NAIA

NTUPLES FOR AMS-ITALY ANALYSIS
INTRODUCTION TO THE FRAMEW ORK AND DATA-
FORMAT



MOTIVATIONS

1. Resource optimization
e With multiple groups producing each their own set of ntuples, lots of data is replicated

on disk, which results in a waste of resources.
e Also, groups are competing for computing resources for ntuple production.

2. Code exchange
e Using the same data makes it easier to exchange selections and algorithms/procedures.

3. Reproducibility / readability
e Most often custom data formats are produced in a custom way, with a custom

processing.
e Additionally, in many cases, only the code owner can easily understand what's going in

the analysis code.



DRIVING PRINCIPLES

e Don't throw anything out
= This means processing and saving all the events from the original AMS-Root files
e Don't require network access
= All the needed data should be inside NAIA files (e.g. no online access to RTI csv files on
cvmfs)
e Try to cover at least 90% of use-cases
= |nitial variable list comes from an internal survey including every analysis group

» For special kind of analyses needing specialized variables, we plan to support user-
defined TTree-friending



DRIVING PRINCIPLES

e Don't read what you don't need
= Only perform I/O reads when variables are accessed. Allow to skip uninteresting events
before branch reading even occurs.

e Fasy to understand

= Code should be readable and expressive.
= Variable name and usage should make clear what the intention of the programmer is, at
least to an intuitive level.
= Function names should be descriptive and hint at what the result of the function is.
e Fasy to use
» Automatic installation for local development. CVMFS binary releases for usage on
clusters.



GETTING STARTED

Requirements:

e A C++ compiler with full C++17 support

(currently GCC 12.1.0)

e CMake version 3.13 or higher
e ROOT version 6.28 or higher compiled with C++17 support

(currently 6.28/04)

This mainly applies if you want to install NAIA on your personal machine. For distributed use
(CNAF / CERN) all requirements and NAIA binaries are distributed via CVMFS

/cvmfs/ams.cern.ch/0ffline/amsitaly/public/install/x86_64-el9-gccl2.1/naia

and the correct environment can be setup with a dedicated script

/cvmfs/ams.cern.ch/0ffline/amsitaly/public/install/x86_64-el9-gccl2.1/naia/naia/v1.1.0/setenvs/setenv_gcc6.28_el!



GETTING STARTED

If you are building NAIA on your machine the installation is quite easy

git clone ssh://git@gitlab.cern.ch:7999/ams-italy/naia.git -b v1.0.1
mkdir naia.build naia.install
cd naia.build

cmake ../naia -DCMAKE_INSTALL_PREFIX=../nala.install
make all install

coO~NO Ol h WDN B

To use the NAIA ntuples your project will need:

e the headersinnaja.install/include

e thenaia.install/1ib/1ibNATIAUtility.so library

e thenaia.install/lib/1ibNAIAContainers. so library
e the naia.install/lib/1ibNAIAChain. so library



THE NAIA DATA MODEL

Our data model starts with the NAIAChain object

This is the main way to open a NAIA rootfile, it will take care of loading all the relevant TTrees
and setting up what we call the "read-on-demand" mechanism (more on this later)

Example:

1

2

3

4 main ( argc, *argv[]) {
5

6 NAIA: :NAIAChain chain;

.

8 chain.Add("somefile.root");
9
10 chain.SetupBranches();

11 }



THE NAIA DATA MODEL

Once your chain is created and ready to use, you can easily loop over all the events in the
chain, with the help of the Event class

main( argc,

NAIA: :NAIAChain chain;
chain.Add("somefile.root");
chain.SetupBranches();

oO~NO O A~ WN PR

(o}

10

11 (Event& event : chain){
12

13 }

14 }

(you can use the NAIAChain

*argv[]) {

. :GetEvent () method for index-based looping, if needed)



THE NAIA DATA MODEL

NAIA also provide a simple way of skimming a chain and only save interesting events in the
output file

1

2

3

4 main ( argc, *argv[]) {
5 NAIA: :NAIAChain chain;

6 chain.Add("somefile.root");

7 chain.SetupBranches();

8

9 handle = chain.CreateSkimTree("skimmed.root", "");
10

11

12 (Event& event : chain){

13 ( is_interesting(event) ){

14 handle.Fill();

15 }

16 }

17

18 handle.Write();



THE NAIA DATA MODEL

The Event class is probably the most important one, but also the
most boring since it's basically a proxy class containing a collection of

Containers

Containers are the real building blocks of the NAIA datamodel.

the main TTree and allows for reading the corresponding branch data
only when first accessed.

