
Managing FLUKA Simulation
Output Files using SHOE

G.B. S.M.

1SHOE Software Tutorial

Introduction - 1

This short tutorial is meant to explain how to understand and use the MC data

output produced for FOOT (Electronic Spectrometer) using SHOE.

The MC simulation is performed using the FLUKA code. This is described in a

recent paper:

2

Introduction - 2

The purpose is not to teach how to perform a correct FOOT Simulation using

FLUKA, but just to use the simulation results.

The main topics are:

• Give some basic info specific of FLUKA MC what everybody needs to know

• The structure of data produced by MC for FOOT

• Provide examples about the use and interpretation of these data, and the

connection of detector hits and particle properties at MC-truth level

3

The FLUKA MC code

All about the physics models of this code can be found in a very recent paper:

Here we limit ourselves to summarize in a schematic way the use of nuclear

interaction models

https://www.fluka.org

4

https://www.fluka.org/

A few specific things of FLUKA MC that you need to know

Default units

the most important are:

time➞ s, length ➞ cm, energy ➞ GeV, momentum ➞ GeV/c

masses ➞ GeV/c2 B ➞ Tesla

Particles:

each particle is identified by a number

Reference frame: (cartesian, right-handed)

z is primary beam direction

y is pointing upwards z

y

x

It coincides with the global reference frame used in SHOE, with

origin (0,0,0,) at the center of target

5

In many cases SHOE transforms

GeV to MeV, since this would be

more natural in FOOT

A few specific things of FLUKA MC that you need to know
Fluka name Fluka no. Common name

 4-HELIUM -6 Alpha
 3-HELIUM -5 Helium-3
 TRITON -4 Triton

 DEUTERON -3 Deuteron
 HEAVYION -2 Generic heavy ion with Z > 2

 OPTIPHOT -1 Optical Photon
 RAY 0 Pseudoparticle
 PROTON 1 Proton

 APROTON 2 Antiproton
 ELECTRON 3 Electron

 POSITRON 4 Positron
 NEUTRIE 5 Electron Neutrino
 ANEUTRIE 6 Electron Antineutrino

 PHOTON 7 Photon
 NEUTRON 8 Neutron

 ANEUTRON 9 Antineutron
 MUON+ 10 Positive Muon
 MUON- 11 Negative Muon

Fluka name Fluka no. Common name

 PION+ 13 Positive Pion
 PION- 14 Negative Pion
 KAON+ 15 Positive Kaon

 KAON- 16 Negative Kaon
 LAMBDA 17 Lambda

 ALAMBDA 18 Antilambda
 KAONLONG 12 Kaon-zero long
 KAONSHRT 19 Kaon zero short

 NEUTRIM 27 Muon neutrino
 ANEUTRIM 28 Muon antineutrino

 TAU+ 41 Positive Tau
 TAU- 42 Negative Tau
 NEUTRIT 43 Tau neutrino

 ANEUTRIT 44 Tau antineutrino

Here only the most important
In FOOT you will find mostly: -6, -5, -4, -3, -2, 1, 3, 4, 7, 8
Less often (above ~290 MeV/u): 10, 11, 13, 14

Rare, only in case of high energy, also: 15, 16

6

Since we are mostly interested to nuclear fragments, notice:

for p, n, d, t,3He, 4He there is a specific FLUKA particle number

For A>4: FLUKA particle numbers is always -2, and nucleus is identified by Z

and A

Very low energy fragments and nucleons originating in the “nuclear

evaporation” phase are identified with a particle number in the range from -

39 to -7. Again identified by Z and A.

In principle there could be also a way to identify isomers, but we do not

include it in FOOT simulation

7

The concept of “Region” in FLUKA

Basic objects called bodies (such as cylinders, spheres,

parallelepipeds, etc.) are combined to form more complex

objects called Regions
1 complex object = REGION

• The user knows the region

usually by name, but internally

(and in SHOE) it is identified by a

number

• to each region is assigned a

single Material (chemical

element or compound or mixture)

3 basic

objects

8

“AIR2” is a region, filled with air (N, O, Ar @ STP)

Each “SCNnn” bar is a region, filled with EJ232 scintillator

Each “CALnnn” is a region, filled with BGO

Warning: The specific number identifier of a region

depends on which CAMPAIGN you are using

9

FLUKA nuclear interaction models:

10

AA Collisions

BME@ rQMD2.4* Dpmjet3#

Target nucleus description (density,
Fermi motion, etc)

Preequilibrium stage with current exciton
configuration and excitation

Glauber-Gribov cascade with formation
zone

(Generalized) IntraNuclear cascade

Evaporation/Fragmentation/Fission model

γ deexcitation

PEANUT

hA Collisions ,*A Collisions e+/-+/-A Collisions A Collisions

Proj/Target

 nucleus

description

Proj/Target

nucleus

description

IntraNuclear

 cascade
IntraNuclear

 cascade

Glauber-Gribov

Complete Fusion
3 Body

Transfer
1N Break Up

Incomp. Fusion

hadron-Nucleus interactions: (p-N, n-N, …)

11

AA Collisions

BME@ rQMD2.4
*

Dpmjet3#

Target nucleus description (density,
Fermi motion, etc)

Preequilibrium stage with current exciton
configuration and excitation

Glauber-Gribov cascade with formation
zone

(Generalized) IntraNuclear cascade

Evaporation/Fragmentation/Fission model

γ deexcitation

PEANUT

hA Collisions

Proj/Target

 nucleus

description

Proj/Target

nucleus

description

IntraNuclear

 cascade
IntraNuclear

 cascade

Glauber-Gribov

Complete Fusion
3 Body

Transfer
1N Break Up

Incomp. Fusion

PreEquilibrium

Approach to

NUclear Thermalization

Not at FOOT energies

Nucleus-Nucleus interactions:

12

AA Collisions

BME@ rQMD2.4* Dpmjet3#

Target nucleus description (density,
Fermi motion, etc)

Preequilibrium stage with current exciton
configuration and excitation

Glauber-Gribov cascade with formation
zone

(Generalized) IntraNuclear cascade

Evaporation/Fragmentation/Fission model

γ deexcitation

PEANUT

,*A Collisions e+/-+/-A Collisions

Proj/Target

 nucleus

description

Proj/Target

nucleus

description

IntraNuclear

 cascade
IntraNuclear

 cascade

Glauber-Gribov

Complete Fusion
3 Body

Transfer
1N Break Up

Incomp. Fusion

Managed by PEANUT

Boltzman

Master

Equation

relativistic

Quatum

Molecular

Dynamics

Not at FOOT

energies

A few words on MC settings:

13

All models are automatically activated.

