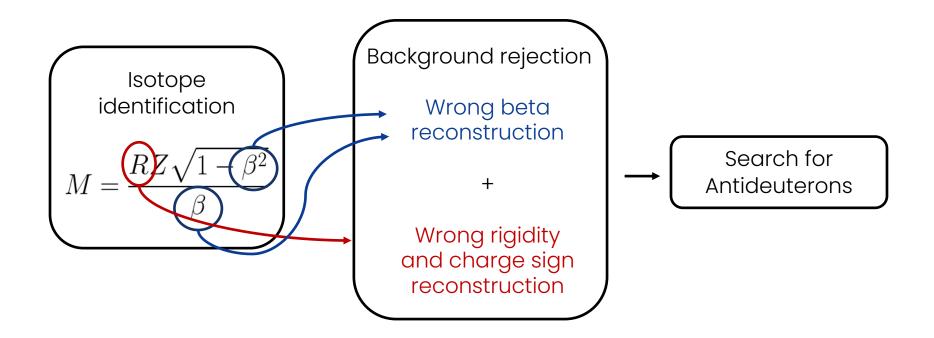
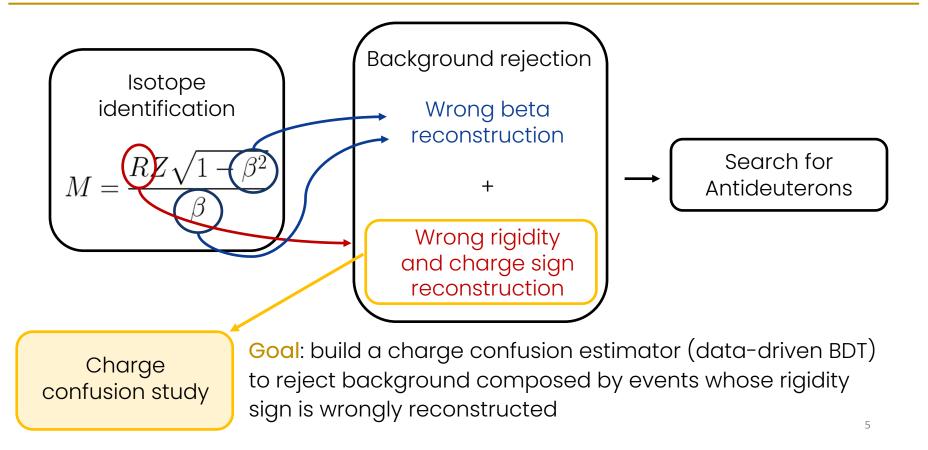
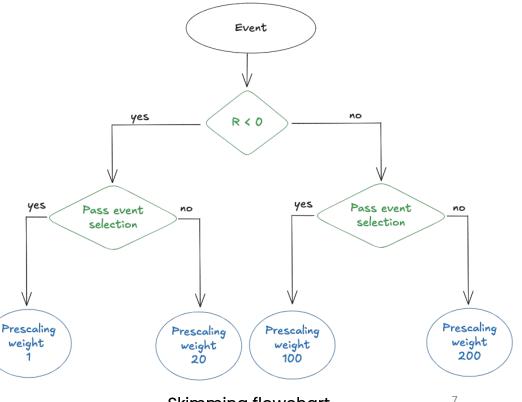

Antideuteron search status


Charge confusion study


Marta Borchiellini (PhD student) Kapteyn Astronomical Institute, Groningen

Data:

NAIA ISS Data v1.1.0/ISS.B1236/pass8 4 years data (2015-2018) + one year data (2023)


Dataset

Data:

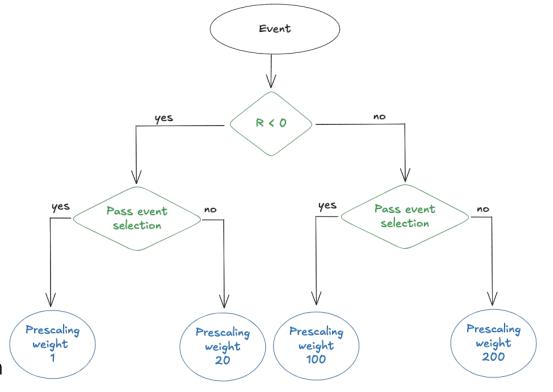
NAIA ISS Data v1.1.0/ISS.B1236/pass8 4 years data (2015-2018) + one year data (2023)

Skimming:

original ntuples are reduced to decrease dataset size.

Skimming flowchart

Dataset


Data:

NAIA ISS Data v1.1.0/ISS.B1236/pass8 4 years data (2015-2018) + one year data (2023)

Skimming: original ntuples are reduced to decrease dataset size.

Event selection:

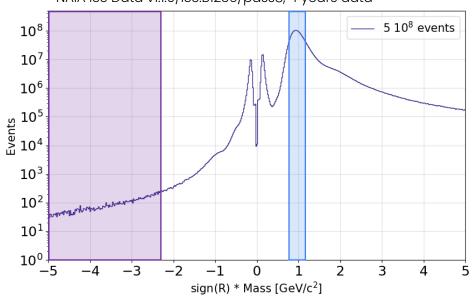
Antiproton-like cut based selection

Skimming flowchart

Event selection

	Z=1 TOF	0.5 <qtof<1.5 &&="" qlowtof<2.0="" quptof<1.5<="" th=""></qtof<1.5>				
Z=1	Z=1 Tracker	0.5 <q_inntr<1.5.< th=""></q_inntr<1.5.<>				
	God TOF Z	qup<1.5 && qdw<2.0				
	Good TOF NCluster	NBetaCluster == 4				
TOF	Good TOF chisq	chisqtn < 10 && chisqcn < 10				
	Has Downgoing Track	Beta_tof>0.5				
	Good Inner tracker chisq	chisqInnerX_GBL< 10 && chisqnInnerY_GBL < 10				
	Single track	ntrtrack == 1				
TRACKER	Tracker pattern	L2 && (L3 L4) && (L5 L6) && (L7 L8)				
	XY Hits	At least 3 XY hits				
	Energy deposition	Less than 2.5 MeV deposited in Inner tracker (LayerEDep)				
	Enough TRD hits	NHitsOnTrack >10				
TRD	Likelihood e/p	Likelihood e/p >0.8				
	Likelihood p/He	Likelihood p/He < 0.3				
	Physics Trigger	IsPhysicsTrigger() == True				
	Rigidity for isotope identificat	tion R_innner < 20GV				

