
NAIANAIANAIANAIANAIANAIA
NTUPLES FOR AMS-ITALY ANALYSIS
INTRODUCTION TO THE FRAMEWORK AND DATA-
FORMAT

1

MOTIVATIONS
1. Resource optimization

With multiple groups producing each their own set of ntuples, lots of data is replicated

on disk, which results in a waste of resources.

Also, groups are competing for computing resources for ntuple production.

2. Code exchange

Using the same data makes it easier to exchange selections and algorithms/procedures.

3. Reproducibility / readability

Most often custom data formats are produced in a custom way, with a custom

processing.

Additionally, in many cases, only the code owner can easily understand what's going in

the analysis code.
2

DRIVING PRINCIPLES
Don't throw anything out

This means processing and saving all the events from the original AMS-Root �les

Don't require network access

All the needed data should be inside NAIA �les (e.g. no online access to RTI csv �les on

cvmfs)

Try to cover at least 90% of use-cases

Initial variable list comes from an internal survey including every analysis group

For special kind of analyses needing specialized variables, we plan to support user-

de�ned TTree-friending

3

DRIVING PRINCIPLES
Don't read what you don't need

Only perform I/O reads when variables are accessed. Allow to skip uninteresting events

before branch reading even occurs.

Easy to understand

Code should be readable and expressive.

Variable name and usage should make clear what the intention of the programmer is, at

least to an intuitive level.

Function names should be descriptive and hint at what the result of the function is.

Easy to use

Automatic installation for local development. CVMFS binary releases for usage on

clusters.
4

GETTING STARTED
Requirements:Requirements:

A C++ compiler with full C++17 support
(currently GCC 12.1.0)

CMake version 3.13 or higher

ROOT version 6.28 or higher compiled with C++17 support
(currently 6.28/04)

This mainly applies if you want to install NAIA on your personal machine. For distributed useThis mainly applies if you want to install NAIA on your personal machine. For distributed use
(CNAF / CERN) all requirements and NAIA binaries are distributed via CVMFS(CNAF / CERN) all requirements and NAIA binaries are distributed via CVMFS

and the correct environment can be setup with a dedicated scriptand the correct environment can be setup with a dedicated script

/cvmfs/ams.cern.ch/Offline/amsitaly/public/install/x86_64-el9-gcc12.1/naia

/cvmfs/ams.cern.ch/Offline/amsitaly/public/install/x86_64-el9-gcc12.1/naia/naia/v1.1.0/setenvs/setenv_gcc6.28_el9

5

GETTING STARTED
If you are building NAIA on your machine the installation is quite easyIf you are building NAIA on your machine the installation is quite easy

To use the NAIA ntuples your project will need:To use the NAIA ntuples your project will need:

the headers in naia.install/include

the naia.install/lib/libNAIAUtility.so library

the naia.install/lib/libNAIAContainers.so library

the naia.install/lib/libNAIAChain.so library

clone NAIA code
git clone ssh://git@gitlab.cern.ch:7999/ams-italy/naia.git -b v1.0.1 # (clone via SSH)
setup build and final install directories
mkdir naia.build naia.install
build NAIA
cd naia.build
cmake ../naia -DCMAKE_INSTALL_PREFIX=../naia.install
make all install

1
2
3
4
5
6
7
8

6

THE NAIA DATA MODEL
Our data model starts with the Our data model starts with the NAIAChainNAIAChain object object

This is the main way to open a NAIA root�le, it will take care of loading all the relevant TTreesThis is the main way to open a NAIA root�le, it will take care of loading all the relevant TTrees
and setting up what we call the "read-on-demand" mechanism (and setting up what we call the "read-on-demand" mechanism (more on this latermore on this later))

Example:Example:

// ...
#include "Chain/NAIAChain.h"

int main(int argc, char const *argv[]) {
 // Create a chain object
 NAIA::NAIAChain chain;
 // add one (or more) file to it
 chain.Add("somefile.root");
 // setup the read-on-demand mechanism // N.B: important and mandatory!
 chain.SetupBranches();
}

