Isotope Fluxes Measurements Progress Report

Jiayu Hu INFN Perugia

Data Base & Events Counts

ISS B1236 pass8(12.5 years) MC B1308 pass8

Track Cuts

Standard cuts

- good RTI & good run & Physical trigger
- Above geometry cutoff

Tracker

1

- Within L1Inner Fiducial volume
- L1XY & N_InnerHitsY>=5&L2&(L3IL4)&(L5IL6)&(L7IL 8)& InnerNormChisY<10
- charge:

q_inner \in [2.55, 3.45] [3.55, 4.45] qL1(unbias) \in [2.54, 3.65] [3.38, 4.65] good qL1 status

BG reduction

 1 track II no good 2nd track II rigidity2nd<0.5GV

TOF

- beta > 0.4
- charge: q_uptof \in [2.4, 4.5] [3.4, 5.5]

Beta Reconstruction Cuts

- tof_beta > 0.4 & betah BuildType < 10
- coo_chis < 5 & time_chis < 10
- Not passing TOF edges
- q_lowtof ∈ [2.4, 4.5] [3.4, 5.5]

RICH general (pos correction accoding z)

- good status & clean
- Kolmogorov test probability > 0.01
- N_pmt > 2
- charge: q_rich ∈ [2, 5] [3, 6]

NaF

- Good NaF status Region
- N_pe(ring)/N_pe(total)>0.45

NaF

- Good Agl status Region & remove bad tiles
- N_pe(ring)/N_pe(total)>0.4

Safety Factor: 1.2

Exposure Time Convert to Kinetic Energy (Only Regions in Use)

Exposure Time

Effective Acceptance for Lithium

Effective Acceptance for Berylium

Generated $E_k[GeV/n]$

Sample:

Standard cuts

• good RTI & good run & Physical trigger

Tracker

- Within L1Inner Fiducial volume
- N_InnerHitsY>=5&L2&(L3IL4)&(L5IL6)&(L7 IL8)& InnerNormChisY<10
- charge:
 - q_inner \in [2.55, 3.45] [3.55, 4.45]

BG reduction

 1 track II no good 2nd track II rigidity2nd<0.5GV

TOF

- beta > 0.4
- charge: q_uptof \in [2.4, 4.5] [3.4, 5.5]

Selections:

- $qL1(unbias) \in [2.54, 3.65] [3.38, 4.65]$
- good qL1 status

- The incident angle of particles have a slight effect on the reconstruction. To study the efficiency, the samples will be categorized based on three geometries. (track
- extrapolation)

Sample: Standard cuts

 good RTI & good run & Physical trigger

Tracker

- Within L1Inner Fiducial volume
- N_InnerHitsY>=5&L2&(L3IL4)&(L5IL6)&(L7IL8)& InnerNormChisY<10
- charge:

 $q_{inner} \in [2.55, 3.45] [3.55,]$

4.45]

BG reduction

 1 track II no good 2nd track II rigidity2nd<0.5GV

TOF

• beta > 0.4

Selections:

charge: q_uptof ∈ [2.4, 4.5] [3.4, 5.5]

Li Be B are Secondary-Dominated , should use He, C, O...

² Selections Efficiencies: UTOF charge cut (InnerL1 Lithium)

² Selections Efficiencies: UTOF charge cut (InnerL1 Carbon)

Selections Efficiencies: UTOF charge cut (NaF Lithium)

2

Selections Efficiencies: UTOF charge cut (NaF Carbon)

2

² Selections Efficiencies: UTOF charge cut (Agl Carbon)

Selections Efficiencies: Inner Tracker: Track

When assessing inner tracking efficiency, cannot utilize information about the track itself for sample selection. Alternatively, the unbiased TOF track is applied. Unbiased TOF Track: TOF clusters connected using the TRD track (if exists), referring to the BetaS class.

Sample:

2

- good RTI & good run & Physical trigge
- Good unbiased track, betas>0.4, the interpolation within InnerL1 fiducial volume
- Good unbiased time and charge reconstruction on TOF
- Unbiased charge cut on 4 layers TOF [Z-0.4,Z+0.55]
- qL1(unbias) ∈ [2.54, 3.65] [3.38,
 4.65] && good qL1 status
- Background reduction

Unbiased TOF/RICH Geometry for different geometry, (ECAL and LTOF)

Selections:

- Inner Hits>=5, L2&(L3IL4)&(L5IL6)&(L7IL8), InnerNormChisqY<10
- Reconstructed Tracker and TOF Track,
- Within InnerL1 fiducial volume
- Interpolation to TOF: tof_btype<10 & tof_betah>0.4

² Selections Efficiencies: Inner Tracker: Track

When assessing inner tracking efficiency, Rigidity cannot be used as a measure of the particle's energy.