The energy threshold for charged particle and photon transport is set at 100 keV, while for
neutrons is set at 10 μeV.
In order to limit CPU time and output file size, the transport of e+e− is switched off (a part few
specific simulation studies), however, the carefully tuned models of FLUKA managing 𝑑𝐸∕𝑑𝑥
and its fluctuations guarantee a result which is independent of the choice of the e+e− cut-off.

In order to prevent mistakes or mistypes, all the input directives and geometry setup for a
given simulation campaign are created by SHOE

Conventions for MC campaign naming

14

We append _MC to the campaign name, to signify that this is a campaign of simulated data and distinguish it

from the campaign of real experimental data.

Example:

CNAO2023 is the experimental campaign (data taken at CNAO in 2023)
CNAO2023_MC is the corresponding simulation campaign

Recently we have introduced in the simulation geometry some important passive regions (boxes, PCB), and
we are substituting old campaigns. For example:

CNAO2023_MC ➔ CNAO23PS_MC

In simulation campaigns we have run numbers (in analogy to experimental data). We are adopting as
convention a number corresponding to the beam energy/nucleon and the target material. For example, in
campaign CNAO23PS_MC (12C @ 200 MeV/u), we have the following runs:

200 ➔ graphite target
201 ➔ polyethylene target

202 ➔ no target
203 ➔ Aluminum target

Detectors in CNAO23PS_MC Campaign

15

Where the FOOT user can retrieve relevant infos about
geometry and materials used in simulation

For a given Campaign XXXX:

In shoe/build/Reconstruction/cammaps/XXXX.cam

you see the detectors included, and the possible run numbers. In FOOT.cam it is

specified if the campaign is a simulated one

In shoe/build/Reconstruction/config/XXXX/FootGlobal.par

you see the detectors selected for reconstruction (y or n in a list) and specify other
choices important also for simulated data (see slide #18)

In shoe/build/Reconstruction/geomaps/XXXX there are, among the others:

 FOOT(_nnn).geo which contains the positions (of the “center”), dimensions and rotation

angles in global coordinates of all FOOT detectors and magnets. nnn is the run number:

nnn is there only if there are more than 1 run.

TA*detector(_nnn).map which contain, for each single detector (or magnet system), the

relative coordinates and rotation angle of every element composing the detector itself,

together with the material description.

TAGdetector(_nnn).map contains info about target and primary beam
16

17

// Campaign file
CamName: "CNAO23PS_MC"
RunNumber: 200;201;202;203
NumberDevices: 10

DetectorName: "FOOT"
NumberFiles: 2
"./geomaps/CNAO23PS_MC/FOOT.geo": 200;201;202;203
"./geomaps/CNAO23PS_MC/FOOT.reg": -1

DetectorName: "DI"
NumberFiles: 1
"./geomaps/CNAO23PS_MC/TADIdetector.geo": -1

DetectorName: "ST"
NumberFiles: 1
"./geomaps/CNAO23PS_MC/TASTdetector.geo": -1

DetectorName: "BM"
NumberFiles: 3
"./geomaps/CNAO23PS_MC/TABMdetector.geo": -1
"./config/CNAO23PS_MC/TABMdetector.cfg": -1
"./calib/CNAO23PS_MC/TABM_T0_Calibration.cal": -1

DetectorName: "TG"
NumberFiles: 1
"./geomaps/CNAO23PS_MC/TAGdetector.geo": 200;201;202;203

DetectorName: "VT"
NumberFiles: 3
"./geomaps/CNAO23PS_MC/TAVTdetector.geo": -1
"./config/CNAO23PS_MC/TAVTdetector.cfg": -1
"./calib/CNAO23PS_MC/TAVTdetector.cal": -1

DetectorName: "IT"

NumberFiles: 2
"./geomaps/CNAO23PS_MC/TAITdetector.geo": -1
"./config/CNAO23PS_MC/TAITdetector.cfg": -1

DetectorName: "MSD"

NumberFiles: 3
"./geomaps/CNAO23PS_MC/TAMSDdetector.geo": -1
"./config/CNAO23PS_MC/TAMSDdetector.cfg": -1
"./config/CNAO23PS_MC/TAMSDdetector.map": -1

DetectorName: "TW"
NumberFiles: 6
"./geomaps/CNAO23PS_MC/TATWdetector.geo": -1
"./config/CNAO23PS_MC/TATWdetector.cfg": -1
"./config/CNAO23PS_MC/TATW_BBparameters.cfg": -1
"./config/CNAO23PS_MC/TATWbarsMapStatus.map": -1
"./calib/CNAO23PS_MC/TATW_Energy_Calibration.cal": -1
"./calib/CNAO23PS_MC/TATW_Tof_Calibration.cal": -1

DetectorName: "CA"
NumberFiles: 4
"./geomaps/CNAO23PS_MC/TACAdetector.geo": -1
"./config/CNAO23PS_MC/TACAdetector.cfg": -1
"./config/CNAO23PS_MC/TACAcrystalMapStatus.map": -1
"./calib/CNAO23PS_MC/TACA_Energy_Calibration.cal": -1

There are 4 runs

Same energy (200 MeV/u),

different targets

(possible) different geometries

CNAO23PS_MC.cam

Example of cammap file (CNAO23PS_MC)

// -+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+-
// Beam info
// -+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+-
BeamSize: 0.48

BeamShape: "Gaussian"
BeamEnergy: 0.2 //! GeV/u
BeamAtomicMass: 12 //! A Beam
BeamAtomicNumber: 6 //! Z Beam
BeamMaterial: "C" //! Beam Material

BeamPartNumber: 1 // particles in Beam
BeamPosX: -0.4 BeamPosY: 0.1 BeamPosZ: -63.0
BeamSpreadX: 0.26668 BeamSpreadY: 0.57112 BeamSpread: 0.0
BeamDiv: 0.0000

// -+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+-
// Target info (cm)
// -+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+-
TargetShape: "cubic"
TargetSizeX: 5.0 TargetSizeY: 5.0 TargetSizeZ: 0.5

TargetMaterial: "C"
TargetAtomicMass: 12.0107
TargetDensi ty: 1.83
TargetExc: 78.0e-6

TAGdetector_200.geo

FOOT_200.geo

Examples from geomaps

18

StartBaseName: "ST"
StartPosX: 0. StartPosY: 0. StartPosZ: -45.925
StartAngX: 0. StartAngY: 0. StartAngZ: 0.