9


Event selection

+ requirement on Tof beta: Beta_tof < 0.9

10

	Z=1 TOF	0.5 <qtof<1.5 &&="" qlowtof<2.0="" quptof<1.5<="" th=""></qtof<1.5>
Z=1	Z=1 Tracker	0.5 <q_inntr<1.5.< th=""></q_inntr<1.5.<>
	God TOF Z	qup<1.5 && qdw<2.0
	Good TOF NCluster	NBetaCluster == 4
TOF	Good TOF chisq	chisqtn < 10 && chisqcn < 10
	Has Downgoing Track	Beta_tof>0.5
	Good Inner tracker chisq	chisqInnerX_GBL< 10 && chisqnInnerY_GBL < 10
	Single track	ntrtrack == 1
TRACKER	Tracker pattern	L2 && (L3 L4) && (L5 L6) && (L7 L8)
	XY Hits	At least 3 XY hits
	Energy deposition	Less than 2.5 MeV deposited in Inner tracker (LayerEDep)
	Enough TRD hits	NHitsOnTrack >10
TRD	Likelihood e/p	Likelihood e/p >0.8
	Likelihood p/He	Likelihood p/He < 0.3
	Physics Trigger	lsPhysicsTrigger() == True
	Rigidity for isotope identificat	ion R_innner < 20GV

Training samples

NAIA ISS Data v1.1.0/ISS.B1236/pass8, 4 years data

Signal Sample

events in mass proton range 0.75 < m < 1.25 Gev/c²

Background sample

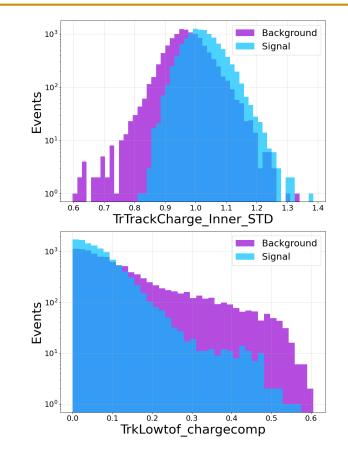
events with low negative rigidity (-20 <R< 0) in the high-mass tail (2.36 < m <5 Gev/c²)

Input dataset

¥	•
4 yeo	rs (2015-2018)
Feature Selection (6 months)	Classification (3.5 years)

4 yec	ars (2015-2018)
Feature Selection (6 months)	Classification (3.5 years)
 Feature selection select the most discriminant features from complete set 4 different methods (Random Forest, kbest, linear regression, Pearson's correlation) 	 Training + Test 2 BDt for each set of features (XGB vs AdaBoost) Use cross-validation to evaluate performance Test models and produce evaluation plots

		•
4 yea	1 year (2023)	
Feature Selection (6 months)	Classification (3.5 years)	Validation
 Feature selection select the most discriminant features from complete set 4 different methods (Random Forest, kbest, linear regression, Pearson's correlation) 	 Training + Test 2 BDt for each set of features (XGB vs AdaBoost) Use cross-validation to evaluate performance Test models and produce evaluation plots 	Test Cross-check the models with a completely distinct dataset

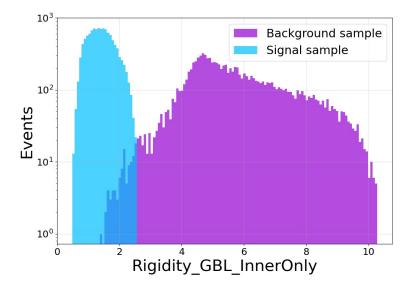

•	*	•
4 yea	1 year (2023)	
Feature Selection (6 months)	Classification (3.5 years)	Validation
 Feature selection select the most discriminant features from complete set 4 different methods (Random Forest, kbest, linear regression, Pearson's correlation) 	 Training + Test 2 BDt for each set of features (XGB vs AdaBoost) Use cross-validation to evaluate performance Test models and produce evaluation plots 	Test Cross-check the models with a completely distinct dataset

Physics Driven set

Chosen following a "physics-driven" approach based on the knowledge of the detectors and of the background to be rejected

How to choose the variables:

- Check that they do not introduce biases in the training phase (data leak)
- Check their discriminative power by looking at signal and background distributions

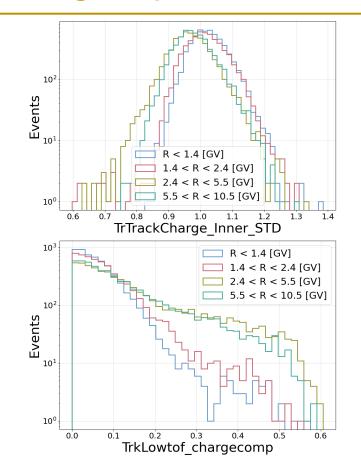


Data leak: dependence on rigidity

We choose the samples based on the event mass:

$$m = \frac{RZe}{\gamma\beta}$$

- → Features dependent on the rigidity introduce a bias in the training of the BDT
- → No true discriminative power, just given by our sample definition



Data leak: dependence on rigidity

We choose the samples based on the event mass:

$$m = \frac{RZe}{\gamma\beta}$$

- → Features dependent on the rigidity introduce a bias in the training of the BDT
- → No true discriminative power, just given by our sample definition
- \rightarrow Check dependence on the rigidty

20

Physics Driven set

- TrTrackChargeRMS_Inner_STD
- TrChiSq_GBLNoMS_InnerOnly_Y
- TrChiSq_GBNoMSL_InnerOnly_X
- LowerUpper_rigiditycomp

$$R_{LU} = \frac{|R_L - R_U|}{|R_L|}$$

- InnerPartial2_rigiditycomp $R_{IPl2} = \frac{|R_I R_{Pl2}|}{|R_I|}$
- TrkLowtof_chargecomp

$$Q_{IL} = \frac{|Q_{ITrack} - Q_{LToF}|}{|Q_{LToF}|}$$

TrkUptof_chargecomp

$$Q_{IU} = \frac{|Q_{ITrack} - Q_{UToF}|}{|Q_{UToF}|}$$

LowUptof_chargecomp

$$Q_{UL} = \frac{|Q_{UToF} - Q_{LToF}|}{|Q_{UToF}|}$$

· · · · · · · · · · · · · · · · · · ·		•
4 yea	1 year (2023)	
Feature Selection (6 months)	Classification (3.5 years)	Validation
 Feature selection select the most discriminant features from complete set 4 different methods (Random Forest, kbest, linear regression, Pearson's correlation) 	 Training + Test 2 BDt for each set of features (XGB vs AdaBoost) Use cross-validation to evaluate performance Test models and produce evaluation plots 	Test Cross-check the models with a completely distinct dataset

Rigidity dependence – statistical tests

We need a way to test the rigidity dependence of ~3000 features Performed different statistical tests on the initial set of features :

• Spearman correlation

- Krukal-Wallis (KW)
- Kolmogorov Smirnov (KS)

test null hypothesis of no correlation

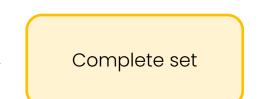
tests if samples are drawn from the same distribution

We compute the p-value for each of the 3 statistical measures We exclude features with p-value < 0.05.