1
2
3
4
5
6
7
8
9
10
11

7

THE NAIA DATA MODEL
Once your chain is created and ready to use, you can easily loop over all the events in theOnce your chain is created and ready to use, you can easily loop over all the events in the
chain, with the help of the chain, with the help of the EventEvent class class

(you can use the (you can use the NAIAChain::GetEvent()NAIAChain::GetEvent() method for index-based looping, if needed) method for index-based looping, if needed)

// ...
#include "Chain/NAIAChain.h"

int main(int argc, char const *argv[]) {

 NAIA::NAIAChain chain;
 chain.Add("somefile.root");
 chain.SetupBranches();

 // Event loop!
 for (Event& event : chain){
 // your analysis here :)
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

8

THE NAIA DATA MODEL
NAIA also provide a simple way of skimming a chain and only save interesting events in theNAIA also provide a simple way of skimming a chain and only save interesting events in the
output �leoutput �le

// ...
#include "Chain/NAIAChain.h"

int main(int argc, char const *argv[]) {
 NAIA::NAIAChain chain;
 chain.Add("somefile.root");
 chain.SetupBranches();

 auto handle = chain.CreateSkimTree("skimmed.root", "");

 // Event loop!
 for (Event& event : chain){
 if(is_interesting(event)){
 handle.Fill();
 }
 }

 handle.Write();
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

9

THE NAIA DATA MODEL
The The EventEvent class is probably the most important one, but also the class is probably the most important one, but also the
most boring since it's basically a proxy class containing a collection ofmost boring since it's basically a proxy class containing a collection of
ContainersContainers

ContainersContainers are the real building blocks of the NAIA datamodel. are the real building blocks of the NAIA datamodel.

the main TTree and allows for reading the corresponding branch datathe main TTree and allows for reading the corresponding branch data
only when �rst accessed.only when �rst accessed.

(This means that if you never use a particular container in your analysis,(This means that if you never use a particular container in your analysis,
you’ll never read the corresponding data from �le)you’ll never read the corresponding data from �le)

10

THE NAIA DATA MODEL
ContainerContainer is the general term to de�ne a class in the NAIA data model that groups several is the general term to de�ne a class in the NAIA data model that groups several
variables, according to speci�c criteria (e.g. all the variables related to the TOF).variables, according to speci�c criteria (e.g. all the variables related to the TOF).

Most containers come in two variants: the Most containers come in two variants: the BaseBase and the and the PlusPlus variant variant

The The BaseBase variant contains variables that are accessed by almost every analysis or that are variant contains variables that are accessed by almost every analysis or that are
accessed most oftenaccessed most often

The The PlusPlus variant contains variables that won't be needed by everyone, or may be needed less variant contains variables that won't be needed by everyone, or may be needed less
frequentlyfrequently

The important thing is that you always access variables using the The important thing is that you always access variables using the ->-> operator on the operator on the
container. This is how the read-on-demand is implemented and leads to wrong resultscontainer. This is how the read-on-demand is implemented and leads to wrong results
otherwise.otherwise.

11

THE NAIA DATA MODEL
Variables in NAIA are a bit more complex, for valid reasons:Variables in NAIA are a bit more complex, for valid reasons:

We want our data model to be We want our data model to be as light as possibleas light as possible (especially since we're processing and (especially since we're processing and
saving every single event)saving every single event)

This implies that if something's missing we don't want to write anything to diskThis implies that if something's missing we don't want to write anything to disk

e.g. if there's no hit on Tracker L1 we don't want to write 0, or -9999 or whatever sentinel

value to keep track of this. We don't want to write anything at all.

We achieve this by using associative containers (mostly We achieve this by using associative containers (mostly std::mapstd::map) and realizing that in many) and realizing that in many
cases there are patterns we can exploit.cases there are patterns we can exploit.

