the fraction of the nucleon's momentum carried by the struck quark $(0 < x < 1)$ inelasticity

- As a probe, electron beams provide unmatched precision of the electromagnetic interaction
- Direct, model independent determination of parton kinematics and spin of physics processes at the leading order
- Additional information obtained indirectly from hadron-collider measurements

History of Nucleon Structure Studies

1950-1960: Does the proton have finite size and structure?

- Elastic electron-proton scattering
	- \div the proton is not a point-like particle but has finite size seen through charge and current distribution in the proton G_{F}/G_{M}

Nobel prize 1961- R. Hofstadter

1960-1990: What are the internal constituents of the nucleon?

- Deeply inelastic scattering
	- ⁺ discover quarks in 'scaling' of structure function measure their momentum and spin distributions

Nobel prize 1990 - J. Friedman, H. Kendall, R. Taylor

Today: Unraveling a 3-D image of the quark and gluon distributions, including mass, spin, and pressure distributions

• How do properties of colorless hadrons emerge from the confined dynamics of colored quarks and gluons? ${\cal L}_{\rm QCD} = \sum \bar{\psi}_q \left(i \partial \!\!\!/- - g A \!\!\!/- + m \right) \psi_q - \frac{1}{4} \, G^a_{\mu\nu} \, G^{\mu\nu}_a$

QCD is the most complex part of the Standard Model

At Nucleon mass scale (1 GeV), dynamics is highly nonlinear and leads to **confinement** of partons. How do N mass / size / spin emerge from these dynamics?

"*Nucleons are the stuff of which our world is made.*

As such they must be at the center of any discussion of why the world we actually experience has the character it does."

Nathan Isgur, 2000

Derek B. Leinweber – University of Adelaide

• How do massless quarks acquire mass?

Effective quark mass depends on its momentum

Almost all the nucleon mass comes from the energy spent to bind the quarks inside it!

• How are the quarks and gluons, and their intrinsic spins distributed in space & momentum inside the nucleon? What is the role of the angular momentum ?

SIDIS and TMDs measurements toward a 3D imaging of the proton

Transverse Momentum Distributions contain information about longitudinal and transverse motion of partons

• **Where** does **gluon saturation** set in **? Universal gluonic matter** at high density **? quarkgluon** interactions in **nuclear matter ?**

There are hints and theory predictions that protons, neutrons, and nuclei accelerated close to the speed of light will appear (when observed with a high energy probe) as **dense "walls" of gluons**.

A high intensity electron beams to search for evidence of gluon saturation.

• How do properties of colorless hadrons emerge from the confined dynamics of colored quarks and gluons?

Measure the Q2 dependence of hadrons electrocouplings and form factors

• How do massless quarks acquire mass?

Access the Energy - Momentum Tensor and the Gravitational Form Factors

• How are the quarks and gluons, and their intrinsic spins distributed in space & momentum inside the nucleon? What is the role of the angular momentum ?

SIDIS and TMDs measurements toward a 3D imaging of the proton

• How is color confinement realized in the force and pressure distributions and stabilize nucleons?

Study GPDs and their moments from DVCS

• Where does gluon saturation set in?

Study deep processes on Nuclei

The EIC scientific program addresses all these questions

QCD Exploration at EIC

At the Electron-Ion Collider (EIC), we'll study how the smallest building blocks of matter — the quarks and gluons that make up protons and neutrons — build up the structure and properties of all visible matter

QCD Exploration at EIC

REQUIREMENTS

- Access to gluon dominated region and wide kinematic range in x and Q^2
- Access to spin structure and 3D spatial and momentum structure
- Accessing the highest gluon densities
- Studying observables as a function of x, Q^2 , hadronic flavour, ...

THE EIC COLLIDER PROVIDES

- Large center-of-mass energy range: $Vs = 21 - 140$ GeV
- Polarized electron, proton and light nuclear beams ≥ 70%
- Nuclear beams, the heavier the better (from H to U)
- High luminosity (100 x HERA): 10^{33-34} cm^{-2 s-1}

The Path to the EIC Project

The ~\$1.7-2.8 billion Electron-Ion Collider (EIC) will be funded primarily by the U.S. Department of Energy's Office of Science, with contributions from New York State and other science agencies in the U.S. and around the world.

The Electron-Ion Collider (EIC) will make use of existing components of Brookhaven's Relativistic Heavy Ion Collider (RHIC), including:

- Its ion sources
- Pre-accelerator chain
- Superconducting magnet ion storage ring. In addition:
- New electron accelerator ring
- Electron storage ring inside the existing collider tunnel

Collisions can take place at points where the stored ion and electron beams cross.