(This means that if you never use a particular container in your analysis,
you'll never read the corresponding data from file)

Public Attributes

Header
EventSummary

DAQ

TofBase

TofPlus
TofBaseStandalone
TofPlusStandalone
EcalBase

EcalPlus
TrTrackBase
TrTrackPlus
SecondTrTrackBase
TrTrackBaseStandalone
TrdKBase
TrdKBaseStandalone
RichBase

RichPlus
UnbExtHitBase
MCTruthBase
MCTruthPlus

header
evSummary
daq

tofBase
tofPlus
tofBaseSt
tofPlusSt
ecalBase
ecalPlus
trTrackBase
trTrackPlus
secondTrTrackBase
trirackBaseSt
trdKkBase
trdkBaseSt
richBase
richPlus
extHitBase
mcTruthBase

mcTruthPlus

10



THE NAIA DATA MODEL

Containeris the general term to define a class in the NAIA data model that groups several
variables, according to specific criteria (e.g. all the variables related to the TOF).

Most containers come in two variants: the Base and the Plus variant

The Base variant contains variables that are accessed by almost every analysis or that are
accessed most often

The Plus variant contains variables that won't be needed by everyone, or may be needed less
frequently

The important thing is that you always access variables using the -> operator on the

container. This is how the read-on-demand is implemented and leads to wrong results
otherwise.

11



THE NAIA DATA MODEL

Variables in NAIA are a bit more complex, for valid reasons:

We want our data model to be as light as possible (especially since we're processing and
saving every single event)

This implies that if something's missing we don't want to write anything to disk

e e.g.if there's no hit on Tracker L1 we don't want to write 0, or -9999 or whatever sentinel
value to keep track of this. We don't want to write anything at all.

We achieve this by using associative containers (mostly std: :map) and realizing that in many
cases there are patterns we can exploit.

Example: several variables come in "flavors" or are computed by different reconstructions

12



THE NAIA DATA MODEL

Doing AMS analysis means constantly dealing with "one value for each X type"”, where X could
be a charge reconstruction method, track fitting algorithm, ECAL BDT estimator, and so on...

Example: For tracker hits, there are three available charge reconstruction methods: STD, Hu
Liu, Yi Jia.

In general, these reconstructions are not guaranteed always to succeed

We handle this by defining the following:

1
2 < T> TrackChargevVariable = std::map<TrTrack::ChargeRecoType, T>;

Where TrTrack: :ChargeRecoType is an enum with three values

ChargeRecoType {
STD,
HL,
YJ,
3

a b~ wdNhPRE

13



THE NAIA DATA MODEL

Why an enum?!?

Well... what is more readable and understandable

inner_charge = event.trTrackBase->InnerCharge[2];

or

inner_charge = event.trTrackBase->InnerCharge[TrTrack: :ChargeRecoType::YJ];

Readability debates aside, this avoids the confusion usually brought by magic numbers (you
might not remember after a few weeks that Yi Jia reconstruction is at index 2, for example)

In addition, if this ever changes in the future, and it is moved to index 3 you won't have to
modify your code in the second case.

For this reason almost every variable structure in NAIA is accessed using specific enums.

14



THE NAIA DATA MODEL

Some variables have nested structures, for example in TrTrackPlus we have:

1
2 LayerVariable<TrackChargeVariable<TrackSideVariable< >>> LayerCharge;

where for each layer, then for each reconstruction, then for each side we store a number.

But it is not guaranteed that the track will have a hit on, say, Layer 1. Or that the underlying
cluster is correctly identified on the X side. How do we check for this?

