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Introduction

• Large 𝐻𝑒 background

• 𝐻𝑒 are rare events, as a rule of thumb 1 ∶ 109 𝐻𝑒

• No signal model available, only 4𝐻𝑒 Monte Carlo and ISS-data. 
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Goals:

1) Study 𝐻𝑒 background and find charge confusion 
sources

2) Develop tools to reduce 𝐻𝑒 contributions.
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Strategy :
G1)
• Use 𝐻𝑒 BC1236 Monte Carlo samples (L1-focused and L1-L9 focused)
• Select “well reconstructed” 4𝐻𝑒 events and study the charged confused events

G2)   
• Train a classifier (on MC) to recognise different charge confusion sources
• Search for “outliers” in data using an anomaly detection technique.
• Combine the machine learning techniques

Goals:

1) Study 𝐻𝑒 background and find charge confusion sources

2) Develop tools to reduce 𝐻𝑒 contributions.



Study 𝐻𝑒 background and find charge 
confusion sources.

11/27/2024 Francesco Rossi - University of Trento 4



11/27/2024 Francesco Rossi - University of Trento 5

Tracker fiducial volume cut:
L1: |R|<62cm, |Y|<47cm
L2: |R|<62cm, |Y|<40cm
L3: |R|<46cm, |Y|<44cm
L4: |R|<46cm, |Y|<44cm
L5: |R|<46cm, |Y|<36cm
L6: |R|<46cm, |Y|<36cm
L7: |R|<46cm, |Y|<44cm
L8: |R|<46cm, |Y|<44cm

IsPhysicsTrigger

𝛽 clusters ≥  4
𝛽 > 0 
𝜒𝐶𝑂𝑂

2 < 4

Track number ≥  1
track pattern L1&L2&(L3|L4)&(L5|L6)&(L7|L8) (≥ 5)
 
charge YJ (inner) ∈ [1.7, 2.4]
charge YJ (L1) ∈ [1.6, 3.0]
Inner fiducial volume
L1 fiducial volume
𝜒𝑌

2 < 10

charge UTOF ∈ 1.5, 3.0
charge LTOF  ≥ 1.5

Inner rigidities signs

Monte carlo selection (He B1236 L1-focused and L1-L9 focused)

UH              = Rig. [UH-inner]
LH               = Rig. [LH-inner]
Inner          = Rig. [inner]

If( 𝑅𝑖𝑛𝑛𝑒𝑟 < 0) → (UH < 0, LH < 0) 

TRIGGER

𝜷 

TOF charge

TRK

TRACK

RIGIDITY



Sources of charged confused events

Using He Monte Carlo B1236 L1-focused and L1-L9 focused, and selecting the reconstructed 
events with 𝐑 < 𝟎, we identified three sources  of charge confusion
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Hadronic inelastic Hadronic elastic *Spillover

* Large angle scattering



Sources of charged confused events
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Spillover

Silicon tracker finite resolution 

Hadronic inelastic Hadronic elastic *

* Large angle scattering

Using He Monte Carlo B1236 L1-focused and L1-L9 focused, and selecting the reconstructed 
events with 𝐑 < 𝟎, we identified three sources  of charge confusion



Sources of charged confused events
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Spillover

Interactions within the detector

Hadronic inelastic Hadronic elastic *

* Large angle scattering

Using He Monte Carlo B1236 L1-focused and L1-L9 focused, and selecting the reconstructed 
events with 𝐑 < 𝟎, we identified three sources  of charge confusion



Sources of charged confused events
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Spillover

For each source, we select a sample to be used in the training of a 
classifier

Hadronic inelastic Hadronic elastic *

* Large angle scattering

Using He Monte Carlo B1236 L1-focused and L1-L9 focused, and selecting the reconstructed 
events with 𝐑 < 𝟎, we identified three sources  of charge confusion



Sources of charged confused events
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Spillover

Search in the secondaries list looking for inelastic interaction products 
inside the inner tracker

Hadronic inelastic Hadronic elastic *

* Large angle scattering

Using He Monte Carlo B1236 L1-focused and B1236 L1-L9 focused, and selecting the reconstructed 
events with 𝐑 < 𝟎, we identified three sources  of charge confusion



Sources of charged confused events
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Spillover

Search in the secondaries list looking for secondaries 
produced inside the inner tracker (HasSecondary)

Events are not Had. Inel. Interactions and primary 
nuclei reaches L2
Propagation of two tracks: 𝑅𝑡𝑟𝑢𝑒 𝐿2  and 𝑅𝑖𝑛𝑛𝑒𝑟 < 0
Build two 𝜒2 comparing y coordinate with MC true info on each
layer. 