Rigidity Estimator:

- < 5.9GV: use the unbias beta measurements $|R|/M = \frac{\beta}{Z\sqrt{1-\beta^2}}$
- 5.9GV to ~ 19.5GV: use the geomagnetic cutoff estimation
- > 20GV: use energy measured by ECAL

5.9 ~ 19.5GV:

² Selections Efficiencies: ² Inner Tracker: Track (InnerL1)

² Selections Efficiencies: Inner Tracker: Track (NaF)

² Selections Efficiencies: Inner Tracker: Track (Agl)

Selections Efficiencies: Inner Tracker charge cuts

Sample:

Standard cuts

 good RTI & good run & Physical trigger

Tracker

- Within L1Inner Fiducial volume
- N_InnerHitsY>=5&L2&(L3IL4)&(L5IL6)
)&(L7IL8)& InnerNormChisY<10

BG reduction

 1 track II no good 2nd track II rigidity2nd<0.5GV

TOF

- beta > 0.4
- Charge [Z-0.4,Z+0.55]

Selections:

q_inner ∈ [2.55, 3.45] [3.55, 4.45]

Selections Efficiencies: Inner Tracker: Charge (Li InnerL1)

2

² Selections Efficiencies: Inner Tracker: Charge (Carbon InnerL1)

² Selections Efficiencies: ² Inner Tracker: Charge (Li NaF)

² Selections Efficiencies: Inner Tracker: Charge (Li Agl)

Selections Efficiencies: Background reduction

Sample: Standard cuts

2

- good RTI & good run & Physical trigger
- Above geometry cutoff
 Tracker
- Within L1Inner Fiducial volume
- L1XY & N_InnerHitsY>=5&L2&(L3IL4)&(L5IL6)&(L7IL8)& InnerNormChisY<10
- charge:

q_inner charge cuts qL1(unbias) charge cuts good qL1 status

TOF

- beta > 0.4
- charge: q_uptof ∈ [2.4, 4.5]
 [3.4, 5.5]

Only 1 track Or no good 2nd track Or rigidity2nd<0.5GV **C, O, Be, B**

L1

UTOF

Li

TOF

RICH

CA

TRD

7-8

² Selections Efficiencies: Background reduction (Li InnerL1)

31

Selections Efficiencies: Background reduction (Li Agl)

2

Sample:

L1MaxQInner Cuts && only 1 track (To eliminate BG).

Selections:

Exclude edges of trapezoid paddles on TOF S3 and S4

Chisq_coo<5, Chisq_time<10

Selections Efficiencies: **TOF Velocity Quality Cut**

Sample:

Nuclei Event selections in different geometries.

Efficiencies Estimation (ISS), using the data of different DAQ configurations

• $\varepsilon_{Trigger}^{NACC<5} = \frac{N_{t>2016.02}^{NACC<5}}{N_{t>2016.02}}$

Can be estimated by both NACC<8 period and No constraint Period.

• $\varepsilon_{Trigger}^{total} = \frac{N_{t<2016.02} + N_{t>2016.02}}{N_{t<2016.02} / E_{Trigger}^{NACC<5} + N_{t>2016.02}}$

$$\sigma_{Trigger}^{1} = (N_{NACC<5}/N_{Total}^{2} \cdot (1-N_{NACC<5}/N_{Total}))^{1/2}$$

$$\sigma_{Trigger}^{total} = \frac{(1/N_{t>2016.02}+1/N_{t<2016.02})/(1+N_{t>2016.02}/N_{t<2016.02})^{2}}{\epsilon_{Trigger}^{total}} \{ +[\sigma_{Trigger}^{1}/\epsilon_{T$$

Start Run	Date	Configurations
1305853512	May 20/2011	1JINJ, ACC<5
1447346927	Nov 12/2015	1JINJ->2JINJs, ACC<5
1454843847	Feb 26/2016	2 JINJs, ACC<8
1582034309	Feb 18/2020	4 JINJs (all Tracker nodes in B side), ACC<8
1582037855	Feb 18/2020	4 JINJs (found LV3 error in pole region caused by one TDR; JINJ-T3 can't be at B side), no ACC constraints
1582046227	Feb 18/2020	4 JINJs (JINJ-T3 move back to A side, nominal), no ACC constraints
1620025528	May 3/2021	4 JINJs, photon trigger (2of4 LTOF HT), ACC<8
1635856717	Nov 2/2021	4 JINJs, remove photon trigger, no ACC constraints
1675341999	Feb 2/2023	4 JINJs, photon trigger, ACC<8

2 Trigger Efficiency NACC <= 4 Period (InnerL1 Geometry)</p>

Reconstructed Rigidity [GV]

Reconstructed Rigidity [GV]

Sample:

- L1MaxQInner Track Cuts
- NaF/Aerogel geometry (extrapolation from inner track)
- Position correction of the RICH
 NaF and Agl...

Selections:

- NaF or AGL geometry
- Good Rich Tiles (AGL only)
- Good & clean
- P_Kolmogorov >0.01
- q_ltof>Z-0.6
- Z-1<q_rich < Z+2
- N_pmt>2
- N_pe(ring)/N_pe(total)>0.45
 (NaF), >0.4

² Selections Efficiencies: ² RICH Reconstruction (checking...)

