

KM3NeT @ Rome

Irene Di Palma & Carlo Nicolau on behalf of the group

December 12, 2024

Mastrodicasa RTDA Co-fund Sapienza

Alessandro Veutro PhD

Silvia Cel RTT

Multimessenger and Online activities

Prof. Irene Di Palma

Prof. Antonio Capone

Alexandru Tudorache CTER elettronico

Fabrizio Ameli Primo tecnologo

Electronics and Power

Carlo A. Nicolau Tecnologo

Massimo Mastrodicasa RTDA Co-fund Sapienza

Alessandro Veutro PhD

Multimessenger and Online activities

From KM3NeT4RR 2 units of personnel

Prof. Antonio Capone

Prof. Irene Di Palma

Fabrizio Ameli Primo tecnologo

Electronics and Power

Carlo A. Nicolau Tecnologo

Main activities of the RM1 electronics laboratory

Design, characterisation and test of the Instrumentation Control Electronics (ICE) board, located in the Junction Box. The ICE drives an Acoustic Beacon, and a Laser Beacon and receives data from a Hydrophone, synchronizing the 3 instruments to the detector timing distribution, through a White Rabbit link.

Main activities of the RM1 electronics laboratory

Design, characterisation and test of the power distribution and protection electronics for the junction box and protection electronics for the DU-base; design and implementation of the power electronics slow-control firmware (junction box and DU-base). Active continue contribution to the integration activities.

Integration activities of the group in Caserta

- No DU integration laboratory in Roma
- We profit from the Lab. and infrastructure provided by Caserta site
- So far two technicians (Antonio Girardi and Riccardo Lunadei)
 participated to the DU-phase1 integration
- One technician (Alexandru Tudorache) hired recently within PNRR funding joined the DU integration team
- Ready for other lines and/or new integration phases

Panoramic view of the laboratory before the upgrade

December 12, 2024

Preliminary reorganisation of space

Area mainly dedicated to testing and characterization activities for **high-speed electronics** (based on the White Rabbit protocol) and the development of future versions (10Gb White Rabbit), as well as a **workstation for the technician** hired with PNRR funding.

Area mainly dedicated to the rework and debugging of electronic boards.

Area mainly dedicated to testing, characterization, and hardware, embedded-software, and software development activities mainly related to **power electronics.**

IN = N

Area dedicated to **storage**, with an additional workspace.

Panoramic view of the new laboratory

False ceiling with heat pump conditioning and LED lightning.

Secondary glazing installed as an additional window layer to improve the thermal performance of a space by enhancing insulation.

Dedicated area for power electronics.

Power electronics workbench

- Programmable electronic
 DC-loads to simulate
 variable loads such as
 Detection Unit, Junction
 Boxes, ... in nominal and non nominal operating conditions
- Programmable high-voltage power supply units

Not shown in this picture:

- Multichannel programmable PC
 oscilloscope
- Differential voltage probes
- Current clamps
- Multi-point temperature monitoring system

Standard workbench equipment (low voltage multi-channel programmable power supply unit, programmable multimeter)

Laptop mainly dedicated to controlling the instrumentation and executing automated test procedures

Roma, 12 Dicembre 2024

Firmware development, electronic design, mechanical prototyping workbench

- Workstation for embeddedsoftware and software development, electronics design, mechanical prototype design
- Label printing system

Multifunctional mechanical prototype system: dual nozzle filament deposition modeling printer, numerically controlled mini-milling machine, laser engraver.

Not shown in this picture:

Resin 3D printer (for higher temperature resistant prints)

Fast-signal electronics workbench

Laptop mainly dedicated to controlling the instrumentation, data acquisition, and executing automated test procedures

Standard workbench equipment (low voltage multi-channel programmable power supply unit, programmable multimeter, programmable signal generator)

High-end, high speed, mixed signal multichannel oscilloscope

Not shown in this picture:

Vector Network Analyzer

KM3NeT Real Time Analysis System

Multi-messenger community

KM3NeT ARCA and ORCA

Annual KM3NeT4RR Meeting

Follow-up of external alerts received from the multi-messenger community and search for spatial and temporal coincidences

LOADING...

Sending of alerts when potentially interesting events are detected to trigger follow-ups

KM3NeT Real Time Analysis System

Supernova.

ARCA

shore station

Online Reconstruction and Classification

Real Time Analysis Dashboard

RTA dashboard provides an overview of running processes, Rabbit-MQ, resource usage etc. ARCA (ORCA) dashboards available at <u>https://antorcamm2.in2p3.fr:3001/dashboards</u> (<u>http://antorcamm2.in2p3.fr:3000/dashboards</u>)

Graph Neural Network (GNN) classifier

Score μ/ν between 0 and 1 to separate neutrinos from the atmospheric muon background

D No reconstruction output as input

KM3NeT Real Time Follow-Up of external triggers

Successful analysis					
tag ↑	scheduled	launched	exec_time_s	max_vms_MB	max_rss_MB
ARCA_GRB_755576606_1	2024-12-11 03:25:21.87 +0000	2024-12-11 03:25:41.323 +000	591	4261	647
ARCA_GW_S241210cw_1	2024-12-10 11:54:06.849 +000	2024-12-10 11:54:17.983 +000	2865	6791	4533
ARCA_GW_S241210fu_0	2024-12-10 12:11:06.64 +0000	2024-12-10 12:11:19.694 +0000	1634	6800	4537
ARCA_GW_S241210fu_1	2024-12-10 17:57:00.64 +0000	2024-12-10 17:57:50.3 +0000	1190	6825	4566
MeV_CCSN_1000494_0	2024-12-10 17:02:03 +0000 UTC	2024-12-10 17:02:45.385 +000	20.4	2642	323

Binned ON/OFF analysis method:

- → background estimation
- \rightarrow cut optimization
- \rightarrow flux limit computation

Pipelines currently in place:

- → Gamma Ray Bursts (GRBs)
- → High-energy transients
- → IceCube (IC) neutrinos
- → Gravitational Waves (GWs)
- → Fast Radio Bursts (FRBs)
- → μ Quasars
- → Core Collapse Supernovae (CCSNe)

+1d

+1d

+1d

+1d

Temporal windows for real time follow-ups

Selected alerts

Date

THANK YOU FOR THE ATTENTION

Annual KM3NeT4RR Meeting

December 12, 2024