Example: several variables come in "�avors" or are computed by di�erent reconstructionsExample: several variables come in "�avors" or are computed by di�erent reconstructions

12

THE NAIA DATA MODEL
Doing AMS analysis means constantly dealing with Doing AMS analysis means constantly dealing with "one value for each X type""one value for each X type", where X could, where X could
be a charge reconstruction method, track �tting algorithm, ECAL BDT estimator, and so on…be a charge reconstruction method, track �tting algorithm, ECAL BDT estimator, and so on…

Example: For tracker hits, there are three available charge reconstruction methods: STD, HuExample: For tracker hits, there are three available charge reconstruction methods: STD, Hu
Liu, Yi Jia.Liu, Yi Jia.

In general, these reconstructions are not guaranteed always to succeedIn general, these reconstructions are not guaranteed always to succeed

We handle this by de�ning the following:We handle this by de�ning the following:

Where Where TrTrack::ChargeRecoTypeTrTrack::ChargeRecoType is an enum with three values is an enum with three values

// one number per charge reconstruction type
template <class T> using TrackChargeVariable = std::map<TrTrack::ChargeRecoType, T>;

1
2

enum ChargeRecoType {
 STD, ///< Standard tracker charge reconstruction
 HL, ///< Hu Liu reconstruction
 YJ, ///< Yi Jia reconstruction
};

1
2
3
4
5

13

THE NAIA DATA MODEL
Why an enum?!?Why an enum?!?

Well... what is more readable and understandableWell... what is more readable and understandable

oror

Readability debates aside, this avoids the confusion usually brought by magic numbers (youReadability debates aside, this avoids the confusion usually brought by magic numbers (you
might not remember after a few weeks that Yi Jia reconstruction is at index 2, for example)might not remember after a few weeks that Yi Jia reconstruction is at index 2, for example)

In addition, if this ever changes in the future, and it is moved to index 3 you won't have toIn addition, if this ever changes in the future, and it is moved to index 3 you won't have to
modify your code in the second case.modify your code in the second case.

For this reason almost every variable structure in NAIA is accessed using speci�c enums.For this reason almost every variable structure in NAIA is accessed using speci�c enums.

float inner_charge = event.trTrackBase->InnerCharge[2];

float inner_charge = event.trTrackBase->InnerCharge[TrTrack::ChargeRecoType::YJ];

14

THE NAIA DATA MODEL
Some variables have nested structures, for example in Some variables have nested structures, for example in TrTrackPlusTrTrackPlus we have: we have:

where for each layer, then for each reconstruction, then for each side we store a number.where for each layer, then for each reconstruction, then for each side we store a number.

But it is not guaranteed that the track will have a hit on, say, Layer 1. Or that the underlyingBut it is not guaranteed that the track will have a hit on, say, Layer 1. Or that the underlying
cluster is correctly identi�ed on the X side. How do we check for this?cluster is correctly identi�ed on the X side. How do we check for this?

For this, there is a dedicated For this, there is a dedicated ContainsKeysContainsKeys function, which checks if the desired elements function, which checks if the desired elements
(identi�ed by some keys, i.e. the aforementioned enums) exist in the structure(identi�ed by some keys, i.e. the aforementioned enums) exist in the structure

you can �nd the full list of variable structures you can �nd the full list of variable structures

///< Track hit charge (X and Y-side) for each layer, for each charge reconstruction.
LayerVariable<TrackChargeVariable<TrackSideVariable<float>>> LayerCharge;

1
2

if (ContainsKeys(event.trTrackPlus->LayerCharge, layer_idx, Track::ChargeRecoType::YJ, TrTrack::Side::X)) {
 // do stuff...
}

1
2
3

herehere

15

https://naia-readthedocs.readthedocs.io/en/latest/datamodel/datamodel.html

THE NAIA DATA MODEL
One quick way of discarding uninteresting events without reading almost anything is byOne quick way of discarding uninteresting events without reading almost anything is by
using the event mask.using the event mask.

The mask is simply a bitmask where every bit represents a particular The mask is simply a bitmask where every bit represents a particular CategoryCategory. If the event. If the event
satis�es a given satis�es a given CategoryCategory, the corresponding bit in the mask will be set., the corresponding bit in the mask will be set.

