## Machine learning techniques for *He* research in cosmic rays

Francesco Rossi



## Introduction

- Large *He* background
- $\overline{He}$  are rare events, as a rule of thumb  $1:10^9$  He
- No signal model available, only  ${}^{4}He$  Monte Carlo and ISS-data.

## Goals:

- 1) Study *He* background and find charge confusion sources
- 2) Develop tools to reduce *He* contributions.

## Goals:

- 1) Study *He* background and find charge confusion sources
- 2) Develop tools to reduce *He* contributions.

## Strategy :

G1)

- Use *He* BC1236 Monte Carlo samples (L1-focused and L1-L9 focused)
- Select "well reconstructed"  ${}^{4}He$  events and study the charged confused events

#### G2)

- Train a classifier (on MC) to recognise different charge confusion sources
- Search for "outliers" in data using an anomaly detection technique.
- Combine the machine learning techniques

# Study *He* background and find charge confusion sources.

### Monte carlo selection (He B1236 L1-focused and L1-L9 focused)



Using He Monte Carlo B1236 L1-focused and L1-L9 focused, and selecting the reconstructed events with R < 0, we identified three sources of charge confusion







### Silicon tracker finite resolution



Using He Monte Carlo B1236 L1-focused and L1-L9 focused, and selecting the reconstructed events with R < 0, we identified three sources of charge confusion



### Interactions within the detector



Using He Monte Carlo B1236 L1-focused and L1-L9 focused, and selecting the reconstructed events with R < 0, we identified three sources of charge confusion



## For each source, we select a sample to be used in the training of a classifier



Using He Monte Carlo B1236 L1-focused and B1236 L1-L9 focused, and selecting the reconstructed events with R < 0, we identified three sources of charge confusion



Search in the secondaries list looking for inelastic interaction products inside the inner tracker





Search in the secondaries list looking for secondaries produced inside the inner tracker (HasSecondary)

Events are not Had. Inel. Interactions and primary nuclei reaches L2

Propagation of two tracks:  $R_{true}(L2)$  and  $R_{inner}(<0)$ Build two  $\chi^2$  comparing y coordinate with MC true info on each layer.

$$\frac{\chi_{R_{true}}^{2}}{\chi_{R_{inner}}^{2}} \geq 1.05 \quad \rightarrow \text{El. scat.}$$

$$0.95 \geq \frac{\chi_{R_{true}}^{2}}{\chi_{R_{inner}}^{2}} \quad \rightarrow (\text{HasSecondary}) ? \text{Other} : \text{Spillover}$$

$$0.95 < \frac{\chi_{R_{true}}^{2}}{\chi_{R_{inner}}^{2}} < 1.05 \rightarrow (\text{HasSecondary}) ? \text{Other} : \text{Spillover}$$

#### 11/27/2024

#### Francesco Rossi - University of Trento



#### R<sub>inner</sub> < 0 (elastic scattering within inner tracker)



 $\sigma_{hit}^2 = 15 \,\mu m$ 

N\_FlipProp\_bin\_(104.337868\_130.184189)\_xy



#### N\_FlipProp\_bin\_(104.337868\_130.184189)\_xy

#### R<sub>inner</sub> < 0 (elastic scattering within inner tracker)

N\_FlipProp\_bin\_(104.337868\_130.184189)\_xy



 $\sigma_{hit}^2 = 15 \,\mu\text{m}$ 

#### Francesco Rossi - University of Trento

N\_FlipProp\_bin\_(104.337868\_130.184189)\_xy



#### R<sub>inner</sub> < 0 (elastic scattering within inner tracker)

N\_FlipProp\_bin\_(104.337868\_130.184189)\_xy



 $\sigma_{hit}^2 = 15 \,\mu\mathrm{m}$ 



R<sub>inner</sub> < 0 (elastic scattering within inner tracker)



 $\sigma_{hit}^2 = 15 \,\mu m$ 

# Tools to reduce *He* background

(supervised learning)

11/27/2024

Francesco Rossi - University of Trento

## A Fully Connected Neural Network (FCNN) classifier to characterise the *He* background

- Use the classes previously defined as labels for supervised training
- The Monte Carlo has been weighted using published 7.5 *He* flux.
- Sample composition (14 % Spillover, 2.5% El. Scat., 53% Had. Inel., 30% Other)
- Training sample  $(1.78\cdot 10^5)$  and validation sample  $(0.76\cdot 10^5)$  events
- Choose variables with good data-MC agreement as input features:



 $Cluster L_{dep} = (2 cm) fom frack hill + frack L$ 

#### **Total** number of input features = 37

## Fully Connected Neural Network (FCNN) structure

- FCNN structure:
  - PyTorch
  - Four linear layers: [37, 15, 10, 4]
  - Activation functions: ReLu, Softmax (last layer)



