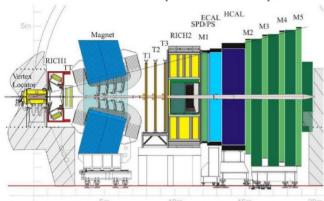


The LHCb experiment upgrade II

E. Santovetti Università di Roma Tor Vergata e INFN

The LHCb detector



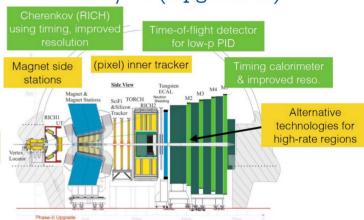
- Exploit large $\sigma_{pp\to b\bar{b},c\bar{c}}$ in $\eta\in[2,5]$ at LHC pp collisions
- ▶ Unique capabilities in forward region with fully flexible software triggers (since Run3) in real time.
 - ▶ Channels studied from $\mathscr{B} \sim \mathcal{O}(10^{-10}) \mathcal{O}(1)$
- Very broad physics program in flavour (and not only) aiming at precision measurement for indirect NP signature finding. But also rare-decays, QCD, EW-physics, heavy-ion....

The LHCb detector evolution

Past

Run I + Run II (2011-2018)

Physics case grown and matured


Full software trigger and upgraded sub-detectors/read-out to benefit of higher luminosity

Present

Run III/IV (Upgrade I)

<u>Future</u>

Run V/VI (Upgrade II)

Side View ECAL HCAL M3 M4 M5

Magnet SciFi RICH2

Tracker

Tracker

Online

Tracker

Tracker

Tracker

Tracker

Add timing/improve sub-detetectors
and operate at even higher
luminosity (HL-LHC)

The LHCb experiment Physics program

▶ Precision measurement in the flavour sector

CP Violation in charm and beauty decays

 V_{CKM} matrix element

Neutral meson oscillations[†]

EW physics in forward direction[†]

► Rare decays and sensitivity to high-energy NP

Rare b/c decays

Lepton flavor universality tests

► Leave no stones unturned : low energy NP & Dark Sector[†]

Search for exotic new particles: axions, dark photons, dark sector

The LHCb experiment Physics program

▶ Precision measurement in the flavour sector

CP Violation in charm and beauty decays

 V_{CKM} matrix element

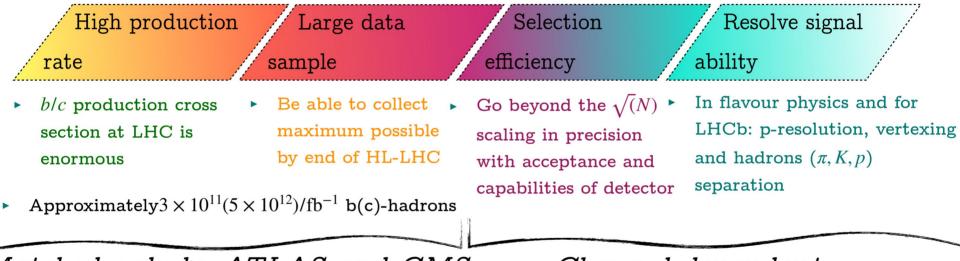
Neutral meson oscillations[†]

EW physics in forward direction[†]

▶ Rare decays and sensitivity to high-energy NP

Rare b/c decays

Lepton flavor universality tests


QCD[†]
Spectroscopy[†]
Heavy Ion[†]

► Leave no stones unturned : low energy NP & Dark Sector

Search for exotic new particles: axions, dark photons, dark sector

High precison measurements with Upgrade II

Ingredients for high precision with heavy flavour

Matched only by ATLAS and CMS

Channel dependent

- (e, μ, p, π, K) : LHCb unique and superior to any other experiment considering all charged stable final states. Decays with μ , ATLAS & CMS competitive
- ▶ One or more γ , π^0 or ν : Belle II competitive (or superior)