// ...
#include "Chain/NAIAChain.h"

int main(int argc, char const *argv[]) {

 NAIA::NAIAChain chain;
 chain.Add("somefile.root");
 chain.SetupBranches();

 auto handle = chain.CreateSkimTree("skimmed.root", "");

 // Event loop!
 for (Event& event : chain){
 if(event.CheckMask(NAIA::Category::Charge1_Tof | NAIA::Category::Charge1_Trk)){
 handle.Fill();
 }
 }

 handle.Write();
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

16

THE NAIA DATA MODEL
To do analysis you don't need only Events, but also information about livetime, or amount ofTo do analysis you don't need only Events, but also information about livetime, or amount of
generated MC events...generated MC events...

Each NAIA �le contains two additional trees just for thatEach NAIA �le contains two additional trees just for that

One contains data about the ISS position, its orientation, and physical quantities connectedOne contains data about the ISS position, its orientation, and physical quantities connected
to them, as well as some time-averaged data about the run itself. This kind of data is usuallyto them, as well as some time-averaged data about the run itself. This kind of data is usually
retrieved in AMS analysis from the RTI (Real Time Information) database. This databaseretrieved in AMS analysis from the RTI (Real Time Information) database. This database
stores data with a time granularity of one second, and it can be accessed using the gbatchstores data with a time granularity of one second, and it can be accessed using the gbatch
library.library.

We don't want any dependency on gbatch so the entire RTI database is converted to a TTreeWe don't want any dependency on gbatch so the entire RTI database is converted to a TTree
that has only one branch, which contains objects of the that has only one branch, which contains objects of the RTIInfoRTIInfo class, one for each second class, one for each second
of the current run.of the current run.

// inside the event loop
// Get the RTI info for the current event
NAIA::RTIInfo &rti_info = chain.GetEventRTIInfo();

1
2
3 17

THE NAIA DATA MODEL
We don't want any dependency on gbatch so the entire RTI database is converted to a TTreeWe don't want any dependency on gbatch so the entire RTI database is converted to a TTree
that has only one branch, which contains objects of the RTIInfo class, one for each second ofthat has only one branch, which contains objects of the RTIInfo class, one for each second of
the current run.the current run.

The tree can be accessed from outside the event loop as wellThe tree can be accessed from outside the event loop as well

Clearly useful if you only have to just recompute livetime or analyse only RTI dataClearly useful if you only have to just recompute livetime or analyse only RTI data

TChain* rti_chain = chain.GetRTITree();
NAIA::RTIInfo* rti_info = new RTIInfo();
rti_chain->SetBranchAddress("RTIInfo", &rti_info);

for (unsigned long long isec=0; isec < rti_chain->GetEntries(); ++isec){
 rti_chain->GetEntry(isec);

 // your analysis here :)
}

1
2
3
4
5
6
7
8
9

18

THE NAIA DATA MODEL
The second tree contains useful information about the original AMSRoot �le from which theThe second tree contains useful information about the original AMSRoot �le from which the
current NAIA �le was derived.current NAIA �le was derived.

This information is stored in the This information is stored in the FileInfoFileInfo TTree, which usually has only a single entry for TTree, which usually has only a single entry for
each NAIA root-�le.each NAIA root-�le.

(Having this data in a TTree allows us to chain multiple NAIA root-�les and still be able to(Having this data in a TTree allows us to chain multiple NAIA root-�les and still be able to
retrieve the FileInfo data for the current run we’re processing)retrieve the FileInfo data for the current run we’re processing)

This tree has one branch, which contains objects of the This tree has one branch, which contains objects of the FileInfoFileInfo class and, if the NAIA root- class and, if the NAIA root-
�le is a Montecarlo �le, an additional branch containing objects of the �le is a Montecarlo �le, an additional branch containing objects of the MCFileInfoMCFileInfo class. class.