- FCNN hyperparameters:
  - Optimizer: Adam
  - Learning rate:  $5.0 \cdot 10^{-4}$
  - Batch size:  $7.0 \cdot 10^2$
  - Drop-out:  $1.0 \cdot 10^{-1}$
  - Loss function: Cross Entropy

Training sample  $(1.78 \cdot 10^5)$  and validation sample  $(0.76 \cdot 10^5)$  are unbalanced



## **Discriminants**

- The network returns a vector of four elements.
- Each element corresponds to the probability that the current event is belongs to one of the four classes:

FCNN output= 
$$(p_{spillover}, p_{Had.Inel}, p_{El.Scat.}, p_{Other})$$

- The fraction of each class is defined as:  $f_{Had.inel.} = \frac{\#Had.inel.}{\#Spillover + \#Had.Inel + \#El.scat. + \#Other}$
- The discriminant is defined as

$$D_{Had.\,inel} = \log_{10} \left( \frac{p_{Had.inel}}{f_{Spillover} \cdot p_{Spillover} + f_{El.scat.} \cdot p_{El.scat.} + f_{Other} \cdot p_{Other}} \right)$$

• Applying the Monte Carlo selection (+ RTI cuts and NO cutoff) to data:  $1.25 \cdot 10^5$  events with  $R_{inner} < 0$ 

## Discriminants for spillover and Had. inel.





### Discriminant for el. scat. and the fourth class









#### Francesco Rossi - University of Trento

# Tools to reduce *He* background 2

("unsupervised" learning)

11/27/2024

Francesco Rossi - University of Trento

## Unsupervised learning and autoencoders (AEs)

Why do we need unsupervised learning?

• Unsupervised learning does not need a signal model, it is **model-independent**.

Why autoencoders?

• The network's goal is to reproduce the input, the loss function is the Mean Square Error between the input (*X*) and output (*Y*) of the AE:

$$L = \frac{(X - Y)^2}{N_{Features}}$$

• Since signal events are rare, the network should reconstruct them poorly.



## AEs structure and training

#### Structure:

- [41, 10, 5, 10, 41] (PyTorch)
- Activation functions: ReLu, sigmoid (last layer)
- Optimizer: Adam
- Learning rate:  $1.0 \cdot 10^{-4}$
- Batch size:  $1.0 \cdot 10^2$

#### Training:

- Training sample  $(0.62\cdot 10^5)$  and validation sample  $(0.62\cdot 10^5)$  events
- The AE receives as input the 37 features previously described + the 4 FCNN discriminants



#### 11/27/2024

### **Anomaly detection**

- An anomaly is an event with a high reconstruction error
- The reconstruction error is evaluated using:

$$MSE = \frac{(X - Y)^2}{N_{features}} \qquad \begin{array}{l} X = \text{input} \\ Y = AE's \text{ output} \end{array}$$

• To have an anomaly score defined between [0,1], the tanh function is used:





#### 11/27/2024

### Anomaly score and MC migration matrix



### Anomaly score > 0.08 and MC migration matrix



### Anomaly score > 0.10 and MC migration matrix





## Conclusions

- Labelling charge confusion sources from the Monte Carlo simulation is possible.
- Irreducible background as spillover induces arbitrary choices.
- Unsupervised learning can compensate for the absence of a signal model.
- The combination of a classifier and anomaly detection technique seems promising.

## Prospects

- Modify the propagator to take into account energy losses and multiple scattering.
- Investigate new input features to discriminate between spillover and elastic scattering.
- More studies on the rigidity dependence of the input variables.
- Optimize the FCNN classifier and the AE
- Checks on data outliers

## Conclusions

- Labelling charge confusion sources from the Monte Carlo simulation is possible.
- Irreducible background as spillover induces arbitrary choices.
- Unsupervised learning can compensate for the absence of a signal model.
- The combination of a classifier and anomaly detection technique seems promising.

## Prospects

- Modify the propagator to take into account energy losses and multiple scattering.
- Investigate new input features to discriminate between spillover and elastic scattering.
- More studies on the rigidity dependence of the input variables.
- Optimize the FCNN classifier and the AE
- Checks on data outliers

Thank you for your attention!