→ We reject features for which there is less than 5% probability to measure the value of the statistic obtained with the chosen test given the null hypothesis

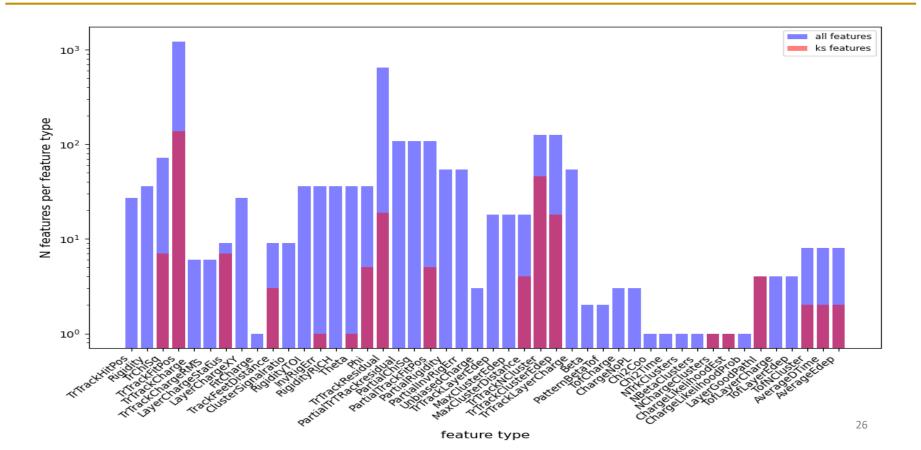
Rigidity dependence – statistical tests

Tested 3067 features from Tracker and Tof.


Number of features passing the tests:

- Spearman correlation: 710
- Krukal-Wallis: 670
- Kolmogorov Smirnov: 265
- Kolmogorov Smirnov (KS) is the more conservative
- The KS features seem to be independent of rigidity from visual inspection
- Features don't seem to be very discriminative

Rigidity dependence – statistical tests


Number of features passing the tests:

- Spearman correlation: 710
- Krukal-Wallis: 670
- Kolmogorov Smirnov test: 265

- Kolmogorov Smirnov (KS) is the more conservative
- The KS features seem to be independent of rigidity from visual inspection

Features per type – complete set

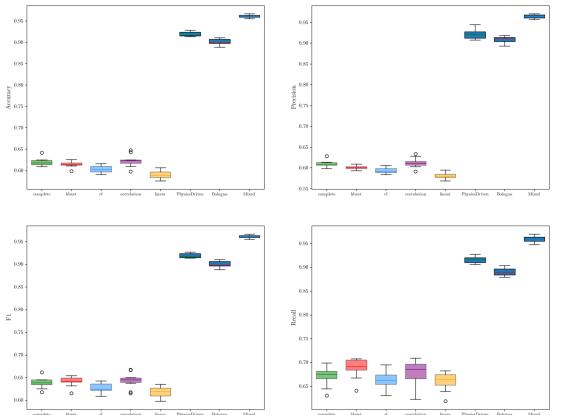
		•
4 yea	1 year (2023)	
Feature Selection (6 months)	Classification (3.5 years)	Validation
 Feature selection select the most discriminant features from complete set 4 different methods (Random Forest, kbest, linear regression, Pearson's correlation) 	 Training + Test 2 BDt for each set of features (XGB vs AdaBoost) Use cross-validation to evaluate performance Test models and produce evaluation plots 	Test Cross-check the models with a completely distinct dataset

Feature selection

We input in the pipeline 265 features passing KS test

Technique	Number of features selected
kbest	103
Random Forest	53
Pearson's correlation	160
Linear regression	1

Feature sets used for the training


We input in the pipeline 265 features passing KS test

Technique	Number of features selected
kbest	103
Random Forest	53
Pearson's correlation	160
Linear regression	1
Physics driven (Groningen)	8
Bologna	56
Mixed	63

Mixed set = Physics Driven + Bologna

N.B. Physics Driven features and Bologna features do not pass the KS test with 0.05 threshold

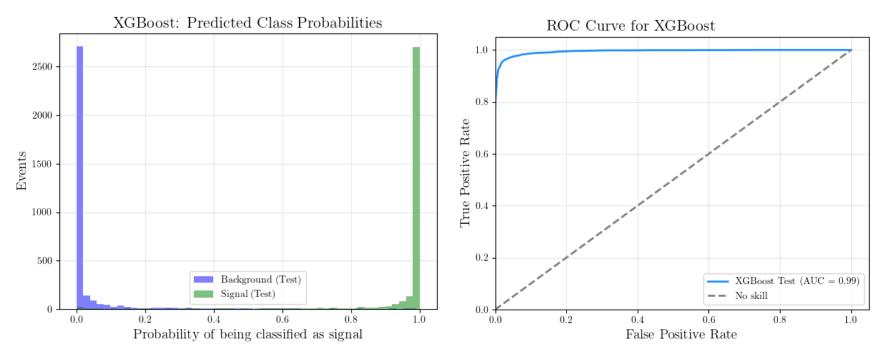
Performance metrics - XGBoost

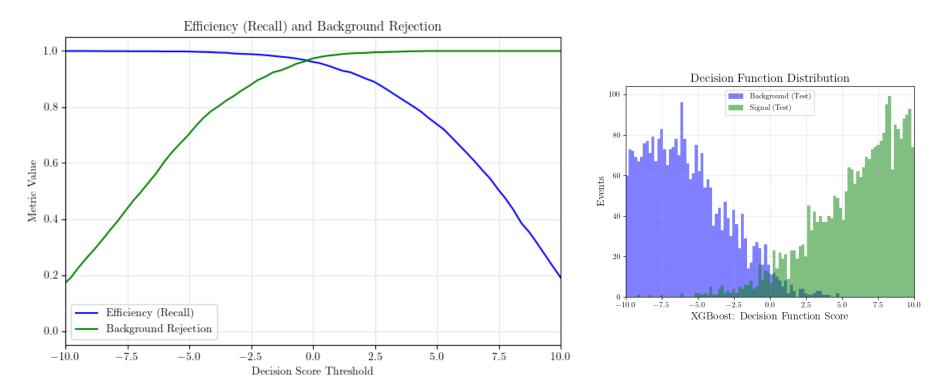
The BDTs trained with physics driven sets perform better than the others selected with feature selection algorithms

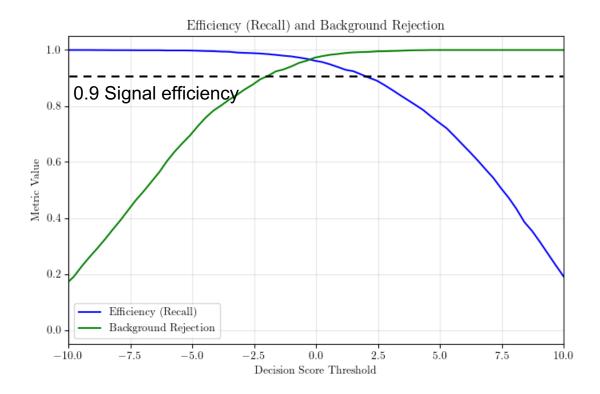
The BDT trained with Mixed set shows the best performances