// inside the event loop
// Get the File infos for the current event
NAIA::FileInfo &file_info = chain.GetEventFileInfo();
// if this is a MC file
NAIA::MCFileInfo &mcfile_info = chain.GetEventMCFileInfo();

1
2
3
4
5

19

THE NAIA DATA MODEL
Also in this case the tree can be accessed from outside the event loop as wellAlso in this case the tree can be accessed from outside the event loop as well

TChain* file_chain = chain.GetFileInfoTree();
NAIA::FileInfo* file_info = new NAIA::FileInfo();
NAIA::MCFileInfo* mcfile_info = new NAIA::MCFileInfo();

file_chain->SetBranchAddress("FileInfo", &file_info);
if(chain.IsMC()){
 file_chain->SetBranchAddress("MCFileInfo", &mcfile_info);
}

for(unsigned long long i=0; i < file_chain->GetEntries(); ++i){
 file_chain->GetEntry(i);

 // do stuff with file_info

 if(chain.IsMC()){
 // do stuff with mcfile_info
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

20

USING NAIA IN YOUR ANALYSIS
There are some examples in NAIA that should guide you in building your analysis with NAIA.There are some examples in NAIA that should guide you in building your analysis with NAIA.
These are divided by usage type:These are divided by usage type:

CMake: *(recommended)*

It is a powerful cross-platform build system that is used to specify in a generic way howIt is a powerful cross-platform build system that is used to specify in a generic way how
programs should be compiled and generate the corresponding Make�les. It is especiallyprograms should be compiled and generate the corresponding Make�les. It is especially
useful when your project makes use of other packages / libraries that need to be importeduseful when your project makes use of other packages / libraries that need to be imported

it becomes quite e�ective when the size of the project increases (many executables/libraries)it becomes quite e�ective when the size of the project increases (many executables/libraries)

CMakeLists.txt:
project(testNAIA)

find_package(NAIA 1.1.1 REQUIRED)

add_executable(main src/main.cpp)
target_link_libraries(main PUBLIC NAIA::NAIAChain)

1
2
3
4
5
6
7

21

USING NAIA IN YOUR ANALYSIS

NB: following good CMake practices, NAIA internally de�nes everything that is needed in terms ofNB: following good CMake practices, NAIA internally de�nes everything that is needed in terms of
targets.targets.

The The NAIA::NAIAChainNAIA::NAIAChain target internally knows all the include paths, preprocessor macros, target internally knows all the include paths, preprocessor macros,
library paths, libraries that it needs so that CMake can propagate these requirements to alllibrary paths, libraries that it needs so that CMake can propagate these requirements to all
targets linking against targets linking against NAIA::NAIAChainNAIA::NAIAChain, such as your own library targets or executables., such as your own library targets or executables.

To compile just runTo compile just run

CMakeLists.txt:
project(testNAIA)
set(CMAKE_CXX_STANDARD 14)

find_package(NAIA 1.0.1 REQUIRED)

add_executable(main src/main.cpp)
target_link_libraries(main PUBLIC NAIA::NAIAChain)

1
2
3
4
5
6
7
8

mkdir build
cd build
cmake .. -DNAIA_DIR=${path_to_your_naia_install}/cmake
make

1
2
3
4

22

USING NAIA IN YOUR ANALYSIS
Make�leMake�le::

If you want to write your own Make�le you can take a look at the existing examples andIf you want to write your own Make�le you can take a look at the existing examples and
update the NAIA_DIR variable inside. Remember to add include paths/libraries if needed or ifupdate the NAIA_DIR variable inside. Remember to add include paths/libraries if needed or if
something changes between NAIA versions.something changes between NAIA versions.