High precison measurements with Upgrade II

Ingredients for high precision with heavy flavour

High production Large data Selection Resolve signal ability

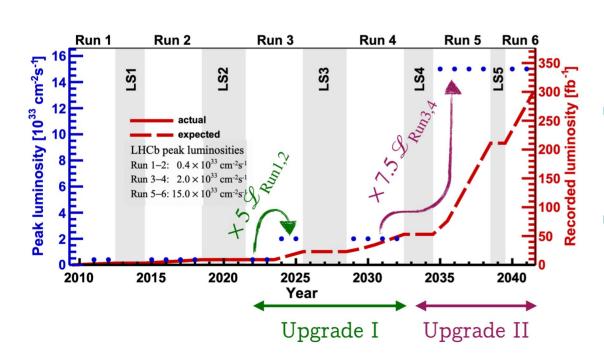
b/c production cross Be able to collect content and section at LHC is maximum possible enormous by end of HL-LHC with acceptance and capabilities of detector Approximately $3 \times 10^{11} (5 \times 10^{12}) / \text{fb}^{-1}$ b(c)-hadrons

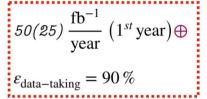
Resolve signal ability

Go beyond the $\sqrt(N)$ In flavour physics and for LHCb: p-resolution, vertexing and hadrons (π, K, p) capabilities of detector separation

Matched only by ATLAS and CMS

Channel dependent

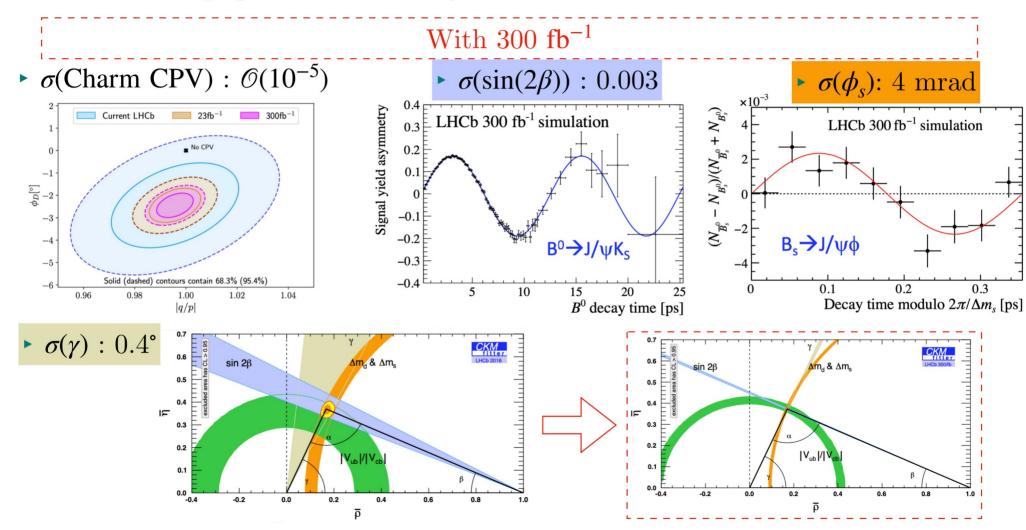

European Strategy Update 2020

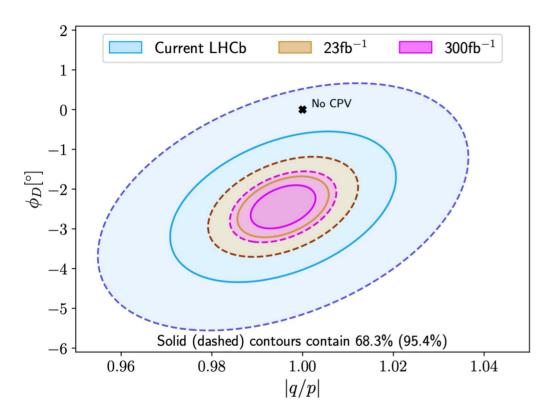

"The full physics potential of the LHC and the HL-LHC, including the study of

flavour physics and the quark-gluon plasma, should be exploited"

Luminisity increase

	Run 2	Run 3	Run 4	Run 5	Run	
Total LHCb recorded luminosity at end	Ο	23	53	911	<u>300</u>	
of each Run [fb-1]	9			211		