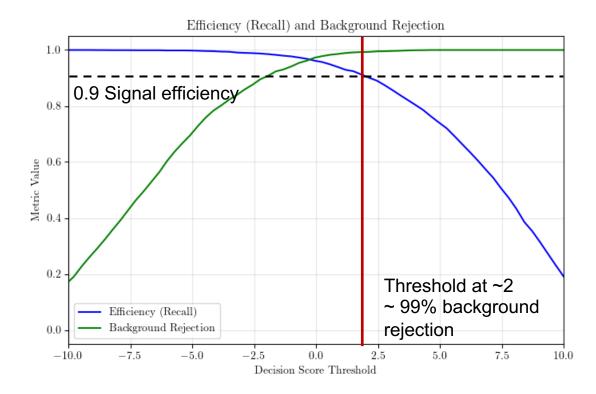
Performance metrics – XGBoost vs AdaBoost

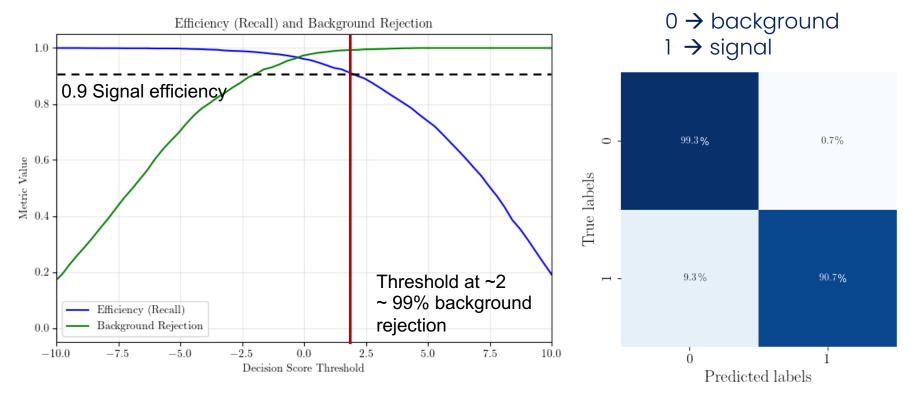
XGBoost

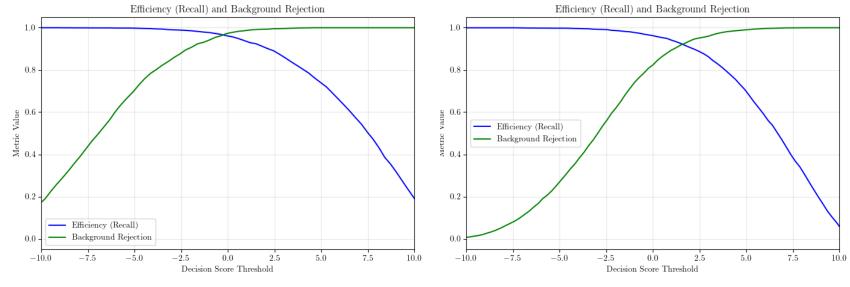

Metrics	complete	kbest	rf	correlation	linear	PhysicsDriven	Bologna	Mixed
Accuracy	0.6196 ± 0.0182	0.6146 ± 0.0134	0.6032 ± 0.0166	0.6232 ± 0.0274	0.5907 ± 0.020	0.9188 ± 0.0108	0.9002 ± 0.0146	0.9613 ± 0.0066
Precision	0.61 ± 0.015	0.6012 ± 0.0088	0.5936 ± 0.0134	0.6123 ± 0.023	0.581 ± 0.017	0.9218 ± 0.022	0.9087 ± 0.016	0.9643 ± 0.0086
Recall	0.6706 ± 0.0386	0.688 ± 0.04	0.663 ± 0.0346	0.679 ± 0.0524	0.6604 ± 0.038	0.916 ± 0.013	0.8905 ± 0.0164	0.9583 ± 0.0126
F1-Score	0.6388 ± 0.0228	0.6416 ± 0.021	0.6263 ± 0.0208	0.6437 ± 0.0324	0.6181 ± 0.024	0.9188 ± 0.01	0.8995 ± 0.0148	0.9613 ± 0.0068
ROC-AUC	0.6783 ± 0.0232	0.6671 ± 0.0238	0.6506 ± 0.023	0.6808 ± 0.028	0.6405 ± 0.019	0.9758 ± 0.0052	0.9665 ± 0.0076	0.9938 ± 0.0024


AdaBoost


Metrics	complete	kbest	rf	correlation	linear	PhysicsDriven	Bologna	Mixed
Accuracy	0.6299 ± 0.0148	0.6293 ± 0.0206	0.6059 ± 0.0172	0.6284 ± 0.0222	0.5943 ± 0.0168	0.9093 ± 0.0134	0.809 ± 0.0168	0.9227 ± 0.0108
Precision	0.6048 ± 0.0126	0.6025 ± 0.016	0.5856 ± 0.013	0.6023 ± 0.015	0.5775 ± 0.015	0.9156 ± 0.0154	0.8331 ± 0.0184	0.9301 ± 0.017
Recall	0.7575 ± 0.033	0.7678 ± 0.0388	0.7336 ± 0.0354	0.763 ± 0.046	0.7133 ± 0.0428	0.9024 ± 0.0204	0.7746 ± 0.032	0.9149 ± 0.0144
F1-Score	0.6725 ± 0.016	0.6751 ± 0.0216	0.6512 ± 0.0198	0.6731 ± 0.026	0.6381 ± 0.0196	0.9089 ± 0.0138	0.8027 ± 0.0196	0.9224 ± 0.0106
ROC-AUC	0.6863 ± 0.0192	0.6849 ± 0.0208	0.6575 ± 0.0264	0.6862 ± 0.0222	0.6426 ± 0.0236	0.9691 ± 0.0062	0.8869 ± 0.0134	0.9763 ± 0.0046


In general, XGBoost models show slightly better metrics than AdaBoost ones

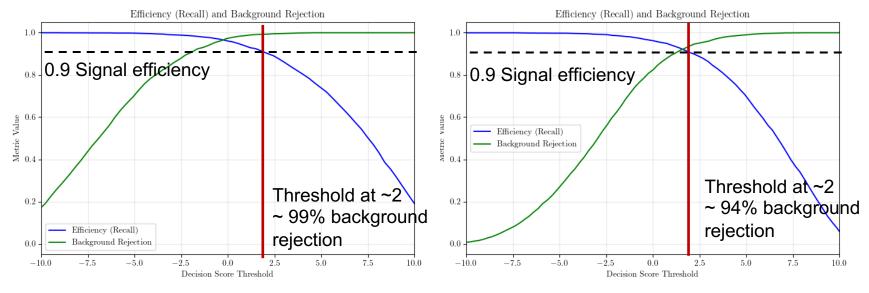

XGBoost model trained with the Mixed features set is the best performing method



Validation on the 2023 dataset

We validate the models performance on a time-wise distinct dataset of 1 year (2023):

ightarrow All the models perform slightly worse than on the regular validation dataset