Hadronic inelastic Hadronic elastic *

Using He Monte Carlo B1236 L1-focused and B1236 L1-L9 focused, and selecting the reconstructed 
events with 𝐑 < 𝟎, we identified three sources  of charge confusion

𝜒𝑅𝑡𝑟𝑢𝑒
2

𝜒𝑅𝑖𝑛𝑛𝑒𝑟
2 ≥ 1.05 → El. scat.

0.95 ≥
𝜒𝑅𝑡𝑟𝑢𝑒

2

𝜒𝑅𝑖𝑛𝑛𝑒𝑟
2 → HasSecondary ? Other ∶ Spillover

0.95 <
𝜒𝑅𝑡𝑟𝑢𝑒

2

𝜒𝑅𝑖𝑛𝑛𝑒𝑟
2 < 1.05 → HasSecondary ? Other ∶ Spillover
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Tools to reduce 𝐻𝑒 background
1
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(supervised learning)



A Fully Connected Neural Network (FCNN) classifier to 
characterise the 𝑯𝒆 background

• Use the classes previously defined as labels for supervised training
• The Monte Carlo has been weighted using published 7.5 𝐻𝑒 flux.
• Sample composition (14 % Spillover, 2.5% El. Scat., 53% Had. Inel., 30% Other)
• Training sample (𝟏. 𝟕𝟖 ⋅ 𝟏𝟎𝟓) and validation sample (𝟎. 𝟕𝟔 ⋅ 𝟏𝟎𝟓) events
• Choose variables with good data-MC agreement as input features:
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Anti-Coincidence system:

• ACC counters

Time Of Flight:

• TOF on-time clusters (× 4)

Inner Tracker:

• TRK min feet-distance   (× 4)
• TRK Y cluster    (× 7)
• TRK Max cluster distance  (× 7)
• TRK track hit |Y|   (× 7)
• TRK NormEdep2Y* (× 7)

∗NormEdep2Y =
𝑇𝑟𝑎𝑐𝑘 𝐸𝑑𝑒𝑝 𝑌

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐸𝑑𝑒𝑝 𝑌 2 𝑐𝑚 𝑓𝑟𝑜𝑚 𝑇𝑟𝑎𝑐𝑘 ℎ𝑖𝑡 + 𝑇𝑟𝑎𝑐𝑘 𝐸𝑑𝑒𝑝𝑌

Total number of input features = 37



Fully Connected Neural Network (FCNN) structure

• FCNN structure:
• PyTorch
• Four linear layers: [37, 15, 10, 4]
• Activation functions: ReLu, Softmax (last layer)

• FCNN hyperparameters:
• Optimizer: Adam
• Learning rate: 5.0 ⋅ 10−4

• Batch size:       7.0 ⋅ 102

• Drop-out:          1.0 ⋅ 10−1

• Loss function: Cross Entropy
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𝟑𝟕 optimized 
input features

3 hidden layer with 15 
nodes

FCNN output

Training sample (𝟏. 𝟕𝟖 ⋅ 𝟏𝟎𝟓) and 
validation sample (𝟎. 𝟕𝟔 ⋅ 𝟏𝟎𝟓) 

are unbalanced



Discriminants

• The network returns a vector of four elements.

• Each element corresponds to the probability that the current event is belongs to one of the four 
classes: 

FCNN output= 𝑝𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟 , 𝑝𝐻𝑎𝑑.𝐼𝑛𝑒𝑙 , 𝑝𝐸𝑙.𝑆𝑐𝑎𝑡., 𝑝𝑂𝑡ℎ𝑒𝑟

• The fraction of each class is defined as: 𝑓𝐻𝑎𝑑.𝑖𝑛𝑒𝑙. =
#𝐻𝑎𝑑.𝑖𝑛𝑒𝑙.

#𝑆𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟+#𝐻𝑎𝑑.𝐼𝑛𝑒𝑙+#𝐸𝑙.𝑠𝑐𝑎𝑡.+ #𝑂𝑡ℎ𝑒𝑟

• The discriminant is defined as 

𝐷𝐻𝑎𝑑. 𝑖𝑛𝑒𝑙 = log10

𝑝𝐻𝑎𝑑.𝑖𝑛𝑒𝑙

𝑓𝑆𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟 ⋅ 𝑝𝑆𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟 + 𝑓𝐸𝑙.𝑠𝑐𝑎𝑡. ⋅ 𝑝𝐸𝑙.𝑠𝑐𝑎𝑡. + 𝑓𝑂𝑡ℎ𝑒𝑟 ⋅ 𝑝𝑂𝑡ℎ𝑒𝑟

• Applying the Monte Carlo selection (+ RTI cuts and NO cutoff) to data: 𝟏. 𝟐𝟓 ⋅ 𝟏𝟎𝟓 events with 
𝑹𝒊𝒏𝒏𝒆𝒓 < 𝟎
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Discriminants for spillover and Had. inel.
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𝐷𝑆𝑝𝑖𝑙𝑙 = log10

𝑝𝑆𝑝𝑖𝑙𝑙

𝑓𝐼𝑛𝑒𝑙 ⋅ 𝑝𝐼𝑛𝑒𝑙. + 𝑓𝐸𝑙. ⋅ 𝑝𝐸𝑙 + 𝑓𝑂𝑡 ⋅ 𝑝𝑂𝑡
𝐷𝐸𝑙. = log10

𝑝𝐼𝑛𝑒𝑙.