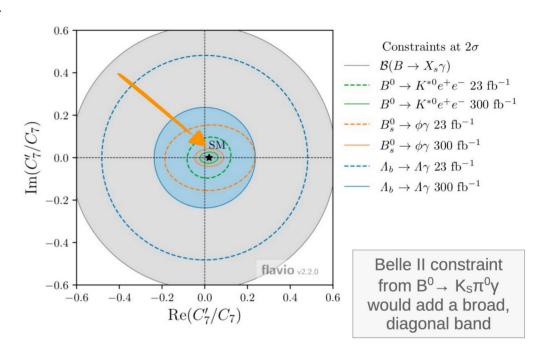



- ► Opportunity to operate until end of HL-LHC
- ► <u>Upgrade II designed to reach up to</u>

 300 fb⁻¹ by end of Run6

LHCb Upgrade II Physics case

Charm CP violation


Is ΔA_{CP} SM or BSM?

- Need more measurements to over-constrain theory parameters
- Beginning to resolve separate contributions from $D \to K^+K^-(\pi^+\pi^-)$ to ΔA_{CP} , but still rely on theory to test SM prediction.
- LHCb Upgrade II uniquely can provide measurements of A_{Γ} for $D \to K^+K^-$ & $\pi^+\pi^-$ and pin down these parameters.

LHCb U2 has capability to reach 10^{-5} level of precision needed to understand CP violation in charm

Search for "right-handed" interactions

- ▶ Why does the SM weak interaction have a
 - V-A structure?
 - ▶ i.e only LH weak currents
- Unique, high precision methods to search for RH currents in
 - ► $B^0 \to K^{*0} \gamma$ angular distribution
 - $B_s^0 \to \phi \gamma$ decay-time distribution
 - $\Lambda_b \to \Lambda \gamma$ polarisation

LHCb U2 can study SM extensions with RH currents at this level of precision (2/3 methods unique to LHCb)

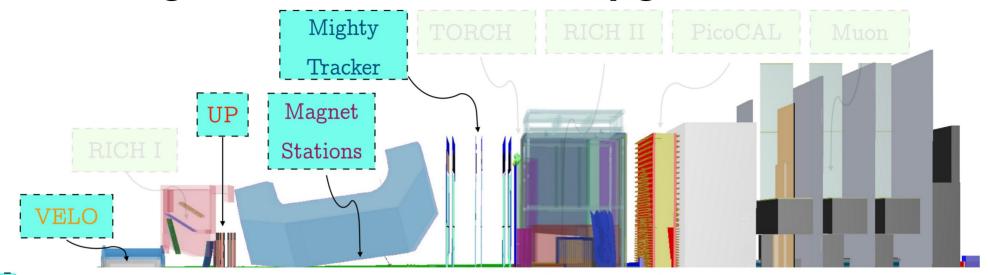
Why an Upgrade II for LHCb?

- ▶ Beside CPV in B, Upgrade II of LHCb
 - Unique place to reach 10^{-5} precision needed to understand CP violation in charm (is ΔA_{CP} SM or BSM?)
 - SM extensions with RH currents? [several $b \to s\gamma$ methods unique to LHCb]
 - ► Spectroscopy (unrivaled), QCD
 - ▶ Rare decays & LFU-test tree
 - ▶ But also fixed target collisions (SMOG)
 - ► Complementary region of parameter space in heavy ion, Long-Lived searches/Dark sector, EW sector....

