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Introduction

• In many experiments, deep learning has shown it can go beyond traditional 
methods, enabling the full exploitation of detector capabilities.

• In AMS, deep learning can be applied to many tasks, such as nuclei and 
charge identification, background estimation, charge reconstruction, rigidity 
reconstruction, unfolding, and more.

• In this study, we take a nuclei identification task for Silicon as an attempt to 
explore the application of deep learning to the AMS tracker detector using 
MC, providing an initial look at its potential.

• A future study using Data will build on this to address discrepancy between 
Data and MC.
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Samples: 
• L1Inner MC:  Mg, Al, Si, P, S
• from NAIA Version v1.1.1

Input variables:
• Tracker ADC (with Beta correction) and seed strip address:

o the seed ADC of 10 clusters for each layer and side (in Edep descending 
order)

o the 2 adjacent strip (left and right) ADC of the first 3 clusters for each layer 
and side 

• TOF unbiased Beta (𝟏/𝜷^𝟐)

Task : Signal background discrimination (with MC samples only for now) 
• Signal: primary Si survived below L2
• Background 1: primary Si survived above L2
• Background 2: other nuclei (Mg, Al, P, S)
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Samples and Task



Event selection
Event selection for Mg, Al, Si, P, S (L1Inner selection without tracker charge and 
fiducial volume cuts):

• Upper TOF selection
• TrTrack selection 
• InnerNHitY>=5 && L2&(L3|L4)&(L5|L6)&(L7|L8)
• InnerNormChisqY < 10
• L1InnerNormChisqY < 10 && L1InnerChisqY-InnerChisqY < 10(for L1Inner analysis)
+  Primary particle survived on L1 (using MC truth information)

Selected samples (300k events for each categories):
• Signal: primary Si survived below L2
• Background 1: primary Si survived above L2

• Background 2: background nuclei (Mg, Al, P, S = 0.1 : 1 : 1 : 0.1)
Sample is divided into 80% for model training and 20% for testing
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https://twiki.cern.ch/twiki/bin/edit/AMS/InnerNHitY?topicparent=AMS.PHeNucleiPass7;nowysiwyg=1


1. Check input variables
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Clusters on each layer (Fe L1Inner selection with L1 and Inner 
Tracker Charge > 25.5)

(Plots from my slides about 
Event Size Assessment for 
Supporting L0 DAQ Scheme 
Development.)



ADC Values (Sulfur MC, L1Inner selection, 200K events)
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• Clusters are arranged in Edep 
descending order.

• ADC: with Beta correction.

 Seed strip of the max cluster has 
much higher ADC value than the 
others.

 For max ADC value: 2nd strip of 
cluster-1 ≈ seed strip of cluster-2

 Similar for the other layers (in backup 
slides)

For deep learning input:
• the seed ADC of the first 10 clusters 

for each layer and side 
• the 2 adjacent strip (left and right) 

ADC of the first 3 clusters for each 
layer and side 
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ADC distributions for Al, Mg, Si, P, S (MC, L1Inner selection)

ADC without 
correction

ADC with Beta 
correction
(kBeta from AMS 
software)



Rigidity dependence of ADC with Beta correction 
(Sulfur MC, L1Inner selection, 200K events)
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Further Beta correction is 
needed. 
→ Add TOF Beta information to 
the deep learning models

(Statistical error not added) 
(Similar plots for layer-6 in Backup 
slides )

Mean seed ADC 
of max Edep 
clusters:

Mean seed ADC 
of other clusters:



Unbiased TOF Beta (Sulfur MC, L1Inner selection, 
200K events)
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Besides Tracker hit cluster information,

→ Add the unbiased TOF Beta information ( 𝟏
𝜷𝟐

 ) to the deep learning model.

𝟏

𝜷𝟐
 ,  standalone 

reconstruction:

(Clamp Beta values 
below 0.1 to 0.1)



Survived primary Si particles (MC truth)
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MC truth information is used to discriminate:
• Background 1: primary Si survived above Inner.
• Signal: primary Si survived below L2 (Survived 

in Inner or Survived on L8)
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Survived primary Si particles (MC truth)

(For events fragmented above Inner, there are fewer events at low rigidity.)



2. GNN model



Deep learning model: GNN
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• GNN is one of the deep learning models suitable for AMS studies.
• It is possible to develop a multipurpose model based on GNN for 

different AMS tasks.

• Start with a hybrid GNN model as an initial exploration.

Model architecture used in this work



Graph construction for GNN input
• Graph nodes: 10 seed strips and 3 adjacent strips(left and right) 

for each layer and side.
• Graph Node features: ADC value, strip id, side, layer;
• Graph Edge connection:  

1. connect the seed strip of the max Edep cluster to other 
seed strips within the same layer and side, (bidirectional 
connections);

2. connect each seed strip to its adjacent strips;
3. connects the seed strips of the largest clusters between 

the X- and Y- sides within the same layer, (bidirectional 
connections) connect the seed strips of the max Edep 
clusters in adjacent layers for the same side.