𝑓𝑆𝑝𝑖𝑙𝑙 ⋅ 𝑝𝑆𝑝𝑖𝑙𝑙 + 𝑓𝐸𝑙 ⋅ 𝑝𝐸𝑙 + 𝑓𝑂𝑡 ⋅ 𝑝𝑂𝑡

ISS-data from 06.11.2011 to 11.11.2023



Discriminant for el. scat. and the fourth class
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𝐷𝐸𝑙 = log10

𝑝𝐸𝑙.

𝑓𝐼𝑛𝑒𝑙 ⋅ 𝑝𝐼𝑛𝑒𝑙 + 𝑓𝑆𝑝𝑖𝑙𝑙 ⋅ 𝑝𝑆𝑝𝑖𝑙𝑙 + 𝑓𝑂𝑡 ⋅ 𝑝𝑂𝑡
𝐷𝑂𝑡 = log10

𝑝𝑂𝑡

𝑓𝐼𝑛𝑒𝑙 ⋅ 𝑝𝐼𝑛𝑒𝑙 + 𝑓𝑆𝑝𝑖𝑙𝑙 ⋅ 𝑝𝑆𝑝𝑖𝑙𝑙 + 𝑓𝐸𝑙 ⋅ 𝑝𝐸𝑙

ISS-data from 06.11.2011 to 11.11.2023
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𝐷𝐸𝑙. = log10

𝑝𝐼𝑛𝑒𝑙.

𝑓𝑆𝑝𝑖𝑙𝑙 ⋅ 𝑝𝑆𝑝𝑖𝑙𝑙 + 𝑓𝐸𝑙 ⋅ 𝑝𝐸𝑙 + 𝑓𝑂𝑡 ⋅ 𝑝𝑂𝑡

ISS-data from 06.11.2011 to 11.11.2023



Tools to reduce 𝐻𝑒 background
2
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(“unsupervised” learning)



Unsupervised learning and autoencoders (AEs)

Why do we need unsupervised learning?

• Unsupervised learning does not need a signal 
model, it is model-independent. 

Why autoencoders?

• The network’s goal is to reproduce the input, the 
loss function is the Mean Square Error between the 
input (𝑿) and output (𝒀) of the AE:

𝐿 =
𝑿 − 𝒀 2

𝑁𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠

• Since signal events are rare, the network should 
reconstruct them poorly. 
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Encoder Decoder



AEs structure and training
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Structure:

• [41, 10, 5, 10, 41] (PyTorch)
• Activation functions: ReLu, sigmoid (last layer)
• Optimizer: Adam
• Learning rate: 1.0 ⋅ 10−4

• Batch size:       1.0 ⋅ 102

• Loss function: MSE

Training:

• Training sample (𝟎. 𝟔𝟐 ⋅ 𝟏𝟎𝟓) and validation 
sample (𝟎. 𝟔𝟐 ⋅ 𝟏𝟎𝟓) events

• The AE receives as input the 37 features 
previously described + the 4 FCNN discriminants

FCNN 
input 

features

Unsupervised AE

Supervised classifier

AE input 
features

AE 
output



Anomaly detection

• An anomaly is an event with a high reconstruction error

• The reconstruction error is evaluated using: 

MSE =
𝑿 − 𝒀 2

𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

• To have an anomaly score defined between [0,1], the 
tanh function is used:

Anomaly score = tanh(MSE)
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𝑿 = input 
𝒀 = AE’s output

ISS-data from 06.11.2011 to 11.11.2023



Anomaly score and MC migration matrix
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Anomaly score > 0.08 and MC migration matrix
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Anomaly score > 0.10 and MC migration matrix
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ISS-data from 06.11.2011 to 11.11.2023



Prospects

• Modify the propagator to take into account energy losses and multiple scattering.

• Investigate new input features to discriminate between spillover and elastic scattering.

• More studies on the rigidity dependence of the input variables.

• Optimize the FCNN classifier and the AE

• Checks on data outliers
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Conclusions

• Labelling charge confusion sources from the Monte Carlo simulation is possible.

• Irreducible background as spillover induces arbitrary choices. 

• Unsupervised learning can compensate for the absence of a signal model. 

• The combination of a classifier and anomaly detection technique seems promising.



Prospects

• Modify the propagator to take into account energy losses and multiple scattering.