TargetBaseName: "TG"
TargetPosX: 0. TargetPosY: 0. TargetPosZ: 0.
TargetAngX: 0. TargetAngY: 0. TargetAngZ: 0.

BmBaseName: "BM"

BmPosX: 0. BmPosY: 0. BmPosZ: -12.85
BmAngX: 0. BmAngY: 0. BmAngZ: 0.

VertexBaseName: "VT"
VertexPosX: 0. VertexPosY: 0. VertexPosZ: 2.61

VertexAngX: 0. VertexAngY: 0. VertexAngZ: 0.

MagnetsBaseName: "DI"
MagnetsPosX: 0. MagnetsPosY: 0. MagnetsPosZ: 19.00
MagnetsAngX: 0. MagnetsAngY: 0. MagnetsAngZ: 0.

InnerTrackerBaseName: "IT"
InnerTrackerPosX: 0. InnerTrackerPosY: 0. InnerTrackerPosZ: 19.00
InnerTrackerAngX: 0. InnerTrackerAngY: 0. InnerTrackerAngZ: 0.

MicroStripBaseName: "MSD"
MicroStripPosX: 1.9 MicroStripPosY: 0. MicroStripPosZ: 40.9
MicroStripAngX: 0. MicroStripAngY: 0. MicroStripAngZ: 0.

TofWallBaseName: "TW"

TofWallPosX: 9.1 TofWallPosY: -1.6 TofWallPosZ: 169.75
TofWallAngX: 0. TofWallAngY: 0. TofWallAngZ: 0.

CaloBaseName: "CA"
CaloPosX: 8.56 CaloPosY: -1.7 CaloPosZ: 200.5

CaloAngX: 0. CaloAngY: 0. CaloAngZ: 0.

It contains Beam and Target parameters

All these data are used to create in the same

way, both the simulation geometry and

parameters (such as materials composition), and

an identical geometry and set of parameters for

the reconstruction used in SHOE

x y z Bx By Bz

The name of the magnetic map filename and geometry parameters for the magnets

are in geomaps/XXXX/TADIdetector.geo.

Configuration of Magnets

The map of magnetic field is contained in

shoe/build/Reconstruction/data

at present we make use of the map in the file

“MagneticMap_2023.table”:

It is the map measured during 2023 beam test

19

Accessing Regions in Simulated data

For some specific analysis of simulated data, it may be useful to exploit infos about

“Regions” of simulated geometry, trying to answer questions like:

- In which region this particle was generated?

- Which are the coordinates and the values of kinematics variables of a given particle

while passing from on region to another? (for example: exiting from target into air,

entering in a given sensor of VTX, etc. etc.)

- …

In the case of simulated campaigns, Shoe gives access to such information.

Let us remind that the different regions are identified by a number (see slide #6),

therefore interested users must know the correspondence between those numbers

and the name of the regions.

Region numbering is summarized in geomaps/XXXX/FOOT.reg

Warning: there is no explanation on the meaning of region names

20

Example: Region Numbering for CNAO23PS_MC
Number. Name: Piece of detector

 Region n. 1 BLACK “Black Hole”

 Region n. 2 AIR1 Air

 Region n. 3 AIR2 Air

 Region n. 4-18 AIRCAL0 – AIRCAL14 Pieces of Air around Calo

 Region n. 19 STC Start Counter
 Region n. 29 STCMYL1 Mylar foil in front of Start Counter

 Region n. 21 STCMYL2 Mylar foil on the back of SC

 Region n. 22 BMN_SHI BM Al Shield

 Region n. 23 BMN_MYL0 BM Mylar foil at the entrance

 Region n. 24 BMN_MYL1 BM Mylar foil at the exit
 Region n. 25-60 BMN_C000 – BMN_C117 BM Cells

 Region n. 61 BMN_FWI BM Field wires

 Region n. 62 BMN_SWI BM Sense wires

 Region n. 63 BMN_GAS BM gas (non – sensitive)

 Region n. 64 TARGET Target
 Region n. 65-76 VTXE0 – VTXP3 All different parts of VTX sensors

 Region n. 65-76 VTXE0 – VTXP3 All different parts of VTX sensors

 Region n. 77-224 ITRE00 – ITRY112 All different parts of IT sensirs

 Region n. 225-242 MSDS0 – MSDM5 All different parts of MSD sensors

 Region n. 243-246 MAG0 – MAG_SH1 All different parts of Magnets
 Region n. 247-286 SCN000 – SCN119 TW bars

 Region n. 287-619 CAL000 – CAL332 BGO crystals

 Region n. 620-656 ACAL_00 – ACAL_36 AIR gaps around the BGO crystals

 etc. etc.

21

Interpreted from

geomaps/CNAO23PS_MC/FOOT.reg

In order to better understand in

detail the different simulation

regions, interested people should

contact

giuseppe.battistoni@mi.infn.it

silvia.muraro@mi.infn.it

Actually, Shoe allows to retrieve the region number (to be used in coding) from the

region name (see later)

Numbers may vary from

campaign to campaign:
They depend on the
geometry of a given setup

mailto:giuseppe.battistoni@mi.infn.it
mailto:silvia.muraro@mi.infn.it

Simulated data files and their processing

Simulated data are distributed as Root files containing the structure of the raw simulated data

organized in Shoe trees. The structure of simulated events will be explained in a next section

Simulated data are stored in a shared area in the INFN computing resources. For example:

/storage/gpfs_data/foot/shared/SimulatedData/CNAO23PS_MC/12C_C_200_1.root

22

Projectile Target Energy

Therefore, this is a run 200 of campaign CNAO23PS_MC

These are not yet reconstructed data (→ no track reconstruction!).

However, simulated data can be:

1) Used just as raw data to perform analyses at the “MC truth” level

2) Processed and reconstructed using the Shoe global tracking by applying the same

approach used for experimental data

At present, our default is to write on file all events (1 primary = 1 event)

Global Reconstruction of simulated data

23

Users have to take care of reconstruction. The same Shoe code used for real data has to be

invoked.