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	Ť
EW Penguins					1
$R_K (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [274]	0.025	0.036	0.007	1
$R_{K^*} (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1[275]	0.031	0.032	0.008	1
R_{ϕ},R_{pK},R_{π}		0.08,0.06,0.18	-	0.02, 0.02, 0.05	
CKM tests				į	ŧ
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}$ ° [136]	4°	_	1°	2
γ , all modes	3° 167	1.5°	1.5°	0.35°	į
$\sin 2\beta$, with $B^0 \to J/\psi K_{\rm S}^0$	0.013 609	0.011	0.005	0.003	3
ϕ_s , with $B_s^0 \to J/\psi \phi$	20 mrad [44]	$14 \mathrm{\ mrad}$	_	4 mrad	š
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad 49	35 mrad	-	9 mrad	1
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad 94	39 mrad	_	11 mrad	1
$a_{ m sl}^s$	33×10^{-4} [211]	10×10^{-4}	_	3×10^{-4}	Į.
$ V_{ub} / V_{cb} $	6% [201]	3%	1%	1%	I
$B_s^0, B^0{ ightarrow}\mu^+\mu^-$					1
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$	90% [264]	34%	-	10%	
$ au_{B^0_s o \mu^+\mu^-}$	22% [264]	8%	_	2%	ŝ
$S_{\mu\mu}$		-	-	0.2	Ì
$b \to c \ell^- \bar{\nu}_l$ LUV studies					1
$R(D^*)$	0.026 [215, 217]	0.0072	0.005	0.002	Š
$R(J/\psi)$	0.24 [220]	0.071	-	0.02	1
Charm				1	1
$\Delta A_{CP}(KK-\pi\pi)$	8.5×10^{-4} [613]	1.7×10^{-4}	5.4×10^{-4}	3.0×10^{-5}	ŝ
$A_{\Gamma} \ (pprox x \sin \phi)$	2.9×10^{-4}	4.3×10^{-5}	3.5×10^{-4}	1.0×10^{-5}	-
$x\sin\phi$ from $D^0\to K^+\pi^-$	13 × 10 228	3.2×10^{-4}	4.6×10^{-4}	8.0×10^{-5}	1
$x\sin\phi$ from multibody decays		$(K3\pi) \ 4.0 \times 10^{-5}$	$(K_{\rm S}^0\pi\pi)~1.2\times10^{-4}$	$(K3\pi) 8.0 \times 10^{-6}$	1

THIS PHYSICS can be done only with a future upgrade of

LHCb (Upgrade II) operating at the HL-LHC

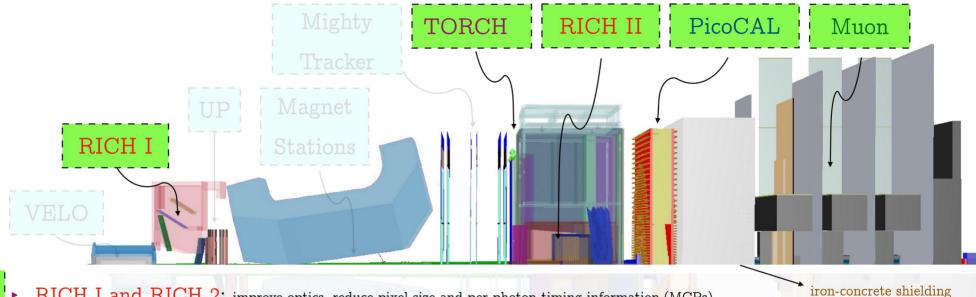

Granular/Rad-Hard/Timing detectors [pile-up mitigation]
Technology not yet available in most cases, important R&D ongoing/needed