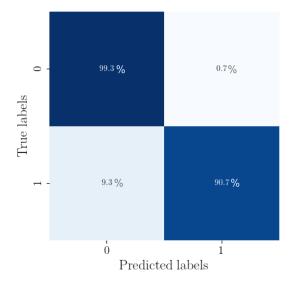


Validation 2015-2018 dataset

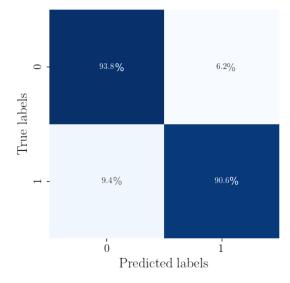
Validation on the 2023 dataset

We validate the models performance on a time-wise distinct dataset of 1 year (2023):

ightarrow All the models perform slightly worse than on the regular validation dataset



Validation 2015-2018 dataset


Validation on the 2023 dataset

We validate the models performance on a time-wise distinct dataset of 1 year (2023):

 \rightarrow All the models perform slightly worse than on the regular validation dataset

Validation 2015-2018 dataset

Validation 2023 dataset ³⁹

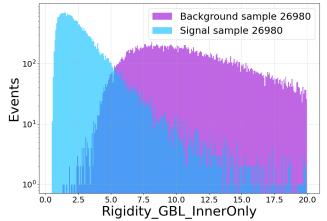
Conclusions

- We build a charge confusion estimator to reject the background events with wrongly reconstructed charge sign
- We use different methods to select features capable of discriminating between background and signal events
- We check for possible data leakages coming from rigidity dependent features using statistical test (e.g. KS) and visual inspection
- Features passing Kolmogorov-Smirnov test lead to poor performances in the BDT models trained with them
- The BDT trained using XGBoost with 'Mixed' features set leads to the best perfomances
- → All the models perform slightly worse in the validation on the 2023 dataset

Open questions

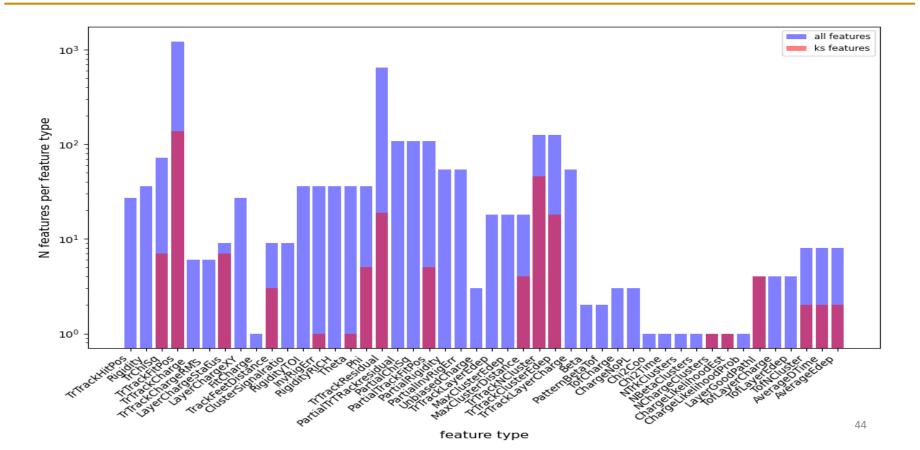
- Features passing Kolmogorov-Smirnov test lead to poor performances in the BDT models trained with them
- \rightarrow KS test is too much conservative?
- Check set of features passing the other two tests
- Enlarge dataset releasing requirement on beta ToF (beta_ToF < 0.9)
- Find another way of assessing the rigidity dependence

- → All the models perform slightly worse in the validation on the 2023 dataset
- → The model is not generalizing?
- Check generalization capabilities of the models on another dataset of one year
- Cross-check perfomances of the Bologna dataset with Francesco's ntuples

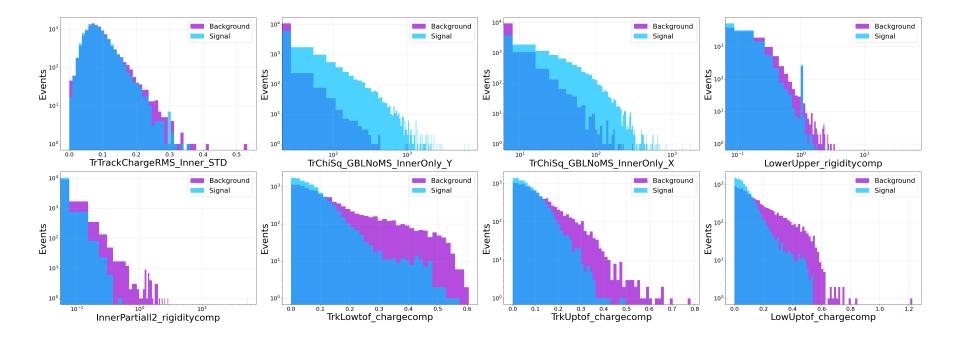

BACK UP

Dataset without beta requirements

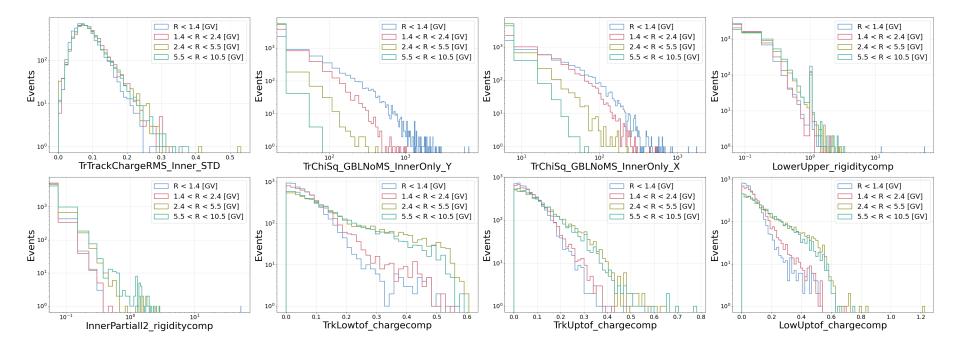
Rigidity distributions now overlap more.