Assuming to be in a directory shoe/build/Reconstruction, the essential parameters to drive track

reconstruction are contained in the file shoe/build/Reconstruction/config/XXXX/FootGlobal.par

The line command to start global tracking is:

../bin/DecodeGlb –in 12C_C_200_1.root –exp CNAO23PS_MC –run 200 –mc –nev nnn (–nsk mmm) –out
yourfilename

But this only after checking the content of FootGlobal.par

No. of events to

be processed

No. of events to

be skipped

Mandatory for simulated

data

Inside the FootGlobal.par file

24

IncludeKalman: y
IncludeTOE: n
IncludeStraight: n
FromLocalReco: n
…
…
N measure in global tracking: 9
…

…
EnableTree: y
EnableFlatTree: n
EnableHisto: y
EnableTracking: y

EnableSaveHits: y
EnableRootObject: y
EnableRegionMc: y
EnableElecNoiseMc: y
…

Specific for

simulated data

Optional

To select

tracking method

Minimum no. of

points required to
define a global
track

IncludeDI: y
IncludeST: y
IncludeBM: y
IncludeTG: y
IncludeVT: y
IncludeIT: y
IncludeMSD: y
IncludeTW: y
IncludeCA: y

To select which

detectors have to be
included in track
reconstruction

Working at the level of MC truth:

What you can take out from the root

file with raw simulated data

(no global tracking yet)

25

Most relevant SHOE classes for MC

26

TAMCevent

TAMCntuEvent

TAMCntuPart

TAMCntuHit

TAMCntuRegion

See their implementation in /shoe/Libraries/TAMCbase

In the following, some examples of coding, to be used in SHOE macros to readout

simulated data, will be given.

These examples can be implemented (or, in part, are already implemented) in a

template macro that you can find in /shoe/Reconstruction/macros

ReadShoeTreeMain.C
ReadShoeTreeFunc.h

You are invited to start using such a template

Working with MC with a SHOE macro - 1
When processing a simulated root file, you can use in your macro the methods defined in

shoe/Libraries/TAMCbase (TAMCntuEve.hxx, TAMCntuEve.cxx)

//opens the file and access the tree

 TTree *tree = 0;
 TFile *f = new TFile(nameFile.Data());
 tree = (TTree*)f->Get("tree");
 if(tree==nullptr){
 tree = (TTree*)f->Get("EventTree");
 }….

27

//Accessing basic infos: campaign name and run number
….
 TAGroot gTAGroot;
 static TAGrunInfo* runinfo;
 TString expName;
 runinfo=(TAGrunInfo*)(f->Get("runinfo"));
 const TAGrunInfo construninfo(*runinfo);
 gTAGroot.SetRunInfo(construninfo);
 expName=runinfo->CampaignName();
 if(expName.EndsWith("/"))
 expName.Remove(expName.Length()-1);
 Int_t runNumber=runinfo->RunNumber();
 TAGrecoManager::Instance(expName);
 TAGcampaignManager* campManager = new TAGcampaignManager(expName);
 campManager->FromFile();
 cout << "Campaign is: " << expName << endl;
 cout << "Run Number is: " << runNumber << endl;

All this can be the same

for both real and
simulated data

Getting Campaign

name and run number

TAGrunInfo

Both for real and

simulated data

Working with MC with a SHOE macro - 2
//Checking the existence of detector elements

 IncludeMC=campManager->GetCampaignPar(campManager->GetCurrentCamNumber()).McFlag;

 IncludeREG=runinfo->GetGlobalPar().EnableRegionMc;
 IncludeIT = runinfo->GetGlobalPar().IncludeIT;
 IncludeDI = runinfo->GetGlobalPar().IncludeDI;
 IncludeSC = runinfo->GetGlobalPar().IncludeST;
 IncludeBM = runinfo->GetGlobalPar().IncludeBM;
 IncludeVT = runinfo->GetGlobalPar().IncludeVT;
 IncludeTG = runinfo->GetGlobalPar().IncludeTG;
 IncludeMSD = runinfo->GetGlobalPar().IncludeMSD;
 IncludeTW = runinfo->GetGlobalPar().IncludeTW;
 IncludeCA = runinfo->GetGlobalPar().IncludeCA;

28

//Accessing geometry infos
 static TAGgeoTrafo* geoTrafo;

 geoTrafo = new TAGgeoTrafo();
 TString parFileName = campManager>GetCurGeoFile(TAGgeoTrafo::GetBaseName(), runNumber);
 geoTrafo->FromFile(parFileName);

 if (IncludeSC) {
 TAGparaDsc* parGeoSt = new TAGparaDsc(new TASTparGeo());
 TASTparGeo* stparGeo = (TASTparGeo*)parGeoSt->Object();
 parFileName = campManager->GetCurGeoFile(TASTparGeo::GetBaseName(), runNumber);
 stparGeo->FromFile(parFileName);
 }

Example for SC (Start Counter), but it’s

similar for the other detectors

This variable checks if you

are reading simulated data.
All these instruction can be
used in the same way for

both real and simulated data

Other important classes, common to both real and simulated data, are those which give

access to geometry parameters:
TAGparGeo, TASTparGeo, TABMparGeo,

TAVTparGeo, etc. (one for each detector)

Working with MC with a SHOE macro - 3
//Retrieves region numbers fom region names

 TString regnameTg="TARGET";

 Int_t RegTarg = runinfo->GetRegion(regnameTg);
 TString regnameSTC="STC";
 Int_t RegSTC = runinfo->GetRegion(regnameSTC)
…
 if (IncludeCA) {
 TString regnameCALmin="CAL000";
 RegCALmin = runinfo->GetRegion(regnameCALmin);
 TString maxCryReg;
 if (nCry<10) {
 maxCryReg = Form("CAL00%d",nCry-1);
 } else if (nCry>9 && nCry<100) {
 maxCryReg = Form("CAL0%d",nCry-1);
 } else {
 maxCryReg = Form("CAL%d",nCry-1);
 }
 cout << "Last Crystal Reg: " << maxCryReg << endl;
 TString regnameCALmax = maxCryReg;
 RegCALmax = runinfo->GetRegion(regnameCALmax);
 }

29

//Retrieving Beam and Target properties
 Aweight = parGeo->GetTargetPar().AtomicMass;
 density = parGeo->GetTargetPar().Density;
 thickness= parGeo->GetTargetPar().Size[2];
 material = parGeo->GetTargetPar().Material;
 tgtcent = geoTrafo->GetTGCenter().Z();

 Abeam = parGeo->GetBeamPar().AtomicMass;
 Zbeam = parGeo->GetBeamPar().AtomicNumber;
 Ebeam = parGeo->GetBeamPar().Energy;
 Xbeam = parGeo->GetBeamPar().Position.X();
 Ybeam = parGeo->GetBeamPar().Position.Y();
 zbeam = parGeo->GetBeamPar().Position.Z();
 FWHMXbeam = parGeo->GetBeamPar().AngSpread.X();
 FWHMYbeam = parGeo->GetBeamPar().AngSpread.Y();

How to retrieve region numbers(*).

