Study of short term variations in the cosmic proton fluxes with the AMS-02 experiment

Summary:

- Introduction: Solar Energetic Particles (SEP).
- Phase 1: Production of polar-pass proton fluxes with AMS-02.
- Phase 2: GCR Background Subtraction and SEP Spectra.

Francesco Faldi AMS-Italy, 16-10-2024

Solar Energetic Particles

- or diffusive shock acceleration in CMEs.
- $(\Delta T < 1 \text{ day})$ and gradual ($\Delta T \sim \text{several days})$. Solar Energetic Particles, Reames 2021

Solar Energetic Particles (SEPs) can be accelerated by magnetic reconnection in solar flares and/

• The two mechanisms are thought to generate different classes of SEP event on Earth: impulsive

Production of daily "polar-pass" proton fluxes with AMS-02 data

Proton Flux Definition

 $N_{selected}(t, R)$ $\Delta R \cdot T_{exp}(t, R) \cdot A_{corr}(t, R)$ $\Phi(t,R)$

N_{selected} T_{exp} $A_{corr} = A_{geom} \cdot ISS/MCCorr \rightarrow$ ISS/MC Corr

Unfolding Method: Iterative Folded Acceptance (standard)

Rigidity: R = p/Z

Selected counts corresponding to proton events

- Exposure Time in seconds
- Effective Acceptance: Montecarlo Acceptance multiplied by corrections
- Efficiencies on Data / Efficiencies on Montecarlo

Event Selection

- Rigidity Range: 1 60 GV
- Charge Type : Yi Jia (standard)
- Fit Type: GBL (standard)
- Pass8 Dataset (NAIA Ntuples)

RTI Cuts

- Livetime Fraction > 0.05
- Zenith Angle < 25
- Not in SAA
- Mean Difference PG-CIEMAT Trk Calib

Physical Cuts

- Any Physical trigger
- Chi2Y < 10 (Inner rigidity)
- Hits on: L2 & (L3|L4) & (L5|L6) & (L7|L8)
- At least 5 Hits in Inner Tracker
- Chi2Y < 10 (InnerL1 rigidity)
- 0.7 < Inner Charge < 1.5
- Inner Charge / Inner Charge RMS < 0.4
- 0.6 < L1 Charge < 2
- Inside Inner Fiducial (InnerL1 rigidity)
- Inside L1 Fiducial (InnerL1 rigidity)
- L1 Normalized Residual < 10
- Beta > 0.4
- 0.5 < Upper ToF Charge < 2.5
- Mass Cut
- InnerL1 Rig > SafetyFactor(R) x IGRF Cutoff

- AMS is exposed to SEP only for a small fraction of time, near magnetic poles (cutoff < 2 GV)
- **Cutoff models** (e.g. Max IGRF) are used in AMS to exclude secondary/trapped cosmic rays
- The **cutoff models** we use are too **conservative** for an SEP analysis, severely **limiting our statistics** at low rigidities

Eliminating the cut on **rigidity cutoff** improves statistics at low rigidities. We can now measure the proton flux from **0.5 GV**.

→ We need to define a "polar-pass" region, using cutoff-independent information.

For a given day, we can define the "SEP-sensitive" **polar-pass region**, in geographic **longitude** and **latitude**, by setting the **maximum rate** during a quiet day as threshold.

For a given day, we can define the "SEP-sensitive" **polar-pass region**, in geographic **longitude** and **latitude**, by setting the **maximum rate** during a quiet day as threshold.

We then build a **polar-pass map** by plott **above threshold**.

We then build a polar-pass map by plotting the longitude and latitude for each event

We then build a **polar-pass map** by plott **above threshold**.

The polar-pass map is used to select events instead of the usual requirement: InnerL1 Rigidity > SafetyFactor(R) x IGRF Cutoff

We then build a polar-pass map by plotting the longitude and latitude for each event

Daily Proton Flux - Comparison with Published Results

11

Daily Proton Flux - Comparison with Published Results

Daily Proton Flux, Short Duration SEP

NEW

Daily Proton Flux, Long Duration SEP

NEW

SEP Events Association with Active Regions

https://doi.org/10.3847/1538-4357/aacc26

15

Phase 2 GCR Background Forecasting and Subtraction and SEP Spectra

GCR Backgorund Forecasting

Background Normalization

3 GV

- N(t) should include effects of solar modulation (SM) and Forbush decreases (FD), but not SEPs.
- The **SEP contribution** to the total flux becomes **negligible** above **3 GV**.
- The normalization N can be calculated from the flux at **higher rigidities** (> 3 GV), excluding the SEP contribution.