• Investigate new input features to discriminate between spillover and elastic scattering.

• More studies on the rigidity dependence of the input variables.

• Optimize the FCNN classifier and the AE

• Checks on data outliers
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Conclusions

• Labelling charge confusion sources from the Monte Carlo simulation is possible.

• Irreducible background as spillover induces arbitrary choices. 

• Unsupervised learning can compensate for the absence of a signal model. 

• The combination of a classifier and anomaly detection technique seems promising.

Thank you for your attention!



Backup

Backup
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MC with large angle scattering flag

Elastic scattering Monte Carlo
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Selection
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Distribution of the scattering angle (𝑹 < 𝟎)
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(𝑹𝒊𝒏𝒏𝒆𝒓 < 𝟎) and elastic 
scattering inside the 
inner tracker

11/27/2024 Francesco Rossi - University of Trento 40

𝑅𝑔𝑒𝑛 ∈ [0, 50[

log10 𝑅𝑔𝑒𝑛 < 1.67
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𝑅𝑔𝑒𝑛 ∈ [50, 100[

log10 𝑅𝑔𝑒𝑛 < 2.0

(𝑹𝒊𝒏𝒏𝒆𝒓 < 𝟎) and elastic 
scattering inside the 
inner tracker
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𝑅𝑔𝑒𝑛 ∈ [100, 150[

log10 𝑅𝑔𝑒𝑛 < 2.18

(𝑹𝒊𝒏𝒏𝒆𝒓 < 𝟎) and elastic 
scattering inside the 
inner tracker
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𝑅𝑔𝑒𝑛 ∈ [150, 200[

log10 𝑅𝑔𝑒𝑛 < 2.30

(𝑹𝒊𝒏𝒏𝒆𝒓 < 𝟎) and elastic 
scattering inside the 
inner tracker
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(𝑹𝒊𝒏𝒏𝒆𝒓 < 𝟎) and elastic 
scattering inside the 
inner tracker



Distribution of the scattering angle (𝑹 > 𝟎)
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𝑅𝑔𝑒𝑛 ∈ [50, 100[

log10 𝑅𝑔𝑒𝑛 < 2.0

(𝑹𝒊𝒏𝒏𝒆𝒓 > 𝟎) and elastic 
scattering inside the 
inner tracker
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𝑅𝑔𝑒𝑛 ∈ [50, 100[

log10 𝑅𝑔𝑒𝑛 < 2.0

(𝑹𝒊𝒏𝒏𝒆𝒓 > 𝟎) and elastic 
scattering inside the 
inner tracker
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𝑅𝑔𝑒𝑛 ∈ [100, 150[

log10 𝑅𝑔𝑒𝑛 < 2.18

(𝑹𝒊𝒏𝒏𝒆𝒓 < 𝟎) and elastic 
scattering inside the 
inner tracker



11/27/2024 Francesco Rossi - University of Trento 49

𝑅𝑔𝑒𝑛 ∈ [150, 200[

log10 𝑅𝑔𝑒𝑛 < 2.30

(𝑹𝒊𝒏𝒏𝒆𝒓 < 𝟎) and elastic 
scattering inside the 
inner tracker
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(𝑹𝒊𝒏𝒏𝒆𝒓 < 𝟎) and elastic 
scattering inside the 
inner tracker



MC and ISS-data comparison

Data-Monte Carlo 
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A Fully Connected Neural Network (FCNN) classifier to 
characterise the 𝑯𝒆 background

• Use the classes previously defined as labels for supervised training
• The Monte Carlo has been weighted using published 7.5 𝐻𝑒 flux.
• Sample composition (14 % Spillover, 2.5% El. Scat., 53% Had. Inel., 30% Other)
• Training sample (𝟏. 𝟕𝟖 ⋅ 𝟏𝟎𝟓) and validation sample (𝟎. 𝟕𝟔 ⋅ 𝟏𝟎𝟓) events
• Choose variables with good data-MC agreement as input features:
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Anti-Coincidence system:

• ACC counters

Time Of Flight:

• TOF on-time clusters (× 4)

Inner Tracker:

• TRK min feet-distance   (× 4)
• TRK Y cluster    (× 7)
• TRK Max cluster distance  (× 7)
• TRK track hit |Y|   (× 7)
• TRK NormEdep2Y* (× 7)

∗NormEdep2Y =
𝑇𝑟𝑎𝑐𝑘 𝐸𝑑𝑒𝑝 𝑌

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐸𝑑𝑒𝑝 𝑌 2 𝑐𝑚 𝑓𝑟𝑜𝑚 𝑇𝑟𝑎𝑐𝑘 ℎ𝑖𝑡 + 𝑇𝑟𝑎𝑐𝑘 𝐸𝑑𝑒𝑝𝑌

Total number of input features = 37
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FCNN input features (old selection)

Input features
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