For this, there is a dedicated ContainsKeys function, which checks if the desired elements
(identified by some keys, i.e. the aforementioned enums) exist in the structure

(ContainsKeys(event.trTrackPlus->LayerCharge, layer_idx, Track::ChargeRecoType::YJ, TrTrack::Side::X)) {

1
2
3}

you can find the full list of variable structures

15


https://naia-readthedocs.readthedocs.io/en/latest/datamodel/datamodel.html

THE NAIA DATA MODEL

One quick way of discarding uninteresting events without reading almost anything is by
using the event mask.

The mask is simply a bitmask where every bit represents a particular Category. If the event
satisfies a given Category, the corresponding bit in the mask will be set.

1

2

3

4 main( argc, *argv[]) {

)

6 NAIA: :NAIAChain chain;

7 chain.Add("somefile.root");

8 chain.SetupBranches();

9

10 handle = chain.CreateSkimTree("skimmed.root", "");
11

12

13 (Event& event : chain){

14 ( event.CheckMask(NAIA::Category::Chargel Tof | NAIA::Category::Chargel_Trk) ){
15 handle.Fill();

16 }

17}

18

19 handle.Write();



16



THE NAIA DATA MODEL

To do analysis you don't need only Events, but also information about livetime, or amount of
generated MC events...

Each NAIA file contains two additional trees just for that

One contains data about the ISS position, its orientation, and physical quantities connected
to them, as well as some time-averaged data about the run itself. This kind of data is usually
retrieved in AMS analysis from the RTI (Real Time Information) database. This database

stores data with a time granularity of one second, and it can be accessed using the gbatch
library.

We don't want any dependency on gbatch so the entire RTI database is converted to a TTree
that has only one branch, which contains objects of the RTIInfo class, one for each second
of the current run.

1
2
3 NAIA::RTIInfo &rti_info = chain.GetEventRTIInfo(); 17



THE NAIA DATA MODEL

We don't want any dependency on gbatch so the entire RTI database is converted to a TTree
that has only one branch, which contains objects of the RTlInfo class, one for each second of
the current run.

The tree can be accessed from outside the event loop as well

1 TChain* rti_chain = chain.GetRTITree();
2 NAIA::RTIInfo* rti_info = RTIInfo();
3 rti_chain->SetBranchAddress("RTIInfo", &rti_info);

( isec=0; 1isec < rti_chain->GetEntries(); ++isec){
rti_chain->GetEntry(isec);

©O© 00 ~NO 01 -~

}

Clearly useful if you only have to just recompute livetime or analyse only RTI data

18



THE NAIA DATA MODEL

The second tree contains useful information about the original AMSRoot file from which the
current NAIA file was derived.

This information is stored in the FileInfo TTree, which usually has only a single entry for
each NAIA root-file.

(Having this data in a TTree allows us to chain multiple NAIA root-files and still be able to
retrieve the FileInfo data for the current run we're processing)

This tree has one branch, which contains objects of the FileInfo class and, if the NAIA root-
File is @ Montecarlo file, an additional branch containing objects of the MCFileInfo class.

1
2
3 NAIA::FileInfo &file_info = chain.GetEventFileInfo();
4
S

NAIA::MCFileInfo &mcfile_info = chain.GetEventMCFileInfo();

19



THE NAIA DATA MODEL

Also in this case the tree can be accessed from outside the event loop as well

1 TChain* file_chain = chain.GetFileInfoTree();
NAIA::FileInfo* file_info = NAIA::FileInfo();
NAIA::MCFileInfo* mcfile_info = NAIA::MCFileInfo();

(chain.IsMC()){

2

3

4

5 file_chain->SetBranchAddress("FileInfo", &file_info);

§)

7 file_chain->SetBranchAddress("MCFileInfo", &mcfile_info);
8

}
)
10 ( i=0; i < file_chain->GetEntries(); ++i){
11 file_chain->GetEntry(i);
12
1LES
14
15 (chain.IsMC()){
16
17 }
18 }



USING NAIA IN YOUR ANALYSIS

There are some examples in NAIA that should guide you in building your analysis with NAIA.
These are divided by usage type:

CMake: *(recommended)*

It is a powerful cross-platform build system that is used to specify in a generic way how
programs should be compiled and generate the corresponding Makefiles. It is especially
useful when your project makes use of other packages / libraries that need to be imported

(testNAIA)

(NAIA 1.1.1 REQUIRED)

NOoO O~ WN R

(main src/main.cpp)
(main PUBLIC NAIA::NAIAChain)

it becomes quite effective when the size of the project increases (many executables/libraries)

21



USING NAIA IN YOUR ANALYSIS

(testNAIA)
(CMAKE_CXX_STANDARD 14)

(NAIA 1.0.1 REQUIRED)

O~NO O A~ WN K

(main src/main.cpp)
(main PUBLIC NAIA::NAIAChain)

NB: following good CMake practices, NAIA internally defines everything that is needed in terms of
targets.

The NAIA: :NAIAChain targetinternally knows all the include paths, preprocessor macros,

library paths, libraries that it needs so that CMake can propagate these requirements to all
targets linking against NAIA: :NAIAChain, such as your own library targets or executables.

To compile just run

mkdir build

cd build

cmake .. -DNAIA_DIR=${path_to_your_naia_install}/cmake
make

A WDNPRE

22



USING NAIA IN YOUR ANALYSIS

Makefile:

If you want to write your own Makefile you can take a look at the existing examples and
update the NAIA DIR variable inside. Remember to add include paths/libraries if needed or if
something changes between NAIA versions.

1 NAIA_DIR=/path/to/your/naia/install

2

3 CC = g++

4 CFLAGS = $(shell root-config --cflags) -DSPDLOG_FMT_EXTERNAL
5 INCLUDES = -I$(NAIA_DIR)/ -1./

6 LFLAGS = $(shell root-config --1libs) -L $(NAIA_DIR)/1lib -W1l, -rpath=$(NAIA_DIR)/1lib
7 LIBS = -1NAIAUtility -1NAIAChain -1NAIAContainers

8

9 SRCS = src/main.cpp

10 OBJS = $(SRCS:.cpp=.0)

11

12 MAIN = main

13

14

15

16 all: $(MAIN)

17 @echo main has been compiled

18

19 $(MAIN): $(OBJS)
20 $(CC) $(CFLAGS) $(INCLUDES) -0 $(MAIN) $(0BJIS) $(LFLAGS) $(LIBS)



USING NAIA IN YOUR ANALYSIS

ROOT macros:

In this case the libraries and include paths are setup by a dedicated macro

1

2 {

3 TString naia_dir = "/path/to/your/naia/install/dir";

4 gROOT->ProcessLine(".include" + naia_dir + "/include");

5 gSystem->SetDynamicPath(naia_dir + "/lib:" + gSystem->GetDynamicPath());
6 gSystem->Load("1ibNAIAUtility");

7 gSystem->Load("1ibNAIAContainers");

8 gSystem->Load("1ibNAIAChain");

9

10 gROOT->ProcessLine("#define SPDLOG_FMT_EXTERNAL");
11 gROOT->ProcessLine("#1include \"Chain/NAIAChain.h\"");

and then run as

root load.C main.cpp

24



USING NAIA IN YOUR ANALYSIS

Bonus: RDataFrame

Sometimes you do need to make a quick plot and macros are just for that. One very cool
option could be to use . You won't use a NATIAChain, in this case, you're working

directly with the naked branches (and you still need load. C)

1 plot_innercharge() {

2

3 ROOT: :EnableImplicitMT();

4

5 TFile *infile = TFile::Open("/storage/gpfs_ams/ams/groups/AMS-Italy/ntuples/v1.1.0/1SS.B1236/pass8/15913618
6 TTree *tree = infile->Get<TTree>("NAIAChain");

7 ROOT: :RDataFrame rdf{*tree};

8

9

10

11

12

13 augmented_d =

14 rdf.Filter(

15 [1(NAIA::TrTrackBaseData &trtrack) {

16 trtrack.TrChiSq[NAIA: :TrTrack: :Fit::Kalman][NAIA::TrTrack: :Span::InnerOnly][NAIA::TrTra
17 3,

18 {"TrTrackBaseData'"})