GCR Background Forecast

Forecast Parameter: Ratio with Lag1 Flux

For each time (day) and rigidity bin, **e** is defined as the **ratio** of the **current** daily flux with the flux of the **previous** day.

Properties:

- **Stationary**: removes seasonal trend. It is still time dependent, i.e. solar modulation and Forbush decreases are preserved.
- **Rigidity independent** during quiet periods: unique normalization factor for every rigidity bin.

Forecast Parameter: Ratio with Lag1 Flux

Background Normalization

3 GV

The **normalization N(t)** is given by the average of the *e* parameter, in the rigidity interval ~ [3, 6] GV, above the maximum rigidity reached by SEPs.

 $\phi_{BG}(t,r) = \langle \rho(t) \rangle \times \phi_{BG}(t-1,r)$

N(t) is the same for any rigidity bin, thanks to rigidity independence.

Background Subtracted SEP Spectra

The SEP only flux is the subtraction of the background from the total flux.

Forecasted Background on Quiet Flux

Distributions of the relative variation between forecasted background and measured flux, during quiet periods

$$\frac{\phi_{BG}-\phi}{\phi}$$

Spectral Fit Functions

The **Ellison-Ramaty** function describes a **power law** with **exponential rollover**, typical of **diffusive shock** acceleration with limited spatial and temporal extension.

 $\Phi_{ER}(E) = AE^{-\gamma} \exp\left(-\frac{E}{E_{m}}\right)$

- The function has been used on Pamela data (event-integrated fluence) to perform a fit of **SEP spectra**.
- The results are in **agreement** with the **DSA** hypothesis.

https://doi.org/10.3847/1538-4357/aacc26

Spectral Fits with AMS at Peak Intensity

Background-subtracted SEP spectra are **fitted** with the **Ellison-Ramaty** function (red) and its asymptotic limits: single **power law** (dashed) and **exponential** (dotted).

Our result **supports** the presence of an **exponential** rollover, which might be related to the spatial and temporal limits of diffusive shock acceleration, in agreement with PAMELA results.

Spectral Fits with AMS at Peak Intensity

Spectral Index Temporal Evolution

shows that the **spectral index increases**.

Fitting the Ellison-Ramaty function to the consecutive daily spectra of a given SEP event

Spectral Index Temporal Evolution

- The spectral softening is consistent with the lowest energies.
- The delayed source at low energy might be front of the CME.

• The spectral softening is consistent with the measurements from the GOES observatory at

• The delayed source at low energy might be interplanetary protons accelerated by the shock

Spectral Index Temporal Evolution

- The spectral softening is consistent with the lowest energies.
- The delayed source at low energy might be front of the CME.

• The spectral softening is consistent with the measurements from the GOES observatory at

• The delayed source at low energy might be interplanetary protons accelerated by the shock

Summary

- The daily proton flux is compatible with the recent publication.
- Improved selection for SEP protons with polar-pass regions to maximise statistics at low energy.
- An algorithm to forecast and subtract the GCR background was developed for the polar-pass flux, in order to obtain SEP-only spectra.
- Fitted each SEP spectrum at peak intensity with "power law + exp. rollover".
- Spectral temporal evolution of a given SEP events shows spectral softening at low energy.
- The spectral softening is supported by the comparison with GOES.

Backup

SEP Events Found With AMS

#	Start Time	Flare Class									
1	2011 Jun 07	M2	13	2012 Jul 07	X1	25	2013 Oct 28		37	2017 Sep 12	X8
2	2011 Aug 04	M9	14	2012 Jul 12	X1	26	2013 Nov 02		38	2022 Feb 17	
3	2011 Aug 09	X6	15	2012 Jul 17	M1	27	2013 Dec 28	C 9	39	2022 Mar 28	M4
4	2011 Sep 07		16	2012 Jul 23		28	2014 Jan 06	X1	40	2023 Mar 13	
5	2011 Sep 23	X1	17	2012 Sep 28	C3	29	2014 Feb 25	X 4	41	2023 Jul 16	M5
6	2011 Nov 04		18	2012 Nov 08		30	2014 Apr 18	M7	42	2023 Jul 24	
7	2012 Jan 23	M8	19	2013 Mar 05	M1	31	2014 Sep 02		43	2023 Sep 01	M1
8	2012 Jan 28	X1	20	2013 Apr 11	M6	32	2014 Sep 11	X1			
9	2012 Mar 07	X5	21	2013 Apr 24		33	2014 Sep 25				
10	2012 Mar 13	M7	22	2013 May 23	M5	34	2015 Oct 24	M7			
11	2012 May 17	M5	23	2013 Jun 23	M2	35	2017 Jul 14	M2			
12	2012 Jun 16	M1	24	2013 Oct 11		36	2017 Sep 07	M5			