• Event level features:  Unbiased TOF Beta (𝟏/𝜷𝟐)

Number of nodes and edges (including strips with ADC=0): 
• 366 edges
• 256 nodes
• 4 node features
• 1 event level feature 15

Layer 1

Layer 2

…

Layer 8

x-side,              same for y side

Seed strip of the 
max Edep 
cluster

Cluster ID = 0, 1, 2,    …,   9

Seed strip of 
each cluster

Adjacent strip 

Cluster



3. Results



GNN model training result
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Model training and validation performance:

Task: 3-label classification  (input sample: 3 category, 300k events each)
1. Si fragmented above Inner
2. Si fragmented below L2
3. Background nuclei (Mg, Al, P, S = 0.1 : 1 : 1 : 0.1)



Model overall performance: model validation result 
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Based on validation sample for each nuclei (~200k events in total ):

• Given a true label, Efficiency is the probability of each prediction;
• Given a prediction, Purity is the probability of each true label.
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Model performance: model validation result 

Purity calculated based on events ratio:
• Si-FragAboveIn : Si-FragBelowL2 : Bkg = 1 : 1 : 1
• Bkg:   Mg, Al, P, S = 0.1 : 1 : 1 : 0.1 

In the sample, for events fragmented above Inner, there are fewer events at low rigidity (slide#12),
→ larger statistical error for Si-FragAboveIn at low rigidity.  
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Model performance: model validation result 

With TOF Beta information (this result) Without TOF Beta information 

Adding TOF information:
overall performance improves, and the rigidity dependence at low rigidity is reduced.



21

Model performance: model validation result  for Si 
fragmented below L2

Model testing result for Interacting Si events in Inner Tracker and 
Non-Interacting Si events :
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Model performance: comparison to standard charge 
reconstruction results

Background nuclei 
(Mg, Al, P, S ) with Inner 
charge == 14

(
Low rigidity events:
• Small charge
• Large ADC
• Small number of 

clusters
)
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Model performance: comparison to standard 
selection efficiency

Standard selection results for reference:
(Standard Si selection for Si-FragAboveIn and Si-FragBelowL2)
(Standard Mg, Al, P, S selections for Mg, Al, P, S) 



Extending the model for other tasks:
Based on the method, the model can be extended for other tasks: 
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On-going: 
nuclei identification for Mg, Al, Si, P, S 

On-going:  
true rigidity reconstruction

(preliminary)



Summary and To-do

A preliminary study using MC for nuclei identification with deep 
learning method shows promising potential compared to 
traditional method.

To-do: 
• Lots of optimizations needed:

1. Optimizing graph construction method (variable number of nodes/edge, group by 
distance, find Edep threshold value, etc.)

2. Implementing stat-of-the-art models
3. Model hyperparameter optimization
4. Further improve Low rigidity performance with Rigidity Piecewise training

• Implementing MC reweight method for Data–MC consistency
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Backup
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ADC correction options in AMS software



ADC Values (Sulfur MC, L1Inner selection, 200K events)
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ADC with Beta 
correction (kBeta)

ADC without 
correction



ADC Values (S MC L1Inner selection, 200K events)
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ADC Values (S MC L1Inner selection, 200K events)
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ADC Values (S MC L1Inner selection, 200K events)
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Rigidity dependence of ADC with Beta correction 
(Sulfur MC, L1Inner selection, 200K events)
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Further Beta correction is 
needed. 
→ Add TOF Beta information 
to the deep learning models

(Statistical error not added)
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Rigidity dependence of ADC with Beta correction 
(Sulfur MC, L1Inner selection, 200K events)
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Rigidity dependence (ADC with kBeta)



TOF Beta (standalone reconstruction)
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Clamp Beta values below 0.1 to 0.1:

Beta (zoom-in)Beta (full range)



Deep learning models: GNN
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Pros:  suitable for sparse signal; suitable track finding tasks. 
Cons: need more study on the structure of GNN input; Event pre-selection needed.

GNN applications for AMS tracker:
• Edge/node classification  → tracking;
• global graph classification → nuclei, 

and isotope identification;
• global graph regression → charge 

and rigidity reconstruction, etc.
• graph pooling
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Tracker L1

Inner Tracker L2

Inner Tracker L8

Tracker L9

Si-FragAboveIn 

Si-FragBelowL2 :
 ( Survived above L8
and survived ≥L8 )

Task : Signal background discrimination (with MC samples only for now) 
Signal (Si-FragAboveIn): primary Si survived below L2
Background 1 (Si-FragBelowL2): primary Si survived above L2
Background 2 (Bkg): other nuclei (Mg, Al, P, S)
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Model performance: model testing result 

Performance results from all events (i.e. 
events with ML selection)

Performance results from sample selected with 
standard nuclei event selection 
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Model performance: comparison to standard charge 
reconstruction results

Background nuclei 
(Mg, Al, P, S ) with Inner 
charge == 14

(
Low rigidity events:
• Small charge
• Large ADC
• Small number of 

clusters
)
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Model performance: comparison to standard charge 
reconstruction results

Test sample selected 
with L1Inner 
Rigidity>10GV



Optimization plan for Graph construction with 
ADC information:

• Optimization on number of clusters, adjacent strips and edges
• Instead of connecting nodes based on cluster Edep ranking, → 

connect nodes that are physically adjacent based on strip 
distance

• Variable number of nodes/edge → set a threshold based on Edep 
ratio or distance range 
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Nuclei identification 
for Mg, Al, Si, P, S 

Results (with clusters and TOF Beta)

Result (without TOF Beta)

Standard selection for reference 
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