Number of features passing the tests:

- Kolmogorov Smirnov test: 450
- Kruskal-Wallis: 715
- Spearman correlation: 932

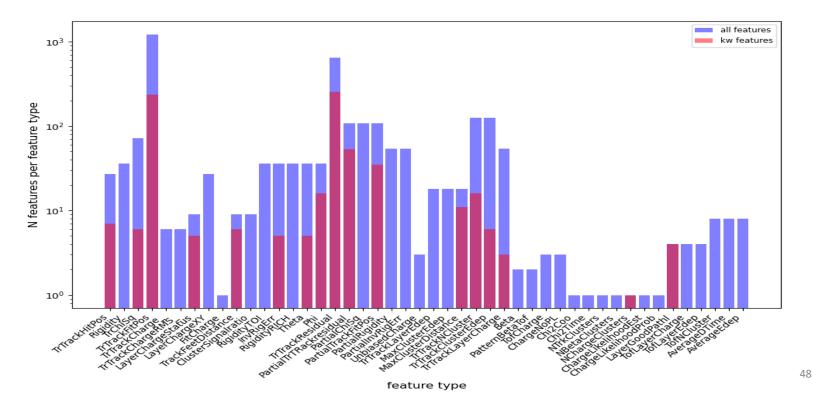


- Kolmogorov Smirnov (KS) is the more conservative
- The KS features seem to be independent of rigidity from visual inspection
- More features pass the test but they still don't seem to be very discriminative


Features per type -KS set

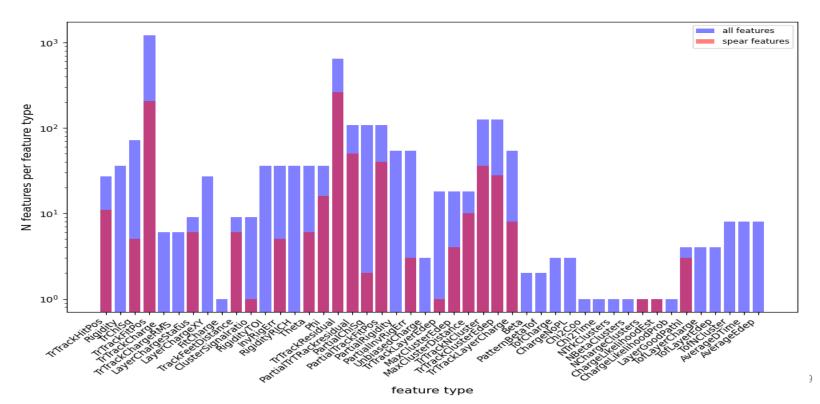
Physics Driven

Physics Driven


Bologna features

- N° 1 ChisquareX (IT)
- N°7 PartialR asymmetries (L2-L8) -> Partial R asymmetry_i = $\frac{PartialR_i R_{rec}}{r}$
- N°7 NCluster (IT), Side X, 1mm (L2–L8)
- N°7 NCluster (IT), Side X, 1cm from Track (L2-L8)
- N°7 NCluster (IT), Side X, 2cm from Track (L2-L8)
- N°7 NCluster (IT), Side Y, 1mm (L2-L8)
- N°7 NCluster (IT), Side Y, 1cm from Track (L2-L8)
- N°7 NCluster (IT), Side Y, 2cm from Track (L2-L8)
- NTotalCluster (IT), SideX, 1mm (sum on L2-L8)
- NTotalCluster (IT), SideX, 1cm (sum on L2-L8)
- NTotalCluster (IT), SideX, 2cm (sum on L2-L8)
- NTotalCluster (IT), SideY, 1mm (sum on L2-L8)
- NTotalCluster (IT), SideY, 1cm (sum on L2-L8)
- NTotalCluster (IT), SideY, 2cm (sum on L2-L8)

Rrec


Features per type - kw set

Features considered: 3067 features from Tracker and ToF detectors

Features per type – spearman set

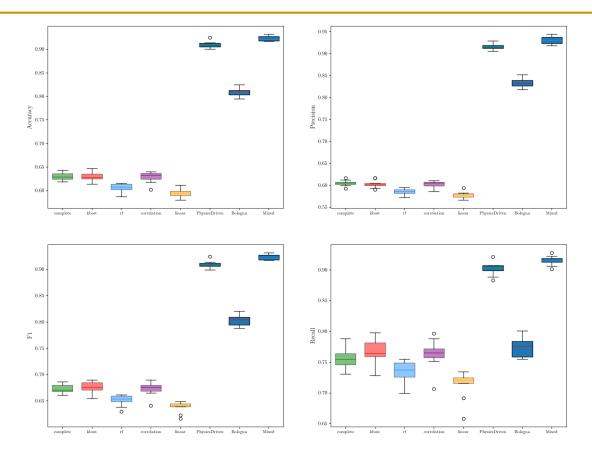
Features considered: 3067 features from Tracker and ToF detectors

Performance metrics - XGBoost

Metrics	complete	kbest	rf	correlation	linear	PhysicsDriven	Bologna	Mixed
Accuracy	0.6196 ± 0.0182	0.6146 ± 0.0134	0.6032 ± 0.0166	0.6232 ± 0.0274	0.5907 ± 0.0202	0.9188 ± 0.0108	0.9002 ± 0.0146	0.9613 ± 0.0066
Precision	0.61 ± 0.015	0.6012 ± 0.0088	0.5936 ± 0.0134	0.6123 ± 0.023	0.581 ± 0.017	0.9218 ± 0.022	0.9087 ± 0.016	0.9643 ± 0.0086
Recall	0.6706 ± 0.0386	0.688 ± 0.04	0.663 ± 0.0346	0.679 ± 0.0524	0.6604 ± 0.0384	0.916 ± 0.013	0.8905 ± 0.0164	0.9583 ± 0.0126
F1-Score	0.6388 ± 0.0228	0.6416 ± 0.021	0.6263 ± 0.0208	0.6437 ± 0.0324	0.6181 ± 0.024	0.9188 ± 0.01	0.8995 ± 0.0148	0.9613 ± 0.0068
ROC-AUC	0.6783 ± 0.0232	0.6671 ± 0.0238	0.6506 ± 0.023	0.6808 ± 0.028	0.6405 ± 0.0194	0.9758 ± 0.0052	0.9665 ± 0.0076	0.9938 ± 0.0024

Metrics	complete	kbest	rf	correlation	linear	PhysicsDriven	Bologna	Mixed
Accuracy	0,6145	0,6148	0,5948	0,6217	0,5925	0,917	0,8994	0,9673
Precision	0,6167	0,6178	0,597	0,6239	0,5949	0,917	0,8996	0,9674
Recall	0,6145	0,6148	0,5948	0,6217	0,5925	0,917	0,8994	0,9673
F1-Score	0,6132	0,6129	0,593	0,6204	0,5906	0,917	0,8994	0,9673
ROC-AUC	0,615	0,6154	0,5953	0,6222	0,5931	0,917	0,8994	0,9672