## Backup

11/27/2024

Francesco Rossi - University of Trento

## Elastic scattering Monte Carlo

Francesco Rossi - University of Trento

## Selection

#### Selezione comune attualmente usata

IsPhysicsTrigger β>0 TOF hits = 4Chi2Coo < 4Track number >= 1 charge YJ (inner) c [1.7, 2.4] Inner fiducial volume charge YJ (L1) € [1.6, 3.0] track pattern 5/8 (L1-inner)  $\chi_{Y}^{2} < 10$ charge (UTOF) € [1.5, 3.0] charge (LTOF) > 1.5  $(R_{UH}, R_{LH} < 0)$  oppure  $(R_{UH}, R_{LH} > 0)$ 

| NoCut                         | 15376772 | 1      | ٦ |
|-------------------------------|----------|--------|---|
| RTIGood                       | 15376772 | 1      | + |
| RTIIsInSAA(0)                 | 15376772 | 1      | + |
| RTILiveTimeFraction(0.5)      | 15376772 | 1      | + |
| IsPhysicsTrigger              | 7526862  | 0.4892 | T |
| BetaPos(0.2)                  | 6383353  | 0.4148 | T |
| NTOFBetaClusters(4)           | 5849648  | 0.3801 | 1 |
| BetaChi2Coo(4)                | 4476765  | 0.2907 | T |
| NTrTracks(1)                  | 4476765  | 0.2907 | + |
| HasGBLFitInner                | 4472418  | 0.2904 |   |
| ChargeInnerTrackerYJ(1.7,2.4) | 3905926  | 0.2535 |   |
| CheckFiducialInner            | 3311273  | 0.2149 |   |
| ChargeLayer1(1.6,3)           | 2997280  | 0.1946 | T |
| IsInsideL1Fiducial            | 2997274  | 0.1946 |   |
| CheckTrackPattern(5)          | 2680073  | 0.1740 |   |
| Chi2Y_GBL_InnerOnly(10)       | 2573763  | 0.1672 |   |
| ChargeUpperTof(1.5,3)         | 2550871  | 0.1657 |   |
| ChargeLowerTof(1.5,30)        | 2529516  | 0.1642 |   |
| HasGBLFitUHInner              | 2434282  | 0.1581 |   |
| HasGBLFitLHInner              | 2433791  | 0.1580 | T |
| SignUHandLH                   | 2379294  | 0.1545 | T |
| 0                             | 1        |        | 2 |

R<sub>inner</sub> < 0 \_\_\_\_\_ 696 eventi

11/27/2024

## Distribution of the scattering angle (R < 0)



## $(R_{inner} < 0)$ and elasti scattering inside the inner tracker

 $R_{gen} \in [0, 50[$  $\log_{10}(R_{gen}) < 1.67$ 



## $(R_{inner} < 0)$ and elastic scattering inside the inner tracker

## $R_{gen} \in [50, 100[$ $\log_{10}(R_{gen}) < 2.0$





## $(R_{inner} < 0)$ and elastic scattering inside the inner tracker

 $R_{gen} \in [150, 200[$  $\log_{10}(R_{gen}) < 2.30$ 



#### 11/27/2024

# $(R_{inner} < 0)$ and elastic scattering inside the inner tracker $<math>\sum_{i=1}^{2.5}$

MC elastic scattering momentum variation in module



## Distribution of the scattering angle (R > 0)



## $(R_{inner} > 0)$ and elastic scattering inside the inner tracker

 $R_{gen} \in [50, 100[$  $\log_{10}(R_{gen}) < 2.0$ 



11/27/2024

## $(R_{inner} > 0)$ and elastic scattering inside the inner tracker

 $R_{gen} \in [50, 100[$  $\log_{10}(R_{gen}) < 2.0$ 



## $(R_{inner} < 0)$ and elastic scattering inside the inner tracker

 $R_{gen} \in [100, 150[$  $\log_{10}(R_{gen}) < 2.18$ 



# $(R_{inner} < 0)$ and elasticscattering inside theinner tracker

 $R_{gen} \in [150, 200[ \log_{10}(R_{gen}) < 2.30]$ 



#### 11/27/2024



## Data-Monte Carlo

### A Fully Connected Neural Network (FCNN) classifier to characterise the *He* background

- Use the classes previously defined as labels for supervised training
- The Monte Carlo has been weighted using published 7.5 *He* flux.
- Sample composition (14 % Spillover, 2.5% El. Scat., 53% Had. Inel., 30% Other) •
- Training sample  $(1.78 \cdot 10^5)$  and validation sample  $(0.76 \cdot 10^5)$  events •
- Choose variables with good data-MC agreement as input features:



#### **Total** number of input features = 37

Francesco Rossi - University of Trento



Francesco Rossi







54



TRK MAX Cluster Distance from track on L 3 side Y



Francesco Rossi



TRK MAX Cluster Distance from track on L 7 side Y







Francesco Rossi



11/27/2024





Francesco Rossi







Francesco Rossi

59









## Input features