Layer 1 Pickup Efficiency

Denominator

- RTI cuts (see event selection)
- Any Physical trigger
- Chi2Y < 10 (Inner rigidity)
- Hits on: L2 & (L3|L4) & (L5|L6) & (L7|L8)
- At least 5 Hits in Inner Tracker
- 0.7 < Inner Charge < 1.5
- Inner Charge / Inner Charge RMS < 0.4
- Beta > 0.4
- 0.5 < Upper ToF Charge < 1.7
- Mass Cut (Inner rigidity)
- 0.5 < Lower ToF Charge < 1.7
- Less than 5 ToF Clusters
- ToF Chi2 Coo < 2
- Only one inner track
- No ACC fired
- Match Inner TRD Fit
- Inner Rigidity > SafetyFactor(R) x IGRF Cutoff

- Denominator
- Chi2Y < 10 (InnerL1 rigidity)
- 0.6 < L1 Charge < 2
- Inside Inner Fiducial (InnerL1 rigidity)
- Inside L1 Fiducial (InnerL1 rigidity)
- L1 Normalized Residual < 10

ToF Efficiency

Denominator

- RTI cuts (see event selection)
- Any Physical trigger
- Chi2Y < 10 (Inner rigidity)
- Hits on: L2 & (L3|L4) & (L5|L6) & (L7|L8)
- At least 5 Hits in Inner Tracker
- Chi2Y < 10 (InnerL1 rigidity)
- 0.7 < Inner Charge < 1.5
- Inner Charge / Inner Charge RMS < 0.4
- 0.6 < L1 Charge < 2
- Inside Inner Fiducial (InnerL1 rigidity)
- Inside L1 Fiducial (InnerL1 rigidity)
- L1 Normalized Residual < 10
- InnerL1 Rigidity > SafetyFactor(R) x IGRF Cutoff

- Denominator
- Beta > 0.4
- 0.5 < Upper ToF Charge < 2.5

Inner Tracker Efficiency

Denominator

- RTI cuts (see event selection)
- Any Physical trigger
- 0.6 < L1 Charge < 2
- Beta > 0.4
- 0.5 < Upper ToF Charge < 1.5
- Lower ToF Charge > 0.5
- ToF Chi2 Coo < 2
- ToF Chi2 Time < 2
- ToF Track Inside Inner Fiducial
- ToF Track Inside L1 Fiducial
- TRD Track Inside L1 Fiducial
- Less than 5 ToF Clusters
- InnerL1 Rigidity > SafetyFactor(R) x IGRF Cutoff

- Denominator
- Chi2Y < 10 (Inner rigidity)
- Hits on: L2 & (L3|L4) & (L5|L6) & (L7|L8)
- At least 5 Hits in Inner Tracker
- 0.7 < Inner Charge < 1.5
- Inner Charge / Inner Charge RMS < 0.4

Trigger Efficiency

PhysBPatt

		Bit	Description
		1	Unbiased Charged (prescale: 1/100)
		2	Single Charge
2	9 	3	Normal Ion
n. 1		4	Slow Ion
De		5	Electron
		6	Photon
		7	Unbiased EM (prescale: 1/1000)

Denominator

- RTI cuts (see event selection)
- Chi2Y < 10 (Inner rigidity)
- Hits on: L2 & (L3|L4) & (L5|L6) & (L7|L8)
- At least 5 Hits in Inner Tracker
- Chi2Y < 10 (InnerL1 rigidity)
- 0.7 < Inner Charge < 1.5
- Inner Charge / Inner Charge RMS < 0.4
- 0.6 < L1 Charge < 2
- Inside Inner Fiducial (InnerL1 rigidity)
- Inside L1 Fiducial (InnerL1 rigidity)
- L1 Normalized Residual < 10
- Beta > 0.4
- 0.5 < Upper ToF Charge < 2.5
- Mass Cut
- InnerL1 Rigidity > SafetyFactor(R) x IGRF Cutoff
- Unbiased Trigger (PhysBPatt & 01000001)

- Denominator
- Any Physical trigger

Global Trigger Correction

Selected Counts and Exposure Time

Layer 1 Efficiencies and Correction

ISS/Montecarlo Corrections

Acceptance

Integral Flux - Comparison with PR 2021

Daily ISS/Montecarlo Corrections

Compute Daily/Integral ratio and fit with spline (3 knots) up to 20 GV

Daily Corr = Integral Corr x Spline