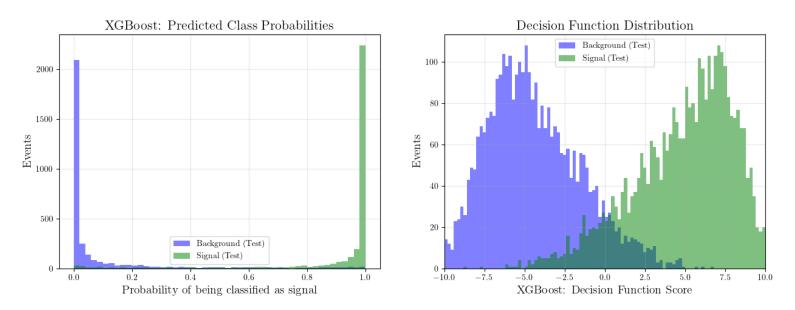
Metrics	complete	kbest	rf	correlation	linear	PhysicsDriven	Bologna	Mixed
Accuracy	0,5498	0,5419	0,5014	0,5142	0,5873	0,8837	0,8149	0,8934
Precision	0,5593	0,5901	0,5242	0,5856	0,5897	0,8851	0,8174	0,9012
Recall	0,5498	0,5419	0,5014	0,5142	0,5873	0,8837	0,8149	0,8934
F1-Score	0,5311	0,4713	0,3481	0,386	0,5845	0,8836	0,8145	0,8928
ROC-AUC	0,5498	0,5419	0,5014	0,5142	0,5873	0,8837	0,8149	0,8934


Performance metrics - AdaBoost

Metrics	complete	kbest	rf	correlation	linear	PhysicsDriven	Bologna	Mixed
Accuracy	0.6299 ± 0.0148	0.6293 ± 0.0206	0.6059 ± 0.0172	0.6284 ± 0.0222	0.5943 ± 0.0168	0.9093 ± 0.0134	0.809 ± 0.0168	0.9227 ± 0.0108
Precision	0.6048 ± 0.0126	0.6025 ± 0.016	0.5856 ± 0.013	0.6023 ± 0.015	0.5775 ± 0.015	0.9156 ± 0.0154	0.8331 ± 0.0184	0.9301 ± 0.017
Recall	0.7575 ± 0.033	0.7678 ± 0.0388	0.7336 ± 0.0354	0.763 ± 0.046	0.7133 ± 0.0428	0.9024 ± 0.0204	0.7746 ± 0.032	0.9149 ± 0.0144
F1-Score	0.6725 ± 0.016	0.6751 ± 0.0216	0.6512 ± 0.0198	0.6731 ± 0.026	0.6381 ± 0.0196	0.9089 ± 0.0138	0.8027 ± 0.0196	0.9224 ± 0.0106
ROC-AUC	0.6863 ± 0.0192	0.6849 ± 0.0208	0.6575 ± 0.0264	0.6862 ± 0.0222	0.6426 ± 0.0236	0.9691 ± 0.0062	0.8869 ± 0.0134	0.9763 ± 0.0046

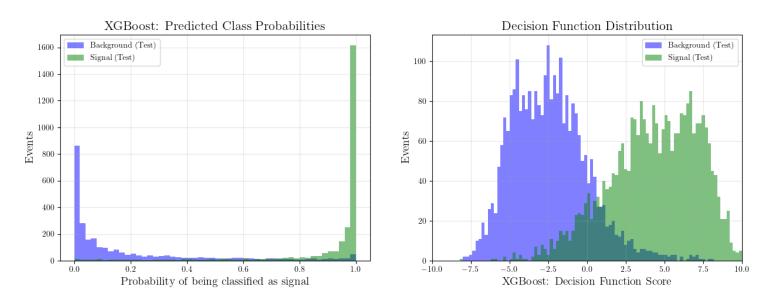
Metrics	complete	kbest	rf	correlation	linear	PhysicsDriven	Bologna	Mixed
Accuracy	0,6311	0,6287	0,6122	0,6278	0,5952	0,9049	0,8063	0,9226
Precision	0,6419	0,6413	0,6214	0,6401	0,6017	0,9049	0,8077	0,9228
Recall	0,6311	0,6287	0,6122	0,6278	0,5952	0,9049	0,8063	0,9226
F1-Score	0,6246	0,621	0,6055	0,6202	0,5896	0,9049	0,806	0,9226
ROC-AUC	0,6321	0,6298	0,6132	0,6289	0,5962	0,9049	0,806	0,9226

Metrics	complete	kbest	rf	correlation	linear	PhysicsDriven	Bologna	Mixed
Accuracy	0,5185	0,524	0,5009	0,5172	0,5925	0,8756	0,7323	0,8758
Precision	0,605	0,6173	0,7502	0,6146	0,6001	0,8797	0,7375	0,8807
Recall	0,5185	0,524	0,5009	0,5172	0,5925	0,8756	0,7323	0,8758
F1-Score	0,3935	0,4059	0,3353	0,387	0,5846	0,8753	0,7308	0,8754
ROC-AUC	0,5185	0,524	0,5009	0,5172	0,5925	0,8756	0,7323	0,8758