This is meaningful, of course, only on
Simulated Data

This is the same for both real and

simulated data

Example for

Calorimeter

(*) This modality of retrieving region numbers

from region names assumes that you know the
meaning of the names. There is also another
way: next slides

Retrieving Region Numbers by meaning (detector
specific)

30

In the various TA*parGeo classes of the different detectors, including TAGparGeo, there

are methods called GetReg***:

they allow to recover the number of specific, and fundamental, regions on the basis of

their purpose (not all the regions)

The exact name and modality is detector dependent.

Search inside the various TA*parGeo.hxx under /shoe/Libraries/TA**

For example: TAGparGeo::GetRegTarget() returns the region number of the target

Retrieving Region Numbers by meaning (detector
specific)

31

TAGparGeo::GetRegAirPreTW ()

TAGparGeo::GetRegAirTW ()

TADIparGeo::GetRegMagnet(n) n=0,1

TADIparGeo::GetRegShield(n) n=0,1

TASTparGeo::GetRegSensor ()

TAGparGeo::GetRegTarget ()

Retrieving Region Numbers by meaning (detector
specific): Beam Monitor

32

TABMparGeo:: GetRegCell (nlay, nview, ncell)

TABMparGeo:: GetRegGas()

TABMparGeo::GetRegShield()

TABMparGeo::GetRegFieldWires()

TABMparGeo::GetRegSenseWires()

nlay=0-5, nview=0,1 ncell=0,2

Retrieving Region Numbers by meaning (detector
specific): VTX

33

TAVTparGeo::GetRegEpitaxial(n);

TAVTparGeo::GetRegModule(n); n=0,1,2,3 (sensor #)

That’s the sensitive region There are other

GetReg* methods

Search inside the

source files

Retrieving Region Numbers by meaning (detector
specific): IT and MSD

34

TAITparGeo::GetRegEpitaxial(n)

TAITparGeo::GetRegModule(n) n=0-31 (sensor #)

That’s the sensitive region

TAMSDparGeo::GetRegStrip(n)

TAMSDparGeo::GetRegModule(n)

n=0-5 (sensor #)

There are other

GetReg* methods

Search inside the

source files

Retrieving Region Numbers by meaning (detector
specific): TW and Calo

35

TATWparGeo::GetRegStrip(nlayer, nstrip) nlayer=0,1 nstrip=0,19

TACAparGeo::GetRegCrystal(n) n=0,max no. of crystals

TACAparGeo::GetCrystalsN()

There are other

GetReg* methods

Search inside the

source files

The native structure of raw

simulated data

Track (Particle) Structure

Detector 1 Structure

Detector 2 Structure

Detector 3 Structure

Etc..

“Crossings” Structure

For each

recorded

event

kinematics and properties of all

particles (primary+ all secondaries)

generated in the event

For each active detector:

all infos about “hits” (=energy

releases) in the detector, and

pointer to Particle Structure to

connect to the particle

generating the hits

All coordinates, kinematics for each

particle at all ”crossing points” when

passing from a region to another one.

Pointer to connect to Track Structure
36

Variables available in the particle structure

• number of particles produced in the event

• Pointer to index the particle (see later)

• generation number

• charge (charge number Z)

• barionic number (mass number A)

• particle mass (GeV/c2)

• Time of production the particle (s)

• Time between death and birth of the particle (s)

• Total track length of the particle from birth to death (cm)

• FLUKA code for the particle (for example: proton=1, neutron=8, photon=7, ...)

• number of the region where the particle has been produced

• Coordinates of the birth point of the particle (cm)

• Coordinates of the death point of the particle (cm)

• Components of the momentum of the particle (GeV/c) at birth point

• Components of the momentum of the particle (GeV/c) at death point

Event by Event:

37

Event by Event, for each particle contained in the event:

TAMCevent

 //! Get Event container
 TAMCntuEvent* GetNtuEvent() const { return fEvent; }
 //! Get particle container
 TAMCntuPart* GetNtuTrack() const { return fTrack; }
 //! Get region container
 TAMCntuRegion* GetNtuReg() const { return fRegion; }
 //! Get STC hits container
 TAMCntuHit* GetHitSTC() const { return fHitSTC; }
 //! Get BM hits container
 TAMCntuHit* GetHitBMN() const { return fHitBMN; }
 //! Get VTX hits container
 TAMCntuHit* GetHitVTX() const { return fHitVTX; }
 //! Get ITR hits container
 TAMCntuHit* GetHitITR() const { return fHitITR; }
 //! Get MSD hits container
 TAMCntuHit* GetHitMSD() const { return fHitMSD; }
 //! Get TW hits container
 TAMCntuHit* GetHitTW() const { return fHitTW; }
 //! Get CAL hits container
 TAMCntuHit* GetHitCAL() const { return fHitCAL; }

38

➔ particle structure in the event

➔ “crossing” structure in the event

➔ hits in the Start Counter

➔ hits in the Beam Monitor

➔ hits in the Vertex

➔ hits in the Inner Tracker

➔ hits in the MSD

➔ hits in the Tof-Wall

➔ hits in the Calorimeter

TAMCntuEvent
//! Get event number
Int_t GetEventNumber() const { return fEventNumber; } ➔ Sequential event number in the

simulation file

➔ gets the event

TAMCntuPart
// Get number of tracks

 Int_t GetTracksN() const;
 // Get particle

TAMCpart* GetTrack(Int_t i);
 // Get Fluka Id
 Int_t GetFlukaID() const { return fFlukaId; }
 // Get mother Id
 Int_t GetMotherID() const { return fMotherId; }
 //! Get atomic charge
 Int_t GetCharge() const { return fCharge; }
 // Get baryon number
 Int_t GetBaryon() const { return fBaryon; }

 // Get initial position
 TVector3 GetInitPos() const { return fInitPos; }
 // Get final position
 TVector3 GetFinalPos() const { return fFinalPos; }
 // Get initial momentum
 TVector3 GetInitP() const { return fInitMom; }
 //! Get final momentum
 TVector3 GetFinalP() const { return fFinalMom; }
 // Get mass
 Double_t GetMass() const { return fMass; }
 // Get region
 Int_t GetRegion() const { return fRegion; }
 // Get particle time
 Double32_t GetTime() const { return fTime; }
 // Get track length
 Double32_t GetTrkLength() const { return fTrkLength; }
 // Get time of flight
 Double32_t GetTof() const { return fTof; }

39

➔ no. of particles in the event

➔ gets the particle

➔ FLUKA particle code

➔ Index of the mother

➔ Z

➔ A

➔ initial x,y,z

➔ final x,y,z

➔ Intial Px,Py,Pz

➔ final Px,Py,Pz

➔ Mass

➔ Number of region of birth

➔ Particle Time

➔ Total track length

➔ Particle Tof

About the meaning of “Birth” (Initial) and “Death” (Final)

Birth coordinates: the coordinates of the point in the global reference frame where a

particle is injected, or generated by interaction or decay

Birth momentum: the 3-vector P components at the point of injection or generation

Death coordinates: the coordinates of the point in the global reference frame where a

particle “dies”. A particle dies when: 1) has an inelastic interaction; 2) decays; 3) exits

from the geometry; 4) its energy goes below the transport threshold which has been

set in simulation: it is then propagated to the end of the remaining CSDA range.

Death momentum: the 3-vector P components at the point of death. In case 4) Pfinal

components are 0.

40

About the meaning of time:

In a single event, Time starts from 0 in the point where the primary particle is

injected.

Particle time: it has to be 0 for the primary. If the primary travels with velocity ,

and interacts after a length L, the secondaries will be generated at t= L/(c) and

that will be the value inside their time

Tof: it is the time difference between the ”death” and “birth” of a particle

41

An example to illustrate the potentiality of particle
structure and the meaning of particle index

From an old simplified FOOT simulation of 2020

42

Index of the particle: index = 0 is the primary. The first track in the structure

For index>0: index-1 points to the parent particle

About the Index of the particles in the events

43

All particles with index = 1 have been generated by the primary (index=0)

These particles with index = 11 have been generated by the particle at row index-1 = 10 (a

neutron which interacts in air far away) 44

Here is the point where that neutron at row = 10 interacts

Notice:

At present simulation

is generic and does

not include a realistic

room size: this

means, for example,

that no possible

back-splash from

walls is considered

45

This proton has been generated by primary in the target, but dies in the target

These particles exit from the geometry far away (z=900 cm)

46

Our example

id = 0 ; 12C primary

id = 1 ; row=10 ; neutron

id = 1 ; row=3 ; 7Li

id = 1 ; row=4 ; 3He

id = 1 ; row=9 ; neutron

id = 1 ; row=8 ; neutron

id = 1 ; row=7 ; proton

id = 1 ; row=6 ; proton

id = 1 ; row=4 ; 4He

id = 1 ; row=2 ; d

id = 1 ; row=1 ; d

47

Data omitted in the event recording

1. Unfortunately, we never included (so far) Z, A of the target nucleus

where interaction occur. At present Target Nucleus can be often

reconstructed by checking Z and A conservation: σ𝑍𝑖 of secondary

particles having id=1 has to be equal to the sum of Z of primary and Z of

target. The same for baryonic number conservation.

2. We have not marked in any way elastic scattering. Be careful when

interaction occurs in materials where Hydrogen is present: the recoiling

proton (H) from elastic scattering of the primary (or of a secondary

fragment) may appear from coordinates where no inelastic interaction

occurred…

48

The individual MC detector (hit) structures

• number of hits (energy releases) in the detector

• index to the particle responsible of the hit

• initial position of hit

• final position of hit

• initial momentum of hit

• final momentum

• energy release in the hit

• initial time of the energy release

specific variables depending on the type of DET: Layer, View, ….

For each detector DET with n energy releases (hits) we store some
variables:

In FLUKA it is in GeV, in Shoe is in general

converted to MeV

49

About the energy release in simulation - 1
Charged particles

A ”hit” will be the energy lost during a “step” (with fluctuations of dE/dx properly considered in

a continuous way). In a region where there is no tracking in magnetic field, each hit is a single

step

These have to be introduced in

your post-processing macros

No electronics/detector effects → no experimental resolution

No quenching factors introduced so far

Only physics intrisic fluctuations (i.e. “Landau” fluct.)

Initial hit coordinates
Final hit coordinates

Example for CAL

At the same points you can

get the momentum
components of the particle
releasing energy, both at

beginning and end of each hit

50

About the energy release in simulation - 2

Hit 1

More complex cases Of course:

1) the energy released

per event in the

same detector is the

sum of all E

2) The energy released

per event in a single

element of the

detector is obtained

by restricting the

sum to a selected

element. In this case

you could use a

specific variable to

select a given

crystal

Hit 3

The black track is a neutron: it does not

deposit energy here

The yellow tracks are photons: here they

deposit energy in the point where they stop

by p.e. effect. Electron is below threshold.

Hit 4

Hit 5

51

About the energy release in simulation - 3

There are cases in which the Hits (Energy depositions) have point-like space

dimension.

In Fluka this may occurr in some cases. For example:

a) for e+/e-/photons which go below transport energy threshold

b) “Low Energy” neutrons (E<20 MeV) which deposit energy by kerma factors

52

TAMCntuHit

53

Int_t GetHitsN() const;
TAMChit* GetHit(Int_t i);
//! Get Track index
Int_t GetTrackIdx() const { return fID; }
//! Get position in
TVector3 GetInPosition() const { return fInPosition; }
//! Get position out
TVector3 GetOutPosition() const { return fOutPosition; }
//! Get momentum in
TVector3 GetInMomentum() const { return fInMomentum; }
//! Get momentum out
TVector3 GetOutMomentum() const { return fOutMomentum; }
//! Get energy loss
Double_t GetDeltaE() const { return fDeltaE; }
//! Get time of flight
Double_t GetTof() const { return fTof; }

//! Get Sensor id (VTX, IT...)
Int_t GetSensorId() const { return fLayer; }
//! Get TW bar id
Int_t GetBarId() const { return fLayer; }
//! Get CAL crystal id
Int_t GetCrystalId() const { return fLayer; }
//! Get layer (meaning changes with detector)
Int_t GetLayer() const { return fLayer; }
//! Get BM view or TW layer
Int_t GetView() const { return fView; }
//! Get BM cell
Int_t GetCell() const { return fCell; }

➔ no. of hits for a given detector
➔ gets the hit

➔ pointer to the particle generating the hit

➔ initial coordinates of the hit

➔ final coordinates of the hit

➔ Px, Py, Pz at the begin of the hit

➔ Px, Py, Pz at the end of the hit

➔ enegy release in the hit (MeV)

➔ time of the hit

General

Detector Specifc

Retrieving MC HITS from Detector Structures in SHOE

54

// MC hits of SC
 TAMCntuHit *scMChits = 0x0;

 // MC hits and tracks of Beam Monitor
 TAMCntuHit *bmMCeve = 0x0;

 // MC hits of VTX
 TAMCntuHit *vtMChits = 0x0;

 // MC hits of MSD
 TAMCntuHit *msMChits = 0x0;

 // MC hits of ITR
 TAMCntuHit *itMChits = 0x0;

 // MC hits of SCN
 TAMCntuHit *twMChits = 0x0;

 // MC hits of CAL
 TAMCntuHit *caMChits = 0x0;

….

This is possible, of course,

only on Simulated Data
if(IncludeMC>0){
 if(IncludeSC>0) {
 scMChits = new TAMCntuHit(); // Get SC Hits
 tree->SetBranchAddress(FootBranchMcName(kST), &scMChits);
 }
 if(IncludeBM>0) {
 bmMCeve = new TAMCntuHit(); // Get BM Hits
 tree->SetBranchAddress(FootBranchMcName(kBM), &bmMCeve);
 }
 if(IncludeVT>0) {
 vtMChits = new TAMCntuHit(); // Get VT Hits
 tree->SetBranchAddress(FootBranchMcName(kVTX), &vtMChits);
 }
 if(IncludeIT>0) {
 itMChits = new TAMCntuHit(); // Get ITR Hits
 tree->SetBranchAddress(FootBranchMcName(kITR), &itMChits);
 }
 if(IncludeMSD>0) {
 msMChits = new TAMCntuHit(); // Get MSD Hits
 tree->SetBranchAddress(FootBranchMcName(kMSD), &msMChits);
 }
 if(IncludeTW>0) {
 twMChits = new TAMCntuHit(); // Get SCN Hits
 tree->SetBranchAddress(FootBranchMcName(kTW), &twMChits);
 }

 …

Retrieving MC HITS from Detector Structures in SHOE,

an example: the Beam Monitor

….

Somewhere inside a Loop on the events:
….
Int_t nbmHits = bmNtuHit->GetHitsN(); gets the number of Hits in the event

for (Int_t i = 0; i < nbmHits; i++) {. loop on the number of Hits

 TABMhit* hit = bmNtuHit->GetHit(i); gets the Hit
 Int_t plane = hit->GetPlane();
 Int_t view = hit->GetView();
 Int_t cell = hit->GetCell();
 …

 etc. etc.
}

55

On the question of associating Hits with Particles

The issus is not so simple.

In this example the incoming particle releases energy with 3 Hits Only one of them is

directly associated to

this particle (no. 1)

1

2

3
The other 2 Hits are

associated to

daughters of the

incoming particle

(products of an

interaction)

Therefore a correct analysis of this kind, at the

level of MC truth, has to be performed by

implementing a logic in which the whole chain of

daughters is to be considered

(think for instance at the case when -rays are

explicitely produced)
56

Connecting Hits in Detectors to Track Structure:

example in a SHOE macro

….

Somewhere inside a Loop on the events:
….
 Int_t nscMCHits = scMChits->GetHitsN(); // Counts the hits in the Start Counter

 for (int i=0; i<nscMCHits; i++) { // Loop on the hits in the Start Counter

 TAMChit* schit=scMChits->GetHit(i); // Gets the i hit
 TAMCpart* mcpart=mcNtuPart->GetTrack(schit->GetTrackIdx());

 if (mcpart->GetCharge()==6 && mcpart->GetBaryon()==12) {
 …
 }

 etc. etc.
 }

57

pointer to the

particle that

generated that hit

Checks if that

particle was a 12C

The "region crossing" data structure

• number of boundary crossing

• index of the crossing particle in the particle block

• no. of region in which the particle is entering

• no. of region the particle is leaving

• Components of the momentum at the boundary crossing

• Coordinates of the point of the boundary crossing

• time of the boundary crossing

• charge of crossing particle

• mass of the crossing particle

This structure registers the info on the particles that cross the boundaries

between the different regions of the setup (detector elements, air, target).

Very useful for many analyses about MC truth

58

Redundant with respect to the variables from particle structure

TAMCntuRegion

 // Get number of regions
 Int_t GetRegionsN() const;
 // Get region
 TAMCregion* GetRegion(Int_t i);
 //! Get track index
 Int_t GetTrackIdx() const { return fID; }
 //! Get number of crossing region
 Int_t GetCrossN() const { return fCrossN; }
 //! Get number of old crossing region
 Int_t GetOldCrossN() const { return fOldCrossN; }
 //! Get poistion
 TVector3 GetPosition() const { return fPosition; }
 //! Get momentum
 TVector3 GetMomentum() const { return fMomentum; }
 //! Get mass
 Double_t GetMass() const { return fMass; }
 //! Get atomic charge
 Double_t GetCharge() const { return fCharge; }
 //! Get time
 Double_t GetTime() const { return fTime; }

59

➔ pointer to the particle generating the crossing

➔ number of crossings in the event

➔ gets a crossing

➔ no. of region in which the particle is entering

➔ no. of the region from which the particle exits

➔ coordinats of the crossing point

➔ components of momentum at crossing point

➔ mass of the crossing particle

➔ charge number of the crossing particle

➔ time of the particle at the crossing point

Example: How to exploit Region Crossings in a SHOE macro
TAMCntuRegion* mcNtuReg;
if(IncludeMC>0){
 if(IncludeREG>0) {
 mcNtuReg = new TAMCntuRegion(); // Get MC Crossings
 tree->SetBranchAddress(TAGnameManager::GetBranchName(mcNtuReg->ClassName()), &mcNtuReg);
 }

….

Somewhere inside a Loop on the events:
Int_t nCross = mcNtuReg->GetRegionsN(); // Counts the number of region crossings in the event
 for (int i=0; i<nCross; i++) { // Loop on the region crossings
 TAMCregion* cross=mcNtuReg->GetRegion(i); // Gets the i-crossing
 TVector3 crosspos = cross->GetPosition(); // Gets x, y, z global coordinates at crossing
 Int_t OldReg = cross->GetOldCrossN(); // Gets the number of the region from which the particle is exiting
 Int_t NewReg = cross->GetCrossN(); // Gets the number of the region in which the particle is entering
 Double_t time_cross = cross->GetTime(); // Gets the time at the moment of crossing
 TVector3 mom_cross = cross->GetMomentum(); // retrieves P at crossing
//now retrieves TrackID: which particle was making that region crossing?
 TAMCpart* mcpart=mcNtuPart->GetTrack(schit->GetTrackIdx());
 fid = mcpart->GetFlukaID(); // Gets the FLUKA particle-id
 cha = mcpart->GetCharge(); // Gets its charge

 bar = mcpart->GetBaryon(); // Gets its mass number
 reg = mcpart->GetRegion(); // Gets the number of the region where the particle was originated

….
}

60

Possible Basic Exercises using SHOE – MC truth
1. Make a plot of the multiplicity per event of particles produced anywhere in the

detector

2. Make a plot of the multiplicity per event of particles produced by the primary in the

target

3. Make the previous plot only for those particle which exit the target going in the
forward region and are produced with E>50 MeV/u

4. Make a plot of the energy distribution of fragments produced in target for a few

different Z and/or A

5. Make a plot of the energy released per event in the TW

6. Make a plot of the energy released per event in the CA and for a selected crystal of
your choice

Slightly Increasing Difficulty:

7. Compare the distribution of energy released by p and 4He in the 1st layer of MSD (in

the approximation that they do not produce daughters there)

8. Select particles produced in the target which arrive at TW and make a plot of the

energy that they have lost in the path from target to TW
61

Global tracks reconstructed in Simulated Data:

How do we connect them to MC truth infos?

62

Tracks are reconstructed as in experimental

data, just using detector hits & clusters,

without exploiting data which would not be

available in the real experiment.

All infos about actual particles in the

simulated event are of course “forgotten” in

reconstruction

However, for simulated events, for each point in the track, it is possible to access the

information about the actual particle which generated the hit

It might also occur that points from different particles in the same event are

accidentally used to define the same reconstructed track! (as in experimental data)

Global tracks reconstructed in Simulated Data:

How do we connect them to MC truth infos?

static TAGntuGlbTrack *glbntutrk;
glbntutrk = new TAGntuGlbTrack();
tree->SetBranchAddress(TAGnameManager::GetBranchName(glbntutrk->ClassName()), &glbntutrk);

…
for(int i=0;i<glbntutrk->GetTracksN();i++){ // Loop on all trconstructed tracks
 TAGtrack* glbtrack=glbntutrk->GetTrack(i); // Gets the i-th track
 npoints = glbtrack->GetPointsN(); //No. of points in the i-th reconstructed track
 if (IncludeMC) {

 Int_t mainPartId = glbtrack->GetMcMainTrackId(); // Id of the most prob. MC particles associated to the rec. track
 TAMCpart* mainPart = mcNtuPart->GetTrack(glbtrack->GetMcMainTrackId()); // Id of the most prob. MC particle
 for (int ic=0; ic<glbtrack->GetPointsN(); ic++) { // loop on the points of the i-th reconstructed track
 TAGpoint *tmp_poi = glbtrack->GetPoint(ic); // getting the ic-th point

 for(int t=0;t<tmp_poi->GetMcTracksN();t++) { // loop on all MC part. which can be associated to the ic-th track point
 TAMCpart* tmpPart = mcNtuPart->GetTrack(tmp_poi->GetMcTrackIdx(t)); // gets the t-th MC particle
 }
 }
 }

}

63

Some possible operations:

A possible tweak for Global Track reconstruction

for Simulated Data

64

The charge Z of a reconstructed track is obtained by combining ToF and Energy Loss in the

TW. Z is available as a property of the object that we call “TW point”

A calibration is necessary, depending on energy and distance from target to TW

For Simulated Events, it is possible to ask to attribute to TW points, as charge reconstruction,

the actual Z of the MC particle. This is achieved by means of a parameter in:

shoe/Reconstruction/config/XXXX/TATWdetector.cfg

EnableZmc: 0
EnableNoPileUp: 0
EnableZmatching: 1

EnableCalibBar: 0
EnableRateSmearMc: 0
BarsN: 40
GainWD: 1
EnableEnergyThr: 1

default (no MC charge)

Exercises using SHOE for MC rec. tracks

1. Make a scatter plot of the reconstructed charge Z for each point in the TW vs the

charge of the actual MC particle associated to that point

2. For all reconstructed tracks, search for the MC particles contributing to the points of

the track and:

 - what is the fraction of ”pure” tracks (i.e. with all points belonging to the same particle)?

 - for “pure” tracks, compare the reconstructed momentum with their MC momentum

 - check if those particles were really produced by the primary in the target

 mcpart->GetMotherID() == 0 (this means that the mother was a primary)
 mcpart->GetRegion() == region number of target (campaign dependent)

65

	Slide 1: Managing FLUKA Simulation Output Files using SHOE
	Slide 2: Introduction - 1
	Slide 3: Introduction - 2
	Slide 4: The FLUKA MC code
	Slide 5: A few specific things of FLUKA MC that you need to know
	Slide 6: A few specific things of FLUKA MC that you need to know
	Slide 7
	Slide 8
	Slide 9
	Slide 10: FLUKA nuclear interaction models:
	Slide 11: hadron-Nucleus interactions: (p-N, n-N, …)
	Slide 12: Nucleus-Nucleus interactions:
	Slide 13: A few words on MC settings:
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: TAMCevent
	Slide 39: TAMCntuPart
	Slide 40
	Slide 41
	Slide 42
	Slide 43: About the Index of the particles in the events
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: The individual MC detector (hit) structures
	Slide 50
	Slide 51
	Slide 52
	Slide 53: TAMCntuHit
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: TAMCntuRegion
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