Detector/Physics interplay

leptons excellent

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	
$rac{{f EW \ Penguins}}{{R_K \ (1 < q^2 < 6 \ { m GeV}^2 c^4)}} \ {R_{K^*} \ (1 < q^2 < 6 \ { m GeV}^2 c^4)} \ {R_{\phi}, \ R_{pK}, \ R_{\pi}}$	0.1 [274] 0.1 [275]	0.025 0.031 0.08, 0.06, 0.18	0.036 0.032 –	0.007 0.008 0.02, 0.02, 0.05	✓ Best calorimetry
$ \frac{\text{CKM tests}}{\gamma, \text{ with } B_s^0 \to D_s^+ K^-} \\ \gamma, \text{ all modes} \\ \sin 2\beta, \text{ with } B^0 \to J/\psi K_s^0 \\ \phi_s, \text{ with } B_s^0 \to J/\psi \phi \\ \phi_s, \text{ with } B_s^0 \to D_s^+ D_s^- \\ \phi_s^{s\bar{s}s}, \text{ with } B_s^0 \to \phi \phi \\ a_{sl}^0 V_{ub} / V_{cb} $	$ \begin{array}{c c} (^{+17}_{-22})^{\circ} & \boxed{136} \\ \hline 3^{\circ} & \boxed{167} \\ \hline 0.013 & \boxed{609} \\ 20 \text{ mrad} & \boxed{44} \\ \hline 170 \text{ mrad} & \boxed{49} \\ 154 \text{ mrad} & \boxed{94} \\ \hline 33 \times 10^{-4} & \boxed{211} \\ \hline 6\% & \boxed{201} \\ \end{array} $	4° 1.5° 0.011 14 mrad 35 mrad 39 mrad 10×10^{-4} 3%	- 1.5° 0.005 - - - - 1%	1° 0.35° 0.003 4 mrad 9 mrad 11 mrad 3×10^{-4} 1%	✓ Best charged hadron $K/\pi/p$ ID / Light detector
$\frac{B_s^0, B^0 \to \mu^+ \mu^-}{\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B_s^0 \to \mu^+ \mu^-)}$ $\tau_{B_s^0 \to \mu^+ \mu^-}$ $S_{\mu\mu}$	90% [264] 22% [264]	34% 8% -	- - -	10% 2% 0.2	$✓ \mu$ ID & mass resolution
$\frac{b \to c\ell^- \bar{\nu}_l \text{ LUV studies}}{R(D^*)}$ $R(J/\psi)$	$0.026 \ [215, 217] \\ 0.24 \ [220]$	0.0072 0.071	0.005 -	0.002 0.02	✓ Light detector
$\frac{\mathbf{Charm}}{\Delta A_{CP}(KK - \pi \pi)}$ $A_{\Gamma} (\approx x \sin \phi)$ $x \sin \phi \text{ from } D^0 \to K^+ \pi^-$	$\begin{array}{c c} 2.9 \times 10^{-4} & \boxed{613} \\ 2.8 \times 10^{-4} & \boxed{240} \\ 13 \times 10^{-4} & \boxed{228} \end{array}$	1.7×10^{-4} 4.3×10^{-5} 3.2×10^{-4}	5.4×10^{-4} 3.5×10^{-4} 4.6×10^{-4}	3.0×10^{-5} 1.0×10^{-5} 8.0×10^{-5}	✓ Increase acceptance
$x \sin \phi$ from multibody decays	_	$(K3\pi) \ 4.0 \times 10^{-5}$	$(K_{\rm S}^0\pi\pi)\ 1.2\times 10^{-4}$	$(K3\pi) 8.0 \times 10^{-6}$	\downarrow for low p_T

Tracking detectors at LHCb Upgrade II


- ▶ VELO: pixel 3D silicon, per-hit time resolution 50 ps, ASIC 28nm
- ▶ UP: Depleted Monolithic Active Pixel Sensors (DMAPS) pixel

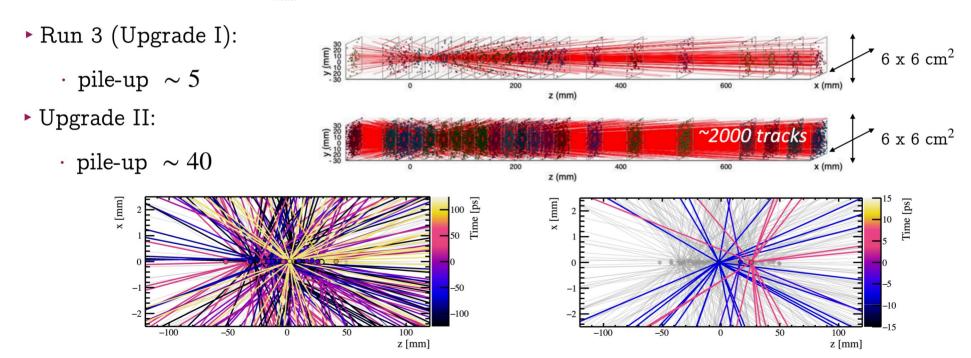
Tracking system

- Mighty Tracker: DMAPS pixel inner region, Scintillating Fibers for outer region
- ▶ Magnet Stations: scintillating slabs on side walls of magnet (low p tracks) [NEW]