Performance metrics - AdaBoost

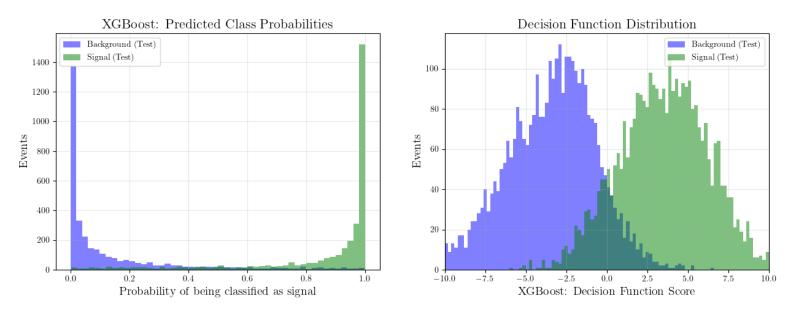
Model XGBoost

Feature set: Groningen physics driven

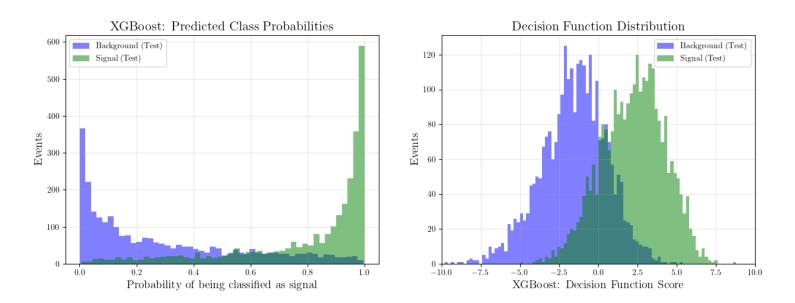

Dataset: Validation

Model XGBoost

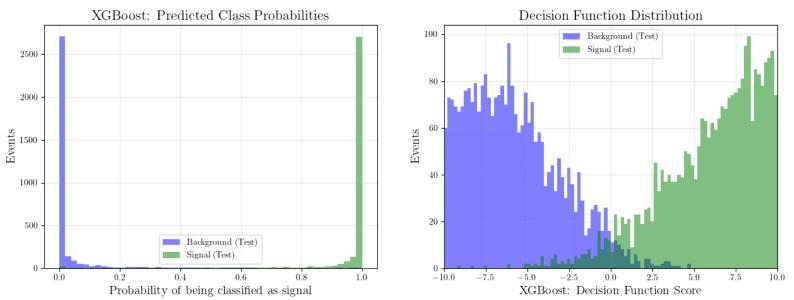
Feature set: Groningen physics driven


Dataset : Validation 2023

Model XGBoost

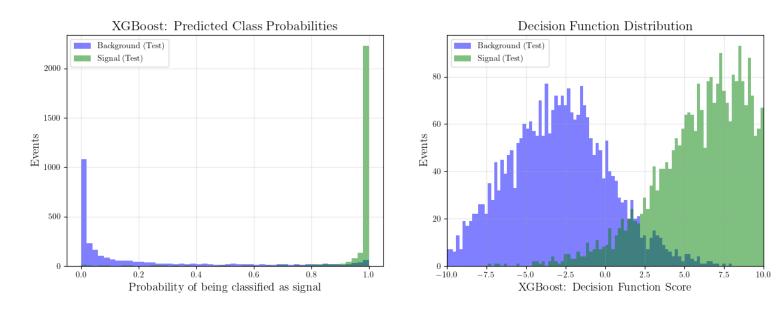

Feature set: Bologna physics driven

Dataset: validation

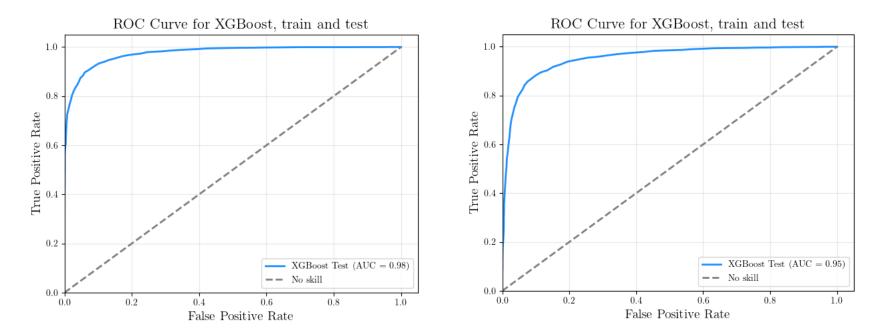

Model XGBoost

Feature set: Bologna physics driven Dataset: validation 2023

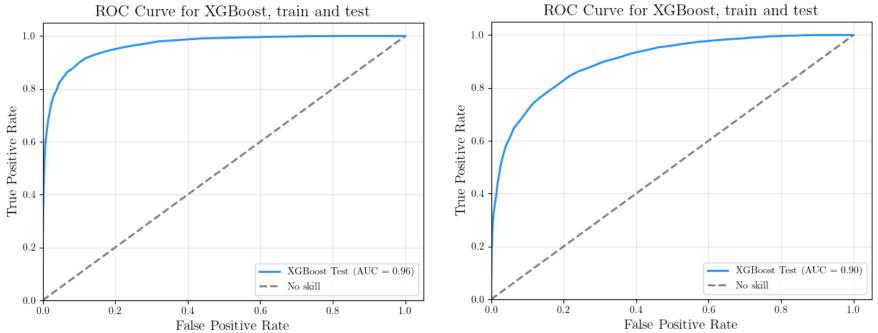
Model XGBoost


Feature set: Mixed physics driven Dataset: validation

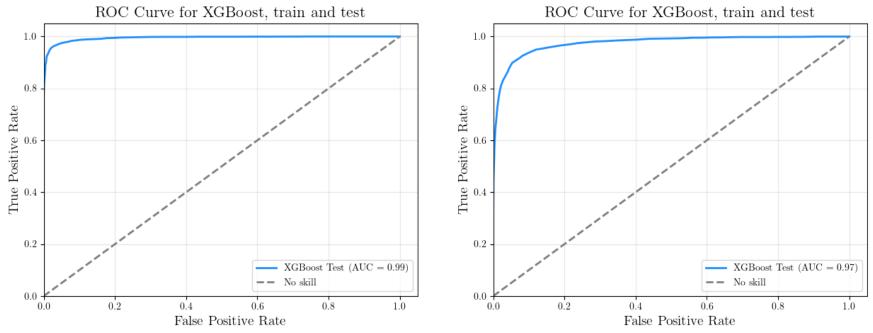
Model XGBoost


Feature set: Mixed physics driven

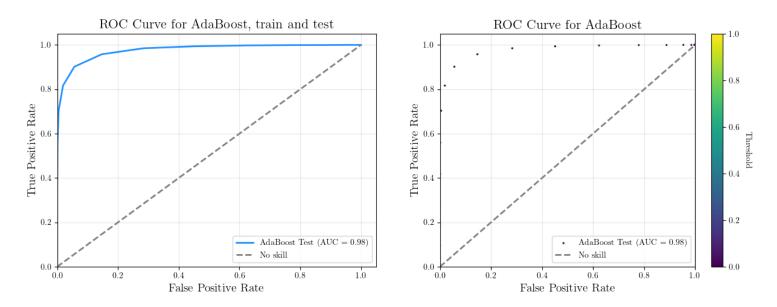
Dataset: validation 2023


ROC curve – XGBoost, Groningen set

Validation 2015-2018 dataset

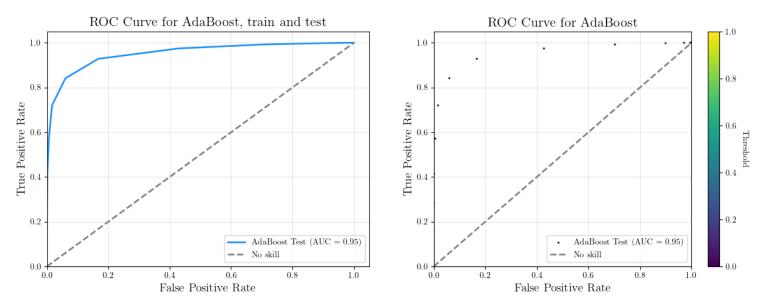

ROC curve - XGBoost, Bologna set

Validation 2015-2018 dataset


ROC curve – XGBoost, Mixed set

Validation 2015-2018 dataset

ROC curve


Model AdaBoost Feature set: Mixed physics driven Dataset: Validation

ROC curve

Model AdaBoost Feature set: Mixed physics driven

Dataset: Validation 2023