The Central Detector

 $-4 < \eta < 4$ The Far Forward and Far Backward Detector

The Central Detector

The ePIC detector: Detector Magnet

Comment

value: 1.7 T

Reference field

Magnetic Field

Properties

Value

 $2.0T$

 $0.5T$

12.5%

 $± 100$ cm around

center

80 cm radius

 < 0.1 (mrad@30GeV/c)

 < 10 T/A/mm² From $Z = 180$ cm to

280 cm

 B_0

Lowest

field

Field

FFA

Superconducting Solenoid Magnet

The ePIC detector: EM Calorimeter

e-endcap

h-endcap

Barrel

The ePIC detector: Hadronic Calorimeter

 $\sigma_{\rm E}/E$

 $\frac{(7-10)\%}{\sqrt{F}}$ \oplus $(1-3)\%$

e-endcap

h-endcap

Barrel

The ePIC detector: Particle ID Detector

The ePIC detector: Tracking Detectors

Components:

- SVT
- MPGD trackers

SVT:

- Fine space resolution < 20 μ m
- Five cylindrical layers in the barrel and five disks in each endcap

MPGD trackers:

- Good time resolution (10 ns)
- **Cylindrical MICROMEGAS**
- Planar uR-WELL **with GEM preamplification**

ECFA – Discussion about European Strategy for INFN – November 6th 2024- Annalisa D'Angelo, Lucilla Lanza– The EIC Project 24

The ePIC MPGD Tracking

The ePIC MPGD Tracking

G. Bencivenni et al., The micro-Resistive WELL detector: a compact spark-protected single amplification-stage MPGD, 2015 JINST 10 P02008

Test with Cosmic Copper 5 µm kapton Rays made in November 2024 DLC layer (<0.1 μ m)
 ρ ~10÷100 MQ/ \Box @ LNFPre-preg

The ePIC Schedule

The EIC- ePIC International Collaboration

The EIC User Group: https://eicug.github.io/

Formed in 2016 -

- \cdot 1487 members
- 40 countries
- 6 world regions
- 292 institutions

As of May 10, 2024

IRCFIC OF CAFRICORY OCEAN SOUTH ACIFIC OCEAN

101 INFN Physicists 16 INFN Institutes

INFN In-Kind Responsibilities

- Si Vertex detector
- Dual RICH
- Streaming Read-out
- **MPGD Endcap trackers**

Institutions

Annual EICUG meeting

2016 UC Berkeley, CA 2016 Argonne, IL 2017 Trieste, Italy 2018 CUA, Washington, DC 2019 Paris, France 2020 Miami, FL 2021 VUU, VA & UCR, CA 2022 Stony Brook U, NY 2023 Warsaw, Poland 2024 Lehigh U., PA

Final Considerations

The EIC is a unique project, the word only one approved for the ultimate understanding of QCD

Most likely, the only novel high energy collider in the next 15-20 years

- The EIC project is approved and progressing according to schedule ٠
- The ePIC Collaboration for the project detector ePIC is working and \blacksquare highly committed
	- The ePIC detector design is dictated by the physics scope
	- A number of established and novel technologies needed to match this **scope**
	- Relevant synergies with CERN in physics (not discussed today) and in detector technologies
- Exciting perspectives in front of us designing, building, operating ePIC and progressing in physics with our detector

Thank you !

Back-up slides

• How is color confinement realized in the force and pressure distributions and stabilize nucleons?

Nucleon Structure Evolution

The ePIC Central Detector

Very naturally organized in:

- **Backward endcap** \bullet
- **Barrel**
- **Forward endcap**

subsystems

The ePIC Solenoid

The ePIC Tracking

The ePIC Silicon Tracking

• Inner Barrel (IB)

- Three layers, L0, L1, L2,
- Radii of 36, 41, 120 mm
- Length of 27 cm
- $X/X_0 \sim 0.05\%$ per layer
- Curved, thinned, wafer-scale sensor

• Outer Barrel (OB)

- Two layers, L3, L4
- Radii of 27 and 42 cm
- $X/X_0 \sim 0.25\%$ and $\sim 0.55\%$
- More conventional structure w. staves

• Electron/Hadron Endcaps (EE, HE)

- Two arrays with five disks
- X/X_0 ~0.25% per disk
- More conventional structure

• Lengths for L2—L4 increase so as to project back to $z = 0$; disk radii adjust accordingly

The ePIC Calorimeters

The ePIC PID

→

REQUIREMENTS

• Semi-inclusive DIS ▶ 5-dimensional binning in x, Q^2 , z p_T, θ

• Exclusive processes ▶ 4-dimensional binning in x, Q^2 , θ to reach $|t| > 1$ GeV2

ePIC detector

- Large coverage (-3.5 < η < 3.5) for wide phase-space reach
- **Excellent EM-calorimetry with PID** support for e/π separation
- Fine resolution tracking by low mass detectors
- Fine p_{τ} resolution
	- **Extended PID systems for hadron** *identification*
	- **H-calorimetry to attempt TMD** assessment with jets (new worldwide), as tail chatter, for μ identification
	- **Extend acceptance at extremely** small scattering angles
	- **Fine vertex resolution by tracking**

Generalized detector design considerations

- Large rapidity coverage for central detector
- \circ Specialized far-forward detectors for p kinematics measurements
- High precision low mass tracking
- Hermetic coverage of tracking, electromagnetic & hadronic calorimetry
- High performance single track PID for π , K, p seperation

Off-Momentum Detectors

Roman Pots

ZDC

- Large acceptance for diffraction, tagging, neutrons from nuclear breakup many auxillary detectors integrated in beam line: low- Q^2 tagger, Roman pots, $ZDCs$... B₀
- High control of systematics luminosity monitors, electron & hadron polarimetry

Highly integrated design between detector and accelerator