Vertexing and tracking in high pile-up environment require granular, rad-hard and efficiencient trackers.

ps-timing information near interaction region crucial, ns-timing for BXID in UP and Mighty Tracker needed

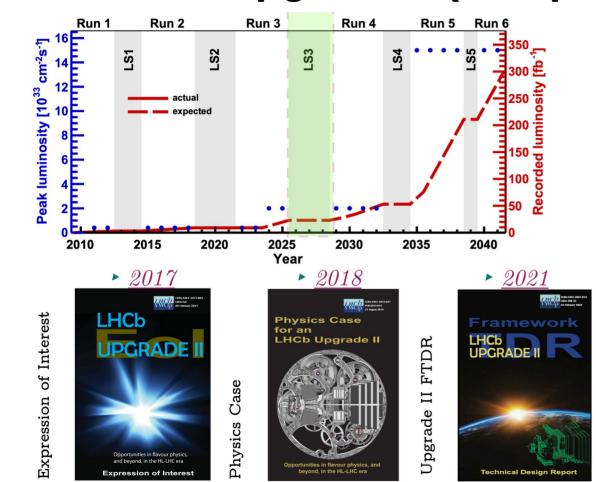
- RICH I and RICH 2: improve optics, reduce pixel size and per-photon timing information, (MCPs)
- TORCH (new!): time of flight quartz, SiPM, MCPs (as RICH read-out)
- PicoCAL to replace ECAL: space, energy and time using longitudinal segmentation
 - Current HCAL: replaces by iron-concrete shielding

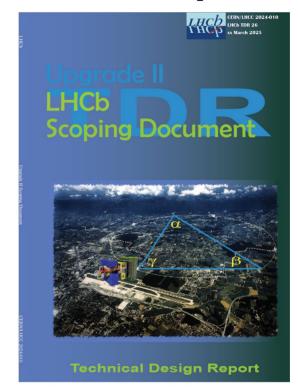

Particle ID

Muon: μ RWELL in inner regions , MWPC for outer region (recycled)

Particle identification of hadrons, muons, electrons, photons crucial for LHCb in a wide momentum range. PicoCAL and RICH need timing to cope with occupancy.

Operating LHCb at HL-LHC: need of timing detectors


- ► Ensure PV finding/association of tracks/displacement signatures at the core of LHCb physics
 - program Including timing information is mandatory for VELO
 - ▶ Operate at $\mathcal{L}_{max} = 1.0 1.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} \rightarrow \text{occupancy/multiplicity and 4D detectors}$


"Problem" complexity with no timing per track

"Problem" complexity with 20ps/track resolution

Road to Upgrade II (Scoping document)

LHCC-2018-027

LHCb has now submitted for review to
the LHCC the Upgrade II Scoping

Document

Accelerator studies: CERN-ACC-NOTE-2018-0038

LHCC-2017-003

<u>LHCC-2021-012</u> Approved 03/2022

Conclusions

- Flavour physics at hadron colliders is able to probe indirectly NP high energy scales
 - ▶ The LHCb experiment is and will keep shaping the landscape in the next years
 - ▶ Via multibody decays, time dependence, flavour tagging, amplitude analyses, complementarity of many different final states
 - Maximising current data output using novel techniques and pushing experiments beyond design
 - Synergy between experiments also critical in various measurements
- Interpretation of flavour results requires often better understanding of penguin amplitudes, form factors, hadronic uncertainties. Progresses are ongoing and should continue
- ▶ Run3 at LHCb has a powerful dataset on his way coming, stay tuned
 - ▶ 2024 has been crucial for realization and execution of full LHCb experiment Upgrade potential
- Beyond Run3, a second upgrade planned
 - Ambitious project with excellent prospects for physics and technology developments
 - LHCb U2 Project is in its approval phase, perfect opportunity to contribute!
 - Somewhat, U2 of LHCb is once-in-a-life project, (maybe the last-chance?) to push many flavour measurements to the ultimate precision.