NAIA_DIR=/path/to/your/naia/install

CC = g++
CFLAGS = $(shell root-config --cflags) -DSPDLOG_FMT_EXTERNAL
INCLUDES = -I$(NAIA_DIR)/include -I./include
LFLAGS = $(shell root-config --libs) -L $(NAIA_DIR)/lib -Wl,-rpath=$(NAIA_DIR)/lib
LIBS = -lNAIAUtility -lNAIAChain -lNAIAContainers

SRCS = src/main.cpp
OBJS = $(SRCS:.cpp=.o)

MAIN = main

.PHONY: depend clean

all: $(MAIN)
 @echo main has been compiled

$(MAIN): $(OBJS)
 $(CC) $(CFLAGS) $(INCLUDES) -o $(MAIN) $(OBJS) $(LFLAGS) $(LIBS)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 23

USING NAIA IN YOUR ANALYSIS
ROOT macrosROOT macros::

In this case the libraries and include paths are setup by a dedicated macroIn this case the libraries and include paths are setup by a dedicated macro

and then run asand then run as

// load.C:
{
 TString naia_dir = "/path/to/your/naia/install/dir";
 gROOT->ProcessLine(".include" + naia_dir + "/include");
 gSystem->SetDynamicPath(naia_dir + "/lib:" + gSystem->GetDynamicPath());
 gSystem->Load("libNAIAUtility");
 gSystem->Load("libNAIAContainers");
 gSystem->Load("libNAIAChain");

 gROOT->ProcessLine("#define SPDLOG_FMT_EXTERNAL");
 gROOT->ProcessLine("#include \"Chain/NAIAChain.h\"");
}

1
2
3
4
5
6
7
8
9
10
11
12

root load.C main.cpp

24

USING NAIA IN YOUR ANALYSIS
Bonus: Bonus: RDataFrameRDataFrame

Sometimes you do need to make a quick plot and macros are just for that. One very coolSometimes you do need to make a quick plot and macros are just for that. One very cool
option could be to use option could be to use . You won't use a . You won't use a NAIAChainNAIAChain, in this case, you're working, in this case, you're working
directly with the naked branches (and you still need directly with the naked branches (and you still need load.Cload.C))

RDataFrameRDataFrame

void plot_innercharge() {
 // enable multi-threading
 ROOT::EnableImplicitMT();

 TFile *infile = TFile::Open("/storage/gpfs_ams/ams/groups/AMS-Italy/ntuples/v1.1.0/ISS.B1236/pass8/15913618
 TTree *tree = infile->Get<TTree>("NAIAChain");
 ROOT::RDataFrame rdf{*tree};

 // apply two cuts:
 // - Track chisquare Y < 10 (inner tracker only fit)
 // - At least 5 XY hits
 // define the variable to be plotted
 auto augmented_d =
 rdf.Filter(
 [](NAIA::TrTrackBaseData &trtrack) {
 return trtrack.TrChiSq[NAIA::TrTrack::Fit::Kalman][NAIA::TrTrack::Span::InnerOnly][NAIA::TrTra
 },
 {"TrTrackBaseData"})
 .Filter([](NAIA::TrTrackBaseData &trtrack) { return trtrack.LayerChargeXY.size() > 4; }, {"TrTrackB
 .Define("TrInnerCharge",

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

https://lss.fnal.gov/archive/2019/conf/fermilab-conf-19-550-scd.pdf

25

USING NAIA IN YOUR ANALYSIS

Note the usage of "TrTrackBaseData" rather than "TrTrackBase" (it's the name of the actual tree branch) and no read-on-Note the usage of "TrTrackBaseData" rather than "TrTrackBase" (it's the name of the actual tree branch) and no read-on-
demand (RDataFrame does this by default)demand (RDataFrame does this by default)

Also, you get speedups for free, since it's automatically multi-threaded (very useful for �nal-stage plots or quicklooks!)Also, you get speedups for free, since it's automatically multi-threaded (very useful for �nal-stage plots or quicklooks!)

void plot_innercharge() {
 // enable multi-threading
 ROOT::EnableImplicitMT();

 TFile *infile = TFile::Open("/storage/gpfs_ams/ams/groups/AMS-Italy/ntuples/v1.1.0/ISS.B1236/pass8/15913618
 TTree *tree = infile->Get<TTree>("NAIAChain");
 ROOT::RDataFrame rdf{*tree};

 // apply two cuts:
 // - Track chisquare Y < 10 (inner tracker only fit)
 // - At least 5 XY hits
 // define the variable to be plotted
 auto augmented_d =
 rdf.Filter(
 [](NAIA::TrTrackBaseData &trtrack) {
 return trtrack.TrChiSq[NAIA::TrTrack::Fit::Kalman][NAIA::TrTrack::Span::InnerOnly][NAIA::TrTra
 },
 {"TrTrackBaseData"})
 .Filter([](NAIA::TrTrackBaseData &trtrack) { return trtrack.LayerChargeXY.size() > 4; }, {"TrTrackB
 .Define("TrInnerCharge",

[](NAIA::TrTrackBaseData &trtrack) { return trtrack InnerCharge[NAIA::TrTrack::ChargeRecoTy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

26

SUPPORT AND COMMUNITY
NAIA has a simple NAIA has a simple that provides that provides
quick and easy access to a manual and classquick and easy access to a manual and class
documentation for each versiondocumentation for each version

(including changelogs and a reference on(including changelogs and a reference on
where the data is stored at CNAF)where the data is stored at CNAF)

landing pagelanding page

27

https://naia-docs.web.cern.ch/naia-docs/

SUPPORT AND COMMUNITY
A simple user manual should guide you on theA simple user manual should guide you on the
steps needed to install and use NAIA, andsteps needed to install and use NAIA, and
provides a quick reference on the datamodelprovides a quick reference on the datamodel
and ideas behind NAIA.and ideas behind NAIA.

(mostly what you have seen on these slides,(mostly what you have seen on these slides,
but a bit more descriptive)but a bit more descriptive)

28

SUPPORT AND COMMUNITY
A simple user manual should guide you on theA simple user manual should guide you on the
steps needed to install and use NAIA, andsteps needed to install and use NAIA, and
provides a quick reference on the datamodelprovides a quick reference on the datamodel
and ideas behind NAIA.and ideas behind NAIA.

(mostly what you have seen on these slides,(mostly what you have seen on these slides,
but a bit more descriptive)but a bit more descriptive)

And of course, for all the details on classesAnd of course, for all the details on classes
and methods and so on, there is doxygen pageand methods and so on, there is doxygen page
for every version.for every version.

29

SUPPORT AND COMMUNITY
In addition you are strongly encouraged toIn addition you are strongly encouraged to
join the join the ..

This is particularly useful as a communityThis is particularly useful as a community
gathering point to chat and discuss commongathering point to chat and discuss common
activities, meetings, analysis and tools.activities, meetings, analysis and tools.

AMS-Italy discord serverAMS-Italy discord server

https://discord.com/invite/x6mqwyrjsT

30

SUPPORT AND COMMUNITY
Finally, for any bug, issue, or feature requestFinally, for any bug, issue, or feature request
for NAIA you can always go to the mainfor NAIA you can always go to the main
repository on gitlab and open an issue torepository on gitlab and open an issue to
describe your needs.describe your needs.

There are already two templates: one for bugThere are already two templates: one for bug
reporting, the other for feature requests.reporting, the other for feature requests.

31

TOOLS IN THE WORK
NAIA is just a data model and framework for AMS analysis. We can think of it as theNAIA is just a data model and framework for AMS analysis. We can think of it as the
foundational layer, but there is room for creating useful tools to further the data analysisfoundational layer, but there is room for creating useful tools to further the data analysis
experience.experience.

We currently have in production:We currently have in production:

A NAIA adapter for ROOT's TSelector framework ()

A common selection library ()

And in the works:And in the works:

A ROOT-based spline �tting library ()

A rewrite of the plugin system initially proposed for the dbar analysis

NaiaTSelector

NSL

RSpline

32

https://gitlab.cern.ch/pzuccon/naiatselector
https://gitlab.cern.ch/ams-italy/nsl
https://gitlab.cern.ch/ams-italy/rspline

HAPPY CODING!

33

