(Anti)helium production in pp collisions at $\sqrt{s} = 13.6$ TeV

ALICE-ePIC meeting

27/11/2024

Giovanni Malfattore

University & INFN Bologna, Italy

Physics motivation

Detection of antideuteron and antihelium nuclei in cosmic rays has been suggested as possible **smoking gun** for dark matter **WIMPs**, χ ($m_{\chi} \sim$ few GeV – few TeV)

- Antinuclei produced by $\chi \overline{\chi}$ pair annihilation or χ decay in the galactic halo
- Low or no background from interactions of cosmic rays (CR) with interstellar matter (ISM)
- Actively being investigated by spacebased experiments as AMS-02 (ongoing) or GAPS (planned)

Anti-matter

Physics motivation

What needs to be characterised?

- **DM signal**: DM source and processes
- **Background:** secondary CR from pp, p-A collisions in space

"Ingredients":

- Antiproton production cross section constrained with measurements (e.g. LHCb, AMBER, ...)
- Propagation in the Galaxy and the heliosphere \rightarrow parameters constrained from CR measurements
- Antinucleus inelastic cross section to account for **absorption** by ISM
- Formation mechanism of antinuclei \rightarrow typically via coalescence

- Custom calibration of TPC response (necessary for |z| > 1)
- (Anti)helium-3 identification with both TPC and TPC+TOF detector, in $p_{\rm T} = (1.5, 5.0) \text{ GeV}/c$ range
 - **TPC PID**: signal extracted from $N\sigma_{TPC}$ (³He) via signal function integration
 - **TPC+TOF PID**: $N\sigma_{TPC}$ (³He) preselection and signal extracted from $\Delta m^2 = m^2_{TOF} m^2_{He}$ via bin counting
- Correction for p_T shift, acceptance, efficiency and primary fraction (helium only) and normalisation for the number of events
- Integration of the corrected spectra to extract p_T-integrated dN/dy and compared with theoretical values and Run 2 spectra

4

Event and track selection

• Datasets:

DATA

MC

- LHC22_pass4_highIR
 - LHC23k4f Anchored to LHC22o (pass4), GP
 - LHC23j6b Anchored to LHC22_pass4, w/(anti)(hyper)nuclei injection
- Event selection:

```
O2 Sel8 filterbit (TVX + TF + ITS ROF cuts) + |V_z| < 10 cm N_{ev} = 4.63 x 10<sup>11</sup>
```

• Track selection:

O2 isGlobalTrackWoDCA filterbit + ITSibHit > 1 + N_{ITS}^{CLS} \ge 6 + N_{TPC}^{CLS} > 120 + χ^2_{TPC} < 4 + χ^2_{ITS} < 36 + R_{TPC} \ge 0.8 + |DCA_{xy}| < 4 x 10⁻⁴ + 1.3 x 10⁻²/p_T + |DCA_z| < 0.5 cm + |\eta| < 0.8 + |y| < 0.5

TPC response calibration

• ALEPH-Bethe-Bloch parametrization

$$f(\beta\gamma) = \frac{P_1}{\beta^{P_4}} \left[P_2 - \beta^{P_4} - \ln\left(P_3 + \frac{1}{(\beta\gamma)^{P_5}}\right) \right]$$

Needed for (anti)helium-3 response

• After calibration, $< \mu N\sigma_{TPC} > \approx 0$ $< \sigma N\sigma_{TPC} > \approx 1$

TPC signal extraction

• N σ fit w/ counts f = Signal + Background pp, $\sqrt{s} = 13.6 \text{ TeV}$ 1.75 < p_ (GeV/c) < 2.00 Signal: AsymmGauss |y| < 0.5Signal fit ([®]He) 10 bkg $S(x; N, \mu, \sigma, n) \propto N \begin{cases} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right] & \text{for } x \le \mu + n\sigma \\ \exp\left[-n\left(\frac{x-\mu}{\sigma} - \frac{n}{2}\right)\right] & \text{for } x > \mu + n\sigma \end{cases}$ **Background**: 10 • ³He: AsymmGauss(d) + AsymmGauss(alpha) + Expo • ³He: AsymmGauss(d) + Expo Signal integrated in -2 2 8 0 4 6 $(-5\sigma + \mu, 5\sigma + \mu)$ $N\sigma_{TPC}(^{3}\overline{He})$

TPC+TOF signal extraction

- Preselection in $N\sigma_{TPC}(^{3}He) = (-5, 5)$
- Nsigma fit w/
 f = Signal + Background
 - Signal: AsymmGauss Background: Pol1
- Signal extracted in $(-5\sigma + \mu, 5\sigma + \mu)$ via bin counting

$p_{\rm T}$ -shift correction

$$f = Ae^{B+Cx} + D + Ex$$

- The parameters extracted from fit are used to recalibrate the $p_{\rm T}$ values for the (anti)helium candidates
 - The $p_{\rm T}$ —shift mean values after the calibration are centred around 0

After

Before

ALICE

Acceptance x efficiency correction

• Needed to account for the undetected and untracked particles

$$(A \times \epsilon)({}^{3}\text{He}) = \frac{\# \text{ rec. 3He, } |y| < 0.5}{\# \text{ gen. 3He, } |y| < 0.5}$$

- Estimated using the MC w/ injection Same cuts used for the data
- Used to correct TPC and TPC+TOF
 raw spectra

ALICE

Primary fraction correction (for helium)

- Needed to account for secondary helium contamination
- Estimation based on DCA_{xy} distribution fit
- Primary template from MC w/inj.
- Secondary template from GP MC
- Weak decay template from MC w/inj., scaled by w_{weak} (≈ 8.5 x 10⁻³)

$$w_{\text{weak}} = \frac{\mathrm{d}N/\mathrm{d}y(^{3}_{\Lambda}H)}{\mathrm{d}N/\mathrm{d}y(^{3}\mathrm{He})} \times \mathrm{B.R.}(^{3}_{\Lambda}\mathrