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Introduction - 1

This short tutorial is meant to explain how to understand and use the MC data 

output produced for FOOT (Electronic Spectrometer) using SHOE.

The MC simulation is performed using the FLUKA code. This is described in a 

recent paper:
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Introduction - 2

The purpose is not to teach how to perform a correct FOOT Simulation using 

FLUKA, but just to use the simulation results.

The main topics are: 

• Give some basic info specific of FLUKA MC what everybody needs to know

• The structure of data produced by MC for FOOT

• Provide examples about the use and interpretation of these data, and the 

connection of detector hits and particle properties at MC-truth level
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The FLUKA MC code

All about the physics models of this code can be found in a very recent paper:

Here we limit ourselves to summarize in a schematic way the use of nuclear 

interaction models

https://www.fluka.org
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https://www.fluka.org/


A few specific things of FLUKA MC that you need to know

Default units 

the most important are:

time➞ s, length ➞ cm, energy ➞ GeV, momentum ➞ GeV/c 

masses ➞ GeV/c2                        B ➞ Tesla 

Particles: 

each particle is identified by a number

Reference frame: (cartesian, right-handed)

z is primary beam direction

y is pointing upwards z

y

x

It coincides with the global reference frame used in SHOE, with 

origin (0,0,0,) at the center of target
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In many cases SHOE transforms 

GeV to MeV, since this would be 

more natural in FOOT



A few specific things of FLUKA MC that you need to know
Fluka name     Fluka no.        Common name 

 4-HELIUM       -6       Alpha
 3-HELIUM -5 Helium-3
 TRITON  -4          Triton      

 DEUTERON -3       Deuteron
 HEAVYION -2          Generic heavy ion with Z > 2

 OPTIPHOT          -1          Optical Photon
 RAY            0 Pseudoparticle
 PROTON              1          Proton

 APROTON  2          Antiproton
 ELECTRON  3          Electron

 POSITRON  4          Positron
 NEUTRIE  5          Electron Neutrino
 ANEUTRIE  6          Electron Antineutrino

 PHOTON              7          Photon
 NEUTRON  8          Neutron

 ANEUTRON  9          Antineutron
 MUON+  10          Positive Muon
 MUON-  11         Negative Muon

Fluka name     Fluka no.        Common name 

 PION+  13          Positive Pion
 PION-  14 Negative Pion 
 KAON+              15          Positive Kaon

 KAON-              16         Negative Kaon
 LAMBDA  17          Lambda

 ALAMBDA            18          Antilambda
 KAONLONG 12          Kaon-zero long
 KAONSHRT           19         Kaon zero short

 NEUTRIM            27          Muon neutrino
 ANEUTRIM           28          Muon antineutrino

 TAU+               41          Positive Tau
 TAU-               42          Negative Tau
 NEUTRIT            43          Tau neutrino

 ANEUTRIT           44          Tau antineutrino

Here only the most important
In FOOT you will find mostly: -6, -5, -4, -3, -2, 1, 3, 4, 7, 8
Less often (above ~290 MeV/u): 10, 11, 13, 14

Rare, only in case of high energy, also: 15, 16
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Since we are mostly interested to nuclear fragments, notice:

for p, n, d, t,3He, 4He there is a specific FLUKA  particle number

For A>4: FLUKA particle numbers is always -2, and nucleus is identified by Z 

and A

Very low energy fragments and nucleons originating in the “nuclear 

evaporation” phase are identified with a particle number in the range from -

39 to -7. Again identified by Z and A. 

In principle there could be also a way to identify isomers, but we do not 

include it in FOOT simulation
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The concept of “Region” in FLUKA

Basic objects called bodies  (such as cylinders, spheres, 

parallelepipeds, etc.)  are combined to form more complex  

objects called Regions
1 complex object = REGION

• The user knows the region

usually by name, but internally

(and in SHOE) it is identified by a 

number

• to each region is assigned a 

single Material (chemical

element or compound or mixture)

3 basic

objects 
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“AIR2” is a region, filled with air (N, O, Ar @ STP)

Each “SCNnn” bar is a region, filled with EJ232 scintillator

Each “CALnnn” is a region, filled with BGO

Warning: The specific number identifier of a region

depends on which CAMPAIGN you are using
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FLUKA nuclear interaction models:
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AA Collisions

BME@ rQMD2.4*  Dpmjet3#

Target nucleus description (density, 
Fermi motion, etc)

Preequilibrium stage with current exciton 
configuration and excitation 

Glauber-Gribov cascade with formation 
zone

(Generalized) IntraNuclear cascade

Evaporation/Fragmentation/Fission model

γ deexcitation

PEANUT

hA Collisions ,*A Collisions e+/-+/-A Collisions A Collisions

Proj/Target

 nucleus

description

Proj/Target

nucleus

description

IntraNuclear

 cascade
IntraNuclear

 cascade

Glauber-Gribov

Complete Fusion
3 Body

Transfer
1N Break Up

Incomp. Fusion



hadron-Nucleus interactions: (p-N, n-N, …)
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AA Collisions

BME@ rQMD2.4
*  

Dpmjet3#

Target nucleus description (density, 
Fermi motion, etc)

Preequilibrium stage with current exciton 
configuration and excitation 

Glauber-Gribov cascade with formation 
zone

(Generalized) IntraNuclear cascade

Evaporation/Fragmentation/Fission model

γ deexcitation

PEANUT

hA Collisions

Proj/Target

 nucleus

description

Proj/Target

nucleus

description

IntraNuclear

 cascade
IntraNuclear

 cascade

Glauber-Gribov

Complete Fusion
3 Body

Transfer
1N Break Up

Incomp. Fusion

PreEquilibrium

Approach to 

NUclear Thermalization

Not at FOOT energies



Nucleus-Nucleus interactions:
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AA Collisions

BME@ rQMD2.4*  Dpmjet3#

Target nucleus description (density, 
Fermi motion, etc)

Preequilibrium stage with current exciton 
configuration and excitation 

Glauber-Gribov cascade with formation 
zone

(Generalized) IntraNuclear cascade

Evaporation/Fragmentation/Fission model

γ deexcitation

PEANUT

,*A Collisions e+/-+/-A Collisions

Proj/Target

 nucleus

description

Proj/Target

nucleus

description

IntraNuclear

 cascade
IntraNuclear

 cascade

Glauber-Gribov

Complete Fusion
3 Body

Transfer
1N Break Up

Incomp. Fusion

Managed by PEANUT

Boltzman 

Master

Equation

relativistic

Quatum

Molecular

Dynamics

Not at FOOT 

energies



A few words on MC settings:
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All models are automatically activated. 

The energy threshold for charged particle and photon transport is set at 100 keV, while for 
neutrons is set at 10 μeV.
In order to limit CPU time and output file size, the transport of e+e− is switched off (a part few 
specific simulation studies), however, the carefully tuned models of FLUKA managing 𝑑𝐸∕𝑑𝑥 
and its fluctuations guarantee a result which is independent of the choice of the e+e− cut-off.

In order to prevent mistakes or mistypes, all the input directives and geometry setup for a 
given simulation campaign are created by SHOE



Conventions for MC campaign naming

14

We append  _MC to the campaign name, to signify that this is a campaign of simulated data and distinguish it 

from the campaign of real experimental data.

Example:

CNAO2023 is the experimental campaign (data taken at CNAO in 2023)
CNAO2023_MC is the corresponding simulation campaign

Recently we have introduced in the simulation geometry some important passive regions (boxes, PCB), and 
we are substituting old campaigns. For example:

CNAO2023_MC ➔ CNAO23PS_MC

In simulation campaigns we have run numbers (in analogy to experimental data). We are adopting as 
convention a number corresponding to the beam energy/nucleon and the target material. For example, in 
campaign CNAO23PS_MC (12C @ 200 MeV/u), we have the following runs:

200 ➔ graphite target
201 ➔ polyethylene target

202 ➔ no target
203 ➔ Aluminum target



Detectors in CNAO23PS_MC Campaign
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Where the FOOT user can retrieve relevant infos about 
geometry and materials used in simulation

For a given Campaign XXXX: 

In shoe/build/Reconstruction/cammaps/XXXX.cam

you see the detectors included, and the possible run numbers. In FOOT.cam it is 

specified if the campaign is a simulated one

In shoe/build/Reconstruction/config/XXXX/FootGlobal.par

you see the detectors selected for reconstruction (y or n in a list) and specify other 
choices important also for simulated data (see slide #18)

In  shoe/build/Reconstruction/geomaps/XXXX there are, among the others:

 FOOT(_nnn).geo which contains the positions (of the “center”), dimensions and rotation 

angles in global coordinates of all FOOT detectors and magnets. nnn is the run number: 

nnn is there only if there are more than 1 run.

TA*detector(_nnn).map which contain, for each single detector (or magnet system), the 

relative coordinates and rotation angle of every element composing the detector itself, 

together with the material description. 

TAGdetector(_nnn).map contains info about target and primary beam
16
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// Campaign file
CamName: "CNAO23PS_MC"
RunNumber: 200;201;202;203
NumberDevices: 10

DetectorName: "FOOT"
NumberFiles: 2
"./geomaps/CNAO23PS_MC/FOOT.geo": 200;201;202;203
"./geomaps/CNAO23PS_MC/FOOT.reg": -1

DetectorName: "DI"
NumberFiles: 1
"./geomaps/CNAO23PS_MC/TADIdetector.geo": -1

DetectorName: "ST"
NumberFiles: 1
"./geomaps/CNAO23PS_MC/TASTdetector.geo": -1

DetectorName: "BM"
NumberFiles: 3
"./geomaps/CNAO23PS_MC/TABMdetector.geo": -1
"./config/CNAO23PS_MC/TABMdetector.cfg": -1
"./calib/CNAO23PS_MC/TABM_T0_Calibration.cal": -1

DetectorName: "TG"
NumberFiles: 1
"./geomaps/CNAO23PS_MC/TAGdetector.geo": 200;201;202;203

DetectorName: "VT"
NumberFiles: 3
"./geomaps/CNAO23PS_MC/TAVTdetector.geo": -1
"./config/CNAO23PS_MC/TAVTdetector.cfg": -1
"./calib/CNAO23PS_MC/TAVTdetector.cal": -1

DetectorName: "IT"

NumberFiles: 2
"./geomaps/CNAO23PS_MC/TAITdetector.geo": -1
"./config/CNAO23PS_MC/TAITdetector.cfg": -1

DetectorName: "MSD"

NumberFiles: 3
"./geomaps/CNAO23PS_MC/TAMSDdetector.geo": -1
"./config/CNAO23PS_MC/TAMSDdetector.cfg": -1
"./config/CNAO23PS_MC/TAMSDdetector.map": -1

DetectorName: "TW"
NumberFiles: 6
"./geomaps/CNAO23PS_MC/TATWdetector.geo": -1
"./config/CNAO23PS_MC/TATWdetector.cfg": -1
"./config/CNAO23PS_MC/TATW_BBparameters.cfg": -1
"./config/CNAO23PS_MC/TATWbarsMapStatus.map": -1
"./calib/CNAO23PS_MC/TATW_Energy_Calibration.cal": -1
"./calib/CNAO23PS_MC/TATW_Tof_Calibration.cal": -1

DetectorName: "CA"
NumberFiles: 4
"./geomaps/CNAO23PS_MC/TACAdetector.geo": -1
"./config/CNAO23PS_MC/TACAdetector.cfg": -1
"./config/CNAO23PS_MC/TACAcrystalMapStatus.map": -1
"./calib/CNAO23PS_MC/TACA_Energy_Calibration.cal": -1

There are 4 runs

Same energy (200 MeV/u), 

different targets

(possible) different geometries

CNAO23PS_MC.cam

Example of cammap file  (CNAO23PS_MC)



// -+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+-
// Beam info
// -+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+-
BeamSize:            0.48

BeamShape:         "Gaussian"
BeamEnergy:          0.2   //! GeV/u
BeamAtomicMass:       12   //! A Beam
BeamAtomicNumber:     6    //! Z Beam
BeamMaterial:        "C"   //! Beam Material

BeamPartNumber:       1    // particles in Beam
BeamPosX:            -0.4   BeamPosY:     0.1    BeamPosZ:      -63.0
BeamSpreadX:         0.26668 BeamSpreadY:  0.57112  BeamSpread:      0.0
BeamDiv:             0.0000

// -+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+-
// Target info (cm)
// -+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+--+-+-+-+-+-
TargetShape:       "cubic"
TargetSizeX:        5.0   TargetSizeY:    5.0    TargetSizeZ:  0.5

TargetMaterial:     "C"
TargetAtomicMass:   12.0107
TargetDensi ty:      1.83
TargetExc:         78.0e-6

TAGdetector_200.geo

FOOT_200.geo

Examples from geomaps
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StartBaseName: "ST"
StartPosX: 0.  StartPosY: 0. StartPosZ: -45.925
StartAngX: 0. StartAngY: 0. StartAngZ: 0.

TargetBaseName: "TG"
TargetPosX: 0. TargetPosY: 0. TargetPosZ: 0.
TargetAngX: 0. TargetAngY: 0.  TargetAngZ: 0.

BmBaseName: "BM"

BmPosX: 0. BmPosY: 0. BmPosZ: -12.85
BmAngX: 0. BmAngY: 0. BmAngZ:  0.

VertexBaseName: "VT"
VertexPosX: 0. VertexPosY:  0. VertexPosZ: 2.61

VertexAngX: 0. VertexAngY:  0. VertexAngZ: 0.

MagnetsBaseName: "DI"
MagnetsPosX: 0. MagnetsPosY:  0. MagnetsPosZ: 19.00
MagnetsAngX: 0. MagnetsAngY:  0. MagnetsAngZ: 0.

InnerTrackerBaseName: "IT"
InnerTrackerPosX: 0. InnerTrackerPosY: 0. InnerTrackerPosZ: 19.00
InnerTrackerAngX: 0. InnerTrackerAngY: 0. InnerTrackerAngZ: 0.

MicroStripBaseName: "MSD"
MicroStripPosX: 1.9 MicroStripPosY: 0. MicroStripPosZ: 40.9
MicroStripAngX: 0. MicroStripAngY: 0. MicroStripAngZ: 0.

TofWallBaseName: "TW"

TofWallPosX: 9.1 TofWallPosY: -1.6 TofWallPosZ: 169.75
TofWallAngX: 0. TofWallAngY:  0. TofWallAngZ: 0.

CaloBaseName: "CA"
CaloPosX: 8.56 CaloPosY: -1.7 CaloPosZ: 200.5

CaloAngX: 0. CaloAngY:  0. CaloAngZ: 0.

It contains Beam and Target parameters

All these data are used to create in the same 

way, both the simulation geometry and 

parameters (such as materials composition), and 

an identical geometry and set of parameters for 

the reconstruction used in SHOE



x y z Bx By Bz

The name of the magnetic map filename and geometry parameters for the magnets

are in geomaps/XXXX/TADIdetector.geo.

Configuration of Magnets

The map of magnetic field is contained in 

shoe/build/Reconstruction/data 

at present we make use of the map in the file 

“MagneticMap_2023.table”:

It is the map measured during 2023 beam test 
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Accessing Regions in Simulated data

For some specific analysis of simulated data, it may be useful to exploit infos about 

“Regions” of simulated geometry, trying to answer questions like: 

- In which region this particle was generated?

- Which are the coordinates and the values of kinematics variables of a given particle 

while passing from on region to another? (for example: exiting from target into air, 

entering in a given sensor of VTX, etc. etc.)

- …

In the case of simulated campaigns, Shoe gives access to such information.

Let us remind that the different regions are identified by a number (see slide #6), 

therefore interested users must know the correspondence between those numbers 

and the name of the regions.

Region numbering is summarized in geomaps/XXXX/FOOT.reg

Warning: there is no explanation on the meaning of region names
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Example: Region Numbering for CNAO23PS_MC
Number.             Name:                             Piece of detector

 Region n.        1 BLACK     “Black Hole”

 Region n.        2 AIR1      Air

 Region n.        3 AIR2      Air

 Region n.        4-18 AIRCAL0 – AIRCAL14   Pieces of Air around Calo

 Region n.        19 STC       Start Counter
 Region n.        29 STCMYL1   Mylar foil in front of Start Counter

 Region n.        21 STCMYL2   Mylar foil on the back of SC

 Region n.        22 BMN_SHI   BM Al Shield

 Region n.        23 BMN_MYL0  BM Mylar foil at the entrance

 Region n.        24 BMN_MYL1  BM Mylar foil at the exit
 Region n.        25-60 BMN_C000 – BMN_C117 BM Cells

 Region n.        61 BMN_FWI   BM Field wires

 Region n.        62 BMN_SWI   BM Sense wires

 Region n.        63 BMN_GAS  BM gas (non – sensitive)

 Region n.        64 TARGET    Target
 Region n.        65-76 VTXE0 – VTXP3  All different parts of VTX sensors

 Region n.        65-76 VTXE0 – VTXP3  All different parts of VTX sensors

 Region n.        77-224 ITRE00 – ITRY112  All different parts of IT sensirs

 Region n.        225-242 MSDS0 – MSDM5  All different parts of MSD sensors

 Region n.        243-246 MAG0 – MAG_SH1  All different parts of Magnets
 Region n.        247-286 SCN000 – SCN119  TW bars

 Region n.        287-619 CAL000 – CAL332  BGO crystals

 Region n.        620-656 ACAL_00 – ACAL_36  AIR gaps around the BGO crystals

 etc. etc.
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Interpreted from

geomaps/CNAO23PS_MC/FOOT.reg

In order to better understand in 

detail the different simulation 

regions, interested people should 

contact

giuseppe.battistoni@mi.infn.it

silvia.muraro@mi.infn.it

Actually, Shoe allows to retrieve the region number (to be used in coding) from the 

region name (see later)

Numbers may vary from 

campaign to campaign: 
They depend on the 
geometry of a given setup

mailto:giuseppe.battistoni@mi.infn.it
mailto:silvia.muraro@mi.infn.it


Simulated data files and their processing

Simulated data are distributed as Root files containing the structure of the raw simulated data 

organized in Shoe trees. The structure of simulated events will be explained in a next section

Simulated data are stored in a shared area in the INFN computing resources. For example:

/storage/gpfs_data/foot/shared/SimulatedData/CNAO23PS_MC/12C_C_200_1.root
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Projectile Target Energy

Therefore, this is a run 200 of campaign CNAO23PS_MC

These are not yet reconstructed data (→ no track reconstruction!).

However, simulated data can be:

1) Used just as raw data to perform analyses at the “MC truth” level

2) Processed and reconstructed using the Shoe global tracking by applying the same 

approach used for experimental data

At present, our default is to write on file all events (1 primary = 1 event)



Global Reconstruction of simulated data
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Users have to take care of reconstruction. The same Shoe code used for real data has to be 

invoked. 

Assuming to be in a directory shoe/build/Reconstruction, the essential parameters to drive track 

reconstruction are contained in the file shoe/build/Reconstruction/config/XXXX/FootGlobal.par

The line command to start global tracking is:

../bin/DecodeGlb –in 12C_C_200_1.root –exp CNAO23PS_MC –run 200 –mc –nev nnn (–nsk mmm) –out 
yourfilename

But this only after checking the content of FootGlobal.par

No. of events to 

be processed

No. of events to 

be skipped

Mandatory for simulated 

data



Inside the FootGlobal.par file
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IncludeKalman:   y
IncludeTOE:         n
IncludeStraight:  n
FromLocalReco:  n
…
…
N measure in global tracking: 9
…

…
EnableTree:          y
EnableFlatTree:      n
EnableHisto:         y
EnableTracking:      y

EnableSaveHits:      y
EnableRootObject:    y
EnableRegionMc:      y
EnableElecNoiseMc: y
…

Specific for 

simulated data

Optional

To select 

tracking method

Minimum no. of 

points required to 
define a global 
track

IncludeDI: y
IncludeST:            y
IncludeBM: y
IncludeTG: y
IncludeVT: y
IncludeIT:  y
IncludeMSD: y
IncludeTW: y
IncludeCA: y

To select which 

detectors have to be 
included in track 
reconstruction



Working at the level of MC truth:

What you can take out from the root 

file with raw simulated data

(no global tracking yet)
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Most relevant SHOE classes for MC
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TAMCevent

TAMCntuEvent

TAMCntuPart

TAMCntuHit

TAMCntuRegion

See their implementation in /shoe/Libraries/TAMCbase

In the following, some examples of coding, to be used in SHOE macros to readout 

simulated data, will be given.

These examples can be implemented (or, in part, are already implemented) in a 

template macro that you can find in /shoe/Reconstruction/macros 

ReadShoeTreeMain.C 
ReadShoeTreeFunc.h 

You are invited to start using such a template



Working with MC with a SHOE macro - 1
When processing a simulated root file, you can use in your macro the methods defined in 

shoe/Libraries/TAMCbase (TAMCntuEve.hxx, TAMCntuEve.cxx)

//opens the file and access the tree

  TTree *tree = 0;
  TFile *f = new TFile(nameFile.Data());
  tree = (TTree*)f->Get("tree");
  if(tree==nullptr){
    tree = (TTree*)f->Get("EventTree"); 
  }….
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//Accessing basic infos: campaign name and run number
…. 
  TAGroot gTAGroot;
  static TAGrunInfo* runinfo;
  TString expName;
  runinfo=(TAGrunInfo*)(f->Get("runinfo")); 
  const TAGrunInfo construninfo(*runinfo); 
  gTAGroot.SetRunInfo(construninfo);
  expName=runinfo->CampaignName();
  if(expName.EndsWith("/"))
    expName.Remove(expName.Length()-1);
  Int_t runNumber=runinfo->RunNumber();  
  TAGrecoManager::Instance(expName);
  TAGcampaignManager* campManager = new TAGcampaignManager(expName);
  campManager->FromFile();
  cout << "Campaign is: " << expName << endl;
  cout << "Run Number is: " << runNumber << endl;

All this can be the same 

for both real and 
simulated data

Getting Campaign 

name and run number

TAGrunInfo

Both for real and 

simulated data



Working with MC with a SHOE macro - 2
//Checking the existence of detector elements

    IncludeMC=campManager->GetCampaignPar(campManager->GetCurrentCamNumber()).McFlag;

  IncludeREG=runinfo->GetGlobalPar().EnableRegionMc;
  IncludeIT = runinfo->GetGlobalPar().IncludeIT;
  IncludeDI = runinfo->GetGlobalPar().IncludeDI;
  IncludeSC = runinfo->GetGlobalPar().IncludeST;
  IncludeBM = runinfo->GetGlobalPar().IncludeBM;
  IncludeVT = runinfo->GetGlobalPar().IncludeVT;
  IncludeTG = runinfo->GetGlobalPar().IncludeTG;
  IncludeMSD = runinfo->GetGlobalPar().IncludeMSD;
  IncludeTW = runinfo->GetGlobalPar().IncludeTW;
  IncludeCA = runinfo->GetGlobalPar().IncludeCA;
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//Accessing geometry infos
     static TAGgeoTrafo*  geoTrafo;

  geoTrafo = new TAGgeoTrafo();
  TString parFileName = campManager>GetCurGeoFile(TAGgeoTrafo::GetBaseName(), runNumber);
  geoTrafo->FromFile(parFileName);

  if (IncludeSC) {
    TAGparaDsc* parGeoSt = new TAGparaDsc(new TASTparGeo());
    TASTparGeo* stparGeo = (TASTparGeo*)parGeoSt->Object();
    parFileName = campManager->GetCurGeoFile(TASTparGeo::GetBaseName(), runNumber);
    stparGeo->FromFile(parFileName);
  }

Example for SC (Start Counter), but it’s 

similar for the other detectors

This variable checks if you 

are reading simulated data.
All these instruction can be 
used in the same way for 

both real and simulated data

Other important classes, common to both real and simulated data,  are those which give 

access to geometry parameters:
TAGparGeo, TASTparGeo, TABMparGeo, 

TAVTparGeo, etc. (one for each detector) 



Working with MC with a SHOE macro - 3
//Retrieves region numbers fom region names

  TString regnameTg="TARGET";

 Int_t RegTarg = runinfo->GetRegion(regnameTg);
 TString regnameSTC="STC";
 Int_t RegSTC = runinfo->GetRegion(regnameSTC)
…
 if (IncludeCA) {
   TString regnameCALmin="CAL000";
   RegCALmin = runinfo->GetRegion(regnameCALmin);
   TString maxCryReg;
   if (nCry<10) {
      maxCryReg = Form("CAL00%d",nCry-1);
   } else if (nCry>9 && nCry<100) {
      maxCryReg = Form("CAL0%d",nCry-1);
   } else {
      maxCryReg = Form("CAL%d",nCry-1);
   }
   cout << "Last Crystal Reg: " << maxCryReg << endl;
   TString regnameCALmax = maxCryReg; 
   RegCALmax = runinfo->GetRegion(regnameCALmax);
  }
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//Retrieving Beam and Target properties
     Aweight = parGeo->GetTargetPar().AtomicMass;
  density = parGeo->GetTargetPar().Density;
  thickness= parGeo->GetTargetPar().Size[2];
  material = parGeo->GetTargetPar().Material;
  tgtcent = geoTrafo->GetTGCenter().Z();
      
  Abeam = parGeo->GetBeamPar().AtomicMass;
  Zbeam = parGeo->GetBeamPar().AtomicNumber;
  Ebeam = parGeo->GetBeamPar().Energy;
  Xbeam = parGeo->GetBeamPar().Position.X();
  Ybeam = parGeo->GetBeamPar().Position.Y();
  zbeam = parGeo->GetBeamPar().Position.Z();
  FWHMXbeam = parGeo->GetBeamPar().AngSpread.X();
  FWHMYbeam = parGeo->GetBeamPar().AngSpread.Y();

How to retrieve region numbers(*). 

This is meaningful, of course, only on 
Simulated Data

This is the same for both real and 

simulated data

Example for 

Calorimeter

(*) This modality of retrieving region numbers 

from region names assumes that you know the 
meaning of the names. There is also another 
way: next slides



Retrieving Region Numbers by meaning (detector 
specific)
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In the various TA*parGeo classes of the different detectors, including TAGparGeo, there 

are methods called  GetReg***: 

they allow to recover the number of specific, and fundamental, regions on the basis of 

their purpose (not all the regions)

The exact name and modality is detector dependent.

Search inside the various TA*parGeo.hxx under /shoe/Libraries/TA**

For example: TAGparGeo::GetRegTarget() returns the region number of the target



Retrieving Region Numbers by meaning (detector 
specific)
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TAGparGeo::GetRegAirPreTW () 

TAGparGeo::GetRegAirTW () 

TADIparGeo::GetRegMagnet(n) n=0,1

TADIparGeo::GetRegShield(n) n=0,1

TASTparGeo::GetRegSensor () 

TAGparGeo::GetRegTarget () 



Retrieving Region Numbers by meaning (detector 
specific): Beam Monitor
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TABMparGeo:: GetRegCell (nlay, nview, ncell)

TABMparGeo:: GetRegGas()

TABMparGeo::GetRegShield()

TABMparGeo::GetRegFieldWires() 

TABMparGeo::GetRegSenseWires() 

nlay=0-5, nview=0,1 ncell=0,2



Retrieving Region Numbers by meaning (detector 
specific): VTX
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TAVTparGeo::GetRegEpitaxial(n);

TAVTparGeo::GetRegModule(n); n=0,1,2,3 (sensor #)

That’s the sensitive region There are other 

GetReg* methods

Search inside the 

source files



Retrieving Region Numbers by meaning (detector 
specific): IT and MSD
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TAITparGeo::GetRegEpitaxial(n)

TAITparGeo::GetRegModule(n) n=0-31 (sensor #)

That’s the sensitive region

TAMSDparGeo::GetRegStrip(n)

TAMSDparGeo::GetRegModule(n)

n=0-5 (sensor #)

There are other 

GetReg* methods

Search inside the 

source files



Retrieving Region Numbers by meaning (detector 
specific): TW and Calo
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TATWparGeo::GetRegStrip(nlayer, nstrip) nlayer=0,1 nstrip=0,19

TACAparGeo::GetRegCrystal(n) n=0,max no. of crystals

TACAparGeo::GetCrystalsN()

There are other 

GetReg* methods

Search inside the 

source files



The native structure of raw

simulated data

Track (Particle) Structure

Detector 1 Structure

Detector 2 Structure

Detector 3 Structure

Etc..

“Crossings” Structure

For each 

recorded 

event

kinematics and properties of all 

particles (primary+ all secondaries) 

generated in the event

For each active detector:

all infos about “hits” (=energy 

releases) in the detector, and 

pointer to Particle Structure to 

connect to the particle 

generating the hits

All coordinates, kinematics for each 

particle at all ”crossing points” when 

passing from a region to another one. 

Pointer to connect to Track Structure
36



Variables available in the particle structure

• number of particles produced in the event

• Pointer to index the particle (see later) 

• generation number 

• charge (charge number Z)

• barionic number (mass number A)

• particle mass (GeV/c2)

• Time of production the particle (s)

• Time between death and birth of the particle (s)

• Total track length of the particle from birth to death (cm) 

• FLUKA code for the particle (for example: proton=1, neutron=8, photon=7, ...) 

• number of the region where the particle has been produced

• Coordinates of the birth point of the particle (cm)

• Coordinates of the death point of the particle (cm)

• Components of the momentum of the particle (GeV/c) at birth point

• Components of the momentum of the particle  (GeV/c) at death point

Event by Event:
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Event by Event, for each particle contained in the event:



TAMCevent

 //! Get Event container
 TAMCntuEvent*  GetNtuEvent() const { return fEvent;  }
 //! Get particle container
 TAMCntuPart*  GetNtuTrack() const { return fTrack;  }
 //! Get region container
 TAMCntuRegion* GetNtuReg()  const { return fRegion; }
 //! Get STC hits container
 TAMCntuHit*   GetHitSTC()  const { return fHitSTC; }
 //! Get BM hits container
 TAMCntuHit*   GetHitBMN()  const { return fHitBMN; }
 //! Get VTX hits container
 TAMCntuHit*   GetHitVTX()  const { return fHitVTX; }
 //! Get ITR hits container
 TAMCntuHit*   GetHitITR()  const { return fHitITR; }
 //! Get MSD hits container
 TAMCntuHit*   GetHitMSD()  const { return fHitMSD; }
 //! Get TW hits container
 TAMCntuHit*   GetHitTW()   const { return fHitTW;  }
 //! Get CAL hits container
 TAMCntuHit*   GetHitCAL()  const { return fHitCAL; }
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➔ particle structure in the event

➔ “crossing” structure in the event

➔ hits in the Start Counter

➔ hits in the Beam Monitor

➔ hits in the Vertex

➔ hits in the Inner Tracker

➔ hits in the MSD

➔ hits in the Tof-Wall

➔ hits in the Calorimeter

TAMCntuEvent
//! Get event number
Int_t GetEventNumber() const { return fEventNumber;  } ➔ Sequential event number in the 

simulation file

➔ gets the event



TAMCntuPart
// Get number of tracks

 Int_t      GetTracksN() const;
   // Get particle

TAMCpart*    GetTrack(Int_t i); 
 // Get Fluka Id
 Int_t       GetFlukaID()    const { return fFlukaId;     }
 // Get mother Id
 Int_t       GetMotherID()   const { return fMotherId;    }  
 //! Get atomic charge
 Int_t       GetCharge()    const { return fCharge;     }
 // Get baryon number
 Int_t       GetBaryon()    const { return fBaryon;     }

   // Get initial position
 TVector3     GetInitPos()    const { return fInitPos;     }
 // Get final position
 TVector3     GetFinalPos()   const { return fFinalPos;    }
 // Get initial momentum
 TVector3     GetInitP()     const { return fInitMom;     }
 //! Get final momentum
 TVector3     GetFinalP()    const { return fFinalMom;    }
 // Get mass
 Double_t     GetMass()     const { return fMass;      }
 // Get region
 Int_t       GetRegion()    const { return fRegion;     }
 // Get particle time
 Double32_t    GetTime()     const { return fTime;      }
 // Get track length
 Double32_t    GetTrkLength()   const { return fTrkLength;    }
 // Get time of flight
 Double32_t    GetTof()      const { return fTof;       }
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➔ no. of particles in the event

➔ gets the particle

➔ FLUKA particle code

➔ Index of the mother

➔ Z

➔ A

➔ initial x,y,z

➔ final x,y,z

➔ Intial Px,Py,Pz

➔ final Px,Py,Pz

➔ Mass

➔ Number of region of birth

➔ Particle Time

➔ Total track length

➔ Particle Tof



About the meaning of “Birth” (Initial) and “Death” (Final)

Birth coordinates: the coordinates of the point in the global reference frame where a 

particle is injected, or generated by interaction or decay

Birth momentum: the 3-vector P components at the point of injection or generation

Death coordinates: the coordinates of the point in the global reference frame where a 

particle “dies”. A particle dies when: 1) has an inelastic interaction; 2) decays; 3) exits 

from the geometry; 4) its energy goes below the transport threshold which has been 

set in simulation: it is then propagated to the end of the remaining CSDA range.

Death momentum: the 3-vector P components at the point of death. In case 4) Pfinal 

components are 0.
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About the meaning of time:

In a single event, Time starts from 0 in the point where the primary particle is 

injected. 

Particle time: it has to be 0 for the primary. If the primary travels with velocity , 

and interacts after a length L,  the secondaries will be generated at t= L/( c) and 

that will be the value inside their time

Tof: it is the time difference between the ”death” and “birth” of a particle

41



An example to illustrate the potentiality of particle 
structure and the meaning of particle index  

From an old  simplified FOOT simulation of 2020

42



Index of the particle: index = 0 is the primary. The first track in the structure

For index>0: index-1 points to the parent particle

About the Index of the particles in the events
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All particles with index  = 1 have been generated by the primary (index=0)

These particles with index = 11 have been generated by the particle at row index-1 = 10 (a 

neutron which interacts in air far away) 44



Here is the point where that neutron at row = 10 interacts

Notice:

At present simulation 

is generic and does 

not include a realistic 

room size: this 

means, for example, 

that no possible 

back-splash from 

walls is considered 

45



This proton has been generated by primary in the target, but dies in the target 

These particles exit from the geometry far away (z=900 cm)

46



Our example

id = 0 ; 12C primary

id = 1 ; row=10 ; neutron

id = 1 ; row=3 ; 7Li

id = 1 ; row=4 ; 3He

id = 1 ; row=9 ; neutron

id = 1 ; row=8 ; neutron

id = 1 ; row=7 ; proton

id = 1 ; row=6 ; proton

id = 1 ; row=4 ; 4He

id = 1 ; row=2 ;  d

id = 1 ; row=1 ;  d
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Data omitted in the event recording

1. Unfortunately, we never included (so far) Z, A of the target nucleus 

where interaction occur. At present Target Nucleus can be often 

reconstructed by checking Z and A conservation: σ𝑍𝑖 of secondary 

particles having id=1 has to be equal to the sum of Z of primary and Z of 

target. The same for baryonic number conservation.

2. We have not marked in any way elastic scattering. Be careful when 

interaction occurs in materials where Hydrogen is present: the recoiling 

proton (H) from elastic scattering of the primary (or of a secondary 

fragment) may appear from coordinates where no inelastic interaction 

occurred…
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The individual MC detector (hit) structures

• number of hits (energy releases) in the detector

• index to the particle responsible of the hit

• initial position of  hit

• final position of hit

• initial momentum of hit

• final momentum

• energy release in the hit

• initial time of the energy release

specific variables depending on the type of DET: Layer, View, …. 

For each detector DET with n energy releases (hits) we store some 
variables: 

In FLUKA it is in GeV, in Shoe is in general 

converted to MeV

49



About the energy release in simulation - 1
Charged particles

A ”hit” will be the energy lost during a “step” (with fluctuations of dE/dx properly considered in 

a continuous way). In a region where there is no tracking in magnetic field, each hit is a single 

step 

These have to be introduced in 

your post-processing macros

No electronics/detector effects → no experimental resolution

No quenching factors introduced so far

Only physics intrisic fluctuations (i.e. “Landau” fluct.)

Initial hit coordinates
Final hit coordinates 

Example for CAL 

At the same points you can 

get the momentum 
components of the particle 
releasing energy, both at 

beginning and end of each hit
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About the energy release in simulation - 2

Hit 1

More complex cases Of course:

1) the energy released 

per event in the 

same detector is the 

sum of all E 

2) The energy released 

per event in a single 

element of the 

detector is obtained 

by restricting the 

sum to a selected 

element. In this case 

you could use a 

specific variable to 

select a given 

crystal

Hit 3

The black track is a neutron: it does not 

deposit energy here

The yellow tracks are photons: here they 

deposit energy in the point where they stop 

by p.e. effect. Electron is below threshold.

Hit 4

Hit 5
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About the energy release in simulation - 3

There are cases in which the Hits (Energy depositions) have point-like space 

dimension.

In Fluka this may occurr in some cases. For example:

a) for e+/e-/photons which go below transport energy threshold

b) “Low Energy” neutrons (E<20 MeV) which deposit energy by kerma factors

52



TAMCntuHit

53

Int_t       GetHitsN() const;
TAMChit*      GetHit(Int_t i);
//! Get Track index
Int_t     GetTrackIdx()    const  { return fID;    }
//! Get position in
TVector3    GetInPosition()   const  { return fInPosition;  }
//! Get position out
TVector3    GetOutPosition()  const  { return fOutPosition; }
//! Get momentum in
TVector3    GetInMomentum()   const  { return fInMomentum;  }
//! Get momentum out
TVector3    GetOutMomentum()  const  { return fOutMomentum; }
//! Get energy loss
Double_t    GetDeltaE()     const  { return fDeltaE;    }
//! Get time of flight
Double_t    GetTof()      const  { return fTof;     }

//! Get Sensor id (VTX, IT...)
Int_t     GetSensorId()    const  { return fLayer;   } 
//! Get TW bar id
Int_t     GetBarId()     const  { return fLayer;   }
//! Get CAL crystal id
Int_t     GetCrystalId()   const  { return fLayer;   }
//! Get layer (meaning changes with detector)
Int_t     GetLayer()     const  { return fLayer;   }
//! Get BM view or TW layer
Int_t     GetView()      const  { return fView;   }
//! Get BM cell
Int_t     GetCell()      const  { return fCell;   }

➔ no. of hits for a given detector
➔ gets the hit

➔ pointer to the particle generating the hit

➔ initial coordinates of the hit

➔ final coordinates of the hit

➔ Px, Py, Pz at the begin of the hit

➔ Px, Py, Pz at the end of the hit

➔ enegy release in the hit (MeV)

➔ time of the hit

General

Detector Specifc



Retrieving MC HITS from Detector Structures in SHOE
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// MC hits of SC
 TAMCntuHit *scMChits = 0x0; 

 // MC hits and tracks of Beam Monitor 
 TAMCntuHit *bmMCeve = 0x0;  

 // MC hits of VTX
 TAMCntuHit *vtMChits = 0x0;  

 // MC hits of MSD 
 TAMCntuHit *msMChits = 0x0;  

 // MC hits of ITR 
  TAMCntuHit *itMChits =  0x0;  

 // MC hits of SCN 
  TAMCntuHit *twMChits =  0x0;  

 // MC hits of CAL 
 TAMCntuHit *caMChits = 0x0;  

….

This is possible, of course, 

only on Simulated Data
if(IncludeMC>0){
    if(IncludeSC>0) {
      scMChits = new TAMCntuHit();   // Get SC Hits
      tree->SetBranchAddress(FootBranchMcName(kST), &scMChits);
    }
    if(IncludeBM>0) {
      bmMCeve = new TAMCntuHit();   // Get BM Hits
      tree->SetBranchAddress(FootBranchMcName(kBM), &bmMCeve);
    }
    if(IncludeVT>0) {
      vtMChits = new TAMCntuHit();  // Get VT Hits
      tree->SetBranchAddress(FootBranchMcName(kVTX), &vtMChits);
    }
    if(IncludeIT>0) {
      itMChits = new TAMCntuHit();   // Get ITR Hits
      tree->SetBranchAddress(FootBranchMcName(kITR), &itMChits);
    }
    if(IncludeMSD>0) {
      msMChits = new TAMCntuHit();   // Get MSD Hits
      tree->SetBranchAddress(FootBranchMcName(kMSD), &msMChits);
    }
    if(IncludeTW>0) {
      twMChits = new TAMCntuHit();   // Get SCN Hits
      tree->SetBranchAddress(FootBranchMcName(kTW), &twMChits);
    }

   …



Retrieving MC HITS from Detector Structures in SHOE, 

an example: the Beam Monitor

….

Somewhere inside a Loop on the events:
….
Int_t nbmHits  = bmNtuHit->GetHitsN(); gets the number of Hits in the event

for (Int_t i = 0; i < nbmHits; i++) {. loop on the number of Hits

   TABMhit* hit = bmNtuHit->GetHit(i);     gets the Hit
   Int_t plane = hit->GetPlane();
   Int_t view  = hit->GetView();
   Int_t cell  = hit->GetCell(); 
 …

      etc. etc.
}
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On the question of associating Hits with Particles

The issus is not so simple.

In this example the incoming particle releases energy with 3 Hits Only one of them is 

directly associated to 

this particle (no. 1)

1

2

3
The other 2 Hits are 

associated to 

daughters of the 

incoming particle 

(products of an 

interaction)

Therefore a correct analysis of this kind, at the 

level of MC truth, has to be performed by 

implementing a logic in which the whole chain of 

daughters is to be considered

(think for instance at the case when -rays are 

explicitely produced)
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Connecting Hits in Detectors to Track Structure: 

example in a SHOE macro

….

Somewhere inside a Loop on the events:
….
 Int_t nscMCHits  = scMChits->GetHitsN(); // Counts the hits in the Start Counter

  for (int i=0; i<nscMCHits; i++) { // Loop on the hits in the Start Counter

    TAMChit* schit=scMChits->GetHit(i); // Gets the i hit
    TAMCpart* mcpart=mcNtuPart->GetTrack(schit->GetTrackIdx()); 

     if (mcpart->GetCharge()==6 && mcpart->GetBaryon()==12) {
  …
     }

      etc. etc.
  }
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pointer to the 

particle that 

generated that hit 

Checks if that 

particle was a 12C



The "region crossing" data structure

• number of boundary crossing

• index of the crossing particle in the particle block

• no. of region in which the particle is entering

• no. of region the particle is leaving

• Components of the momentum at the boundary crossing 

• Coordinates of the point of the boundary crossing

• time of the boundary crossing

• charge of crossing particle

• mass of the crossing particle

This structure registers the info on the particles that cross the boundaries 

between the different regions of the setup (detector elements, air, target).

Very useful for many analyses about MC truth
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Redundant with respect to the variables from particle structure



TAMCntuRegion

 // Get number of regions
 Int_t       GetRegionsN() const;
 // Get region
 TAMCregion*    GetRegion(Int_t i);
  //! Get track index
 Int_t     GetTrackIdx()   const  { return fID;   }
 //! Get number of crossing region
 Int_t     GetCrossN()    const  { return fCrossN; }
 //! Get number of old crossing region
 Int_t     GetOldCrossN()  const  { return fOldCrossN; }
 //! Get poistion
 TVector3    GetPosition()   const  { return fPosition; }
 //! Get momentum
 TVector3    GetMomentum()   const  { return fMomentum;  }
 //! Get mass
 Double_t    GetMass()     const  { return fMass;    }
 //! Get atomic charge
 Double_t    GetCharge()    const  { return fCharge;   }
 //! Get time
 Double_t    GetTime()     const  { return fTime;    }
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➔ pointer to the particle generating the crossing

➔ number of crossings in the event

➔ gets a crossing

➔ no. of region in which the particle is entering 

➔ no. of the region from which the particle exits

➔ coordinats of the crossing point

➔ components of momentum at crossing point

➔ mass of the crossing particle

➔ charge number of the crossing particle

➔ time of the particle at the crossing point



Example: How to exploit Region Crossings in a SHOE macro
TAMCntuRegion* mcNtuReg;
if(IncludeMC>0){
    if(IncludeREG>0) {
      mcNtuReg = new TAMCntuRegion(); // Get MC Crossings
      tree->SetBranchAddress(TAGnameManager::GetBranchName(mcNtuReg->ClassName()), &mcNtuReg);
    }

….

Somewhere inside a Loop on the events:
Int_t nCross  = mcNtuReg->GetRegionsN(); // Counts the number of region crossings in the event
 for (int i=0; i<nCross; i++) { // Loop on the region crossings
  TAMCregion* cross=mcNtuReg->GetRegion(i); // Gets the i-crossing
   TVector3 crosspos = cross->GetPosition();        // Gets x, y, z global coordinates at crossing
  Int_t OldReg = cross->GetOldCrossN();       // Gets the number of the region from which the particle is exiting
     Int_t NewReg = cross->GetCrossN();                 // Gets the number of the region in which the particle is entering
     Double_t time_cross = cross->GetTime();       // Gets the time at the moment of crossing
     TVector3 mom_cross = cross->GetMomentum(); // retrieves P at crossing
//now retrieves TrackID: which particle was making that region crossing?
    TAMCpart* mcpart=mcNtuPart->GetTrack(schit->GetTrackIdx()); 
  fid = mcpart->GetFlukaID();  // Gets the FLUKA particle-id
  cha = mcpart->GetCharge();  // Gets its charge

  bar = mcpart->GetBaryon();  // Gets its mass number
  reg = mcpart->GetRegion(); // Gets the number of the region where the particle was originated

….
}
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Possible Basic Exercises using SHOE – MC truth
1. Make a plot of the multiplicity per event of particles produced anywhere in the 

detector

2. Make a plot of the multiplicity per event of particles produced by the primary in the 

target

3. Make the previous plot only for those particle which exit the target going in the 
forward region and are produced with E>50 MeV/u

4. Make a plot of the energy distribution of fragments produced in target for a few 

different Z and/or A

5. Make a plot of the energy released per event in the TW

6. Make a plot of the energy released per event in the CA and for a selected crystal of 
your choice

Slightly Increasing Difficulty:

7. Compare the distribution of energy released by p and 4He in the 1st layer of MSD (in 

the approximation that they do not produce daughters there)

8. Select particles produced in the target which arrive at TW and make a plot of the 

energy that they have lost in the path from target to TW
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Global tracks reconstructed in Simulated Data:

How do we connect them to MC truth infos?

62

Tracks are reconstructed as in experimental 

data, just using detector hits & clusters, 

without exploiting data which would not be 

available in the real experiment.

All infos about actual particles in the 

simulated event are of course “forgotten” in 

reconstruction

However, for simulated events, for each point in the track, it is possible to access the 

information about the actual particle which generated the hit

It might also occur that points from different particles in the same event are 

accidentally used to define the same reconstructed track! (as in experimental data)



Global tracks reconstructed in Simulated Data:

How do we connect them to MC truth infos?

static TAGntuGlbTrack *glbntutrk;
glbntutrk = new TAGntuGlbTrack();
tree->SetBranchAddress(TAGnameManager::GetBranchName(glbntutrk->ClassName()), &glbntutrk);      

…
for(int i=0;i<glbntutrk->GetTracksN();i++){ // Loop on all trconstructed tracks
          TAGtrack* glbtrack=glbntutrk->GetTrack(i); // Gets the i-th track
          npoints = glbtrack->GetPointsN();        //No. of points in the  i-th reconstructed track
    if (IncludeMC) {

      Int_t mainPartId = glbtrack->GetMcMainTrackId(); // Id of the most prob. MC particles associated to the rec. track  
               TAMCpart* mainPart = mcNtuPart->GetTrack(glbtrack->GetMcMainTrackId()); // Id of the most prob. MC particle
      for (int ic=0; ic<glbtrack->GetPointsN(); ic++) { // loop  on the points of the i-th reconstructed track
                  TAGpoint *tmp_poi = glbtrack->GetPoint(ic); // getting the ic-th point

             
               for(int t=0;t<tmp_poi->GetMcTracksN();t++) { // loop on all MC part. which can be associated to the ic-th track point
                      TAMCpart* tmpPart = mcNtuPart->GetTrack(tmp_poi->GetMcTrackIdx(t)); // gets the t-th MC particle
                   }
               }
           }

}  
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Some possible operations:



A possible tweak for Global Track reconstruction 

for Simulated Data

64

The charge Z of a reconstructed track is obtained by combining ToF and Energy Loss in the 

TW. Z is available as a property of the object that we call “TW point”

A calibration is necessary, depending on energy and distance from target to TW

For Simulated Events, it is possible to ask to attribute to TW points, as charge reconstruction, 

the actual Z of the MC particle. This is achieved by means of a parameter in:

shoe/Reconstruction/config/XXXX/TATWdetector.cfg

EnableZmc:      0 
EnableNoPileUp:    0
EnableZmatching:   1

EnableCalibBar:    0
EnableRateSmearMc:  0
BarsN:        40
GainWD:        1
EnableEnergyThr:   1

default (no MC charge)



Exercises using SHOE for MC rec. tracks

1. Make a scatter plot of the reconstructed charge Z  for each point in the TW vs the 

charge of the actual MC particle associated to that point

2. For all reconstructed tracks, search for the MC particles contributing to the points of 

the track and:

   - what is the fraction of ”pure” tracks (i.e. with all points belonging to the same particle)?

    - for “pure” tracks, compare the reconstructed momentum with their MC momentum

    - check if those particles were really produced by the primary in the target

                mcpart->GetMotherID() == 0 (this means that the mother was a primary)
                     mcpart->GetRegion() == region number of target (campaign dependent)
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