19 .Filter([](NAIA::TrTrackBaseData &trtrack) { trtrack.LayerChargeXY.size() > 4; }, {"TrTrackB

yAC) .Define("TrInnerCharge",


https://lss.fnal.gov/archive/2019/conf/fermilab-conf-19-550-scd.pdf

25



USING NAIA IN YOUR ANALYSIS

1 plot_innercharge() {

2

3 ROOT: :EnableImplicitMT();

4

5 TFile *infile = TFile: :Open("/storage/gpfs_ams/ams/groups/AMS-Italy/ntuples/v1.1.0/1SS.B1236/pass8/15913618
6 TTree *tree = infile->Get<TTree>("NAIAChain");

7 ROOT: :RDataFrame rdf{*tree};

8

9

10

11

12

13 augmented_d =

14 rdf.Filter(

15 [1(NAIA::TrTrackBaseData &trtrack) {

16 trtrack.TrChiSq[NAIA: :TrTrack: :Fit::Kalman][NAIA::TrTrack::Span::InnerOnly][NAIA::TrTra
17 3,

18 {"TrTrackBaseData"})

19 .Filter([](NAIA::TrTrackBaseData &trtrack) { trtrack.LayerChargeXY.size() > 4; }, {"TrTrackB
20 .Define("TrInnerCharge",

~ Ll B NN —_— - -~ 1 ~ ' [N r i 1 1 - ~1 Faia == n —_— - ] ~1 - —_

Note the usage of "TrTrackBaseData" rather than "TrTrackBase" (it's the name of the actual tree branch) and no read-on-
demand (RDataFrame does this by default)

Also, you get speedups for free, since it's automatically multi-threaded (very useful for final-stage plots or quicklooks!)

26



SUPPORT AND COMMUNITY

@ NAIA project atlas pa +

NAIA has a simple that provides
quick and easy access to a manual and class
documentation for each version

NAIA versions

v1.1 family

« v1.1.1

including changelogs and a reference on e

Binaries on cvmfs:
M = CentOS7: /cvmfs/ams.cern.ch/0fflinesamsitaly/public/install/x86_64-centos7-gccl2.1/naia/vl.1.1/
W h e re th e d a ta I S S to re d a t C N A F = EL9: /cvmfs/ams.cern.ch/0ffline/amsitaly/public/install/x86_64-el9-gccl2.1/naia/v1.1.1/
Changelog:
= RICH:
= Improved geometry tests
= Change the default computation of TOF beta for MC in NtpMaker. Old GetMCBeta can be run with a dedicated CLI flag.

«Vv1.1.0

Manual
Doxygen
Binaries on cvmfs:
= CentOS7: /cvmfs/ams.cern.ch/0ffline/amsitaly/public/install/x86_64-centos7-gccl2.1/naia/vl.1.0/
= EL9: fcvmfs/ams.cern.ch/0ffline/amsitaly/public/install/x86_64-el9-gccl2.1/naia/vl. 1.9/
Changelog:
= NAIA is now compiled in C++17
= Tracker variables:
= Theta and Phi are now computed at the bottom of the instrument for upgoing particles
= Added two new tracker fit without multiple scattering: ChoutkoNoMS and GBLNoMS

0O < C @ naia-docs.web.cern.ch/naia-docs/ e ® > Q0 & =8
< # Dashboard [E TrackSeries § Facebook | Home @ SAO/NASA ADS:... cppreference.com [l Lawebcamelas.. W TNTforum (Powe... —# FlightStats - Glob...

27


https://naia-docs.web.cern.ch/naia-docs/

UPPORT AND COMMUNITY

A simple user manual should guide you on the
steps needed to install and use NAIA, and
provides a quick reference on the datamodel
and ideas behind NAIA.

(mostly what you have seen on these slides,
but a bit more descriptive)

e @ ® v @&

& 0 3G

il Getting started - NATA ~ + Q _ 0O X
< (& @& naia-readthedocs.readthedocs.io/en/1.1.1/build-install.html nE®ed >0 4 =8 e & @
@ Dashboard [ TrackSeries f Facebook | Home @ SAO/NASA ADS:... cppreference.com [ Lawebcamelas... [ TNTforum (Powe... — FlightStats - Glob... »

NAIA 1.1 . & u =
documentation Gettlng started
Requirements
NAIA To use NAIA you'll need:
Getting started + A C++ compiler with full c++17 support (tested with gcc >= 12.1.0)
The NAIA data mode « CMake version >= 3.13
The 1t clas « A ROOT installation compiled with c++17 support (tested with ROOT >= 6.28/04)
skimming Supported platforms: CentOS7 and RHEL9 derivatives (Alma9, Rocky Linux9, ...)
Examples

If you have access to cvmis then you can find all the requirements in

/cvmfs/ams.cern.ch/0ffline/amsitaly/public/install/x86_64-centos7-gccl2.1/naia
/cvmfs/ams.cern.ch/0ffline/amsitaly/public/install/x86_64-e19-gccl2.1/naia

and a setenv script is already provided with each NAIA version, e.g. for CentOS7

/cvmfs/ams.cern.ch/0ffline/amsitaly/public/install/xB6_64-centos7-gccl2.1/naia/vl.1.0/setenvs

# Note

For the ntuple production some additional requirements are needed:

= Agbatch installation compiled with
o export NOCXXSTD=1 (gbatch hardcodes -std=c++11 in the Makefile... This variable prevents that)
o export GLIBCXX USE_Cxx11=1 (gbatch hardcodes the old gec ABI in the Makefile... Mast likely someone didn't know
what he was doing)
© Run cPPFLAGS="-std=c++17" make lib 1o build the gbatch library (if you don't want to hack the Makefile and change
the C++ standard manually)

Building and installing

Follow this simple procedure:

« Clone this repository

28



SUPPORT AND COMMUNITY

@ NAIA: Class List

A simple user manual should guide you on the

c ﬁ naia-docs.web.cern.ch/naia-docs/v1.1.1/annotated.htmi|

Ste DS need ed tO inSta ll a nd Use NA'A’ a nd ¢y @ Dashboard [ TrackSeries @ Facebaok | Home @ SAO/NASA ADS:... cppreference.com [l Lawebcam e las...

NAIA 111 Main Page  Modules  Namespaces~  Classes~  Files

provides a quick reference on the datamodel Clace Lict
and ideas behind NAlA. Here are the classes, structs, unions and interfaces with brief descriptions:

(mostly what you have seen on these slides,

but a bit more descriptive) o o
: ° ———
And of course, for all the details on classes x e

and methods and so on, there is doxygen page ;

info

For every version. : e

Container class for processed File information

b
a
a
-

Accessor ¢ lass for even t info
Container class for event info
Container class for additional MC File infermation

Simple struct to describe a MC particle

< Acc lass for f

(O] Cont lass for b f

& Acc lass for f
Container class for additional fi

Q _ O X
E®d>»0L=8 © €3
M TNTforum (Powe... & FlightStats - Glob...

& Search

29



SUPPORT AND COMMUNITY

In addition you are strongly encouraged to
join the

This is particularly useful as a community
gathering point to chat and discuss common
activities, meetings, analysis and tools.


https://discord.com/invite/x6mqwyrjsT

LR

AMS-Italia v

@ Events

CANALI TESTUALI +
I .;; # generale

% # ams-social-events
LTy

L@

4 doe-review

#H# meeting-reports

18 staff

 COMPUTING +
#H# cnaf

~ POCC +

x % # shifts

™

#H# monitoring

~ SOFTWARE +

#H# naia

@ # naia-gitlab-bot

@

o

~ HARDWARE +
* layer0

~ ANALYSIS +
4 nuclei &0

# heavy-antimatter
# isotopes

+ CANALI VOCALI +

i) Generale

Valerio Fo...
"%t @ Online

H®
O
o

#nuclei | AMS-Ttalia - Discord [ X N ]

# nuclei Q.\\ ‘ * i’\ Search Q Q 0

==

yes
September 13, 2024

Alessio Ubaldi 9/13/24, 9:06 AM
Hi everyone, | have a question: the binning in the twiki for nuclei is different than the one used in publications.
For example i'm looking Sulfur at

Properties of Cosmic-Ray Sulfur and Determination of the Composition of Primary Cosmic-Ray Carbon, Neon,
Magnesium, and Sulfur: Ten-Year Results from the Alpha Magnetic Spectrometer

Which one should i use?

Valerio Formato 9/13/24, 9:07 AM
If I remember correctly there are separate binnings for primaries, secondaries, and possibly heavier stuff.
They are all the same up to the last few bins, where the size would be usually adapted to the statistics available

Alessio Ubaldi 9/13/24, 9:10 aM
Yes but the binning for Sulfur in the twiki is different than the one in the article
I was trying to do a comparison

1 will probably follow the one in the article

Valerio Formato 9/13/24, 9:13 AM
When you say twiki you mean this page, right?
https://twiki.cern.ch/twiki/bin fview/AMS/PHeNucleiPassT

Alessio Ubaldi 9/13/24, 913 am
Yes

Alessio Ubaldi 9/13/24, 9:21am
And this is the supplemental material:
https:/fams02.space/sites/default/files/2023-05/SM-S-pl.pdf

Valerio Formato 9/13/24,9:26 AM
ok looks like they merged several bins

® @Alessio Ubaldi | will probably follow the one in the article
Valerio Formato 9/13/24, 9:26 AM
seems reasonable

Jiayu Hu 9/13/24, 11:10 AM

For the general nuclei analysis, we will use the binning specified on the Twiki page. This ensures consistency
when comparing results within the collaboration. If you use the Twiki bins, you can verify your results by
comparing them with Q. Yan's results, which are available at /afs/cern.ch/user/q/qyan/public/flux/hzbin. This
directory contains nearly all the general fluxes, also using the Twiki bins, except for the lowest rigidity bins.

e

30



SUPPORT AND COMMUNITY

Finally, for any bug, issue, or feature request
For NAIA you can always go to the main
repository on gitlab and open an issue to
describe your needs.

There are already two templates: one for bug
reporting, the other for feature requests.

o

5 <8 &’ » B

i ® 0 Q4

& Issues - AMS-Italy / N/ +
< C @ gitlab.cern.ch/ams-italy/naia/-fissues/
@ Dashboard [E TrackSeries f Facebook | Home @ SAO/NASA ADS:... cppreference.com [ Lawebcame las...
[+ o + 3 AMS-ltaly | NAIA | Issues
04 hs Gz Open@ Closed @ ALED
Q Search or go to...
¥O v~ | Search or filter results
Project
N NAIA [ Request to add Tracker raw information for machine learning studies
# Pinned N Feature request
I Issues o _ .
[ MCParticle class needs to be updated
Merge requests e #9 eated 4 months ago by Paolo Z Lo
8 Manage
[¥ Improve reconstruction of TrdK stantalone container
b oo sug
& Build [ TrTrack Standalone beta correction
(D Secure Feature request) Good firstissue
& Depl = 3 3 . =
& ety [V v6 alignment into pass7 files (refit always)
@Operate #70 - created 2 years ago Alejandro Reina nde
aug
Monitor
[ Think about GetTrMCHit
e Analyze #61 - created 2 years ago Alberto Oliva
Data model JNZ-EERCL[IEE SN To Do
© Settings { Date mocel [ 7o 0]
[7 Add backtracing variables
Feature request
@) Help

Q _ 0O X
e 04 =8 e e @
W TNTforum (Powe.. # FlightStats - Glob...
Bulk edit New issue

Q Created date ~ | |T

Show 100 items ~

31



TOOLS IN THE WORK

NAIA is just a data model and framework for AMS analysis. We can think of it as the
foundational layer, but there is room for creating useful tools to further the data analysis
experience.

We currently have in production:

e A NAIA adapter for ROOT's TSelector framework ( )
e A common selection library ("/°)

And in the works:

e AROOT-based spline fitting library ( )
e Arewrite of the plugin system initially proposed for the dbar analysis

32


https://gitlab.cern.ch/pzuccon/naiatselector
https://gitlab.cern.ch/ams-italy/nsl
https://gitlab.cern.ch/ams-italy/rspline

HAPPY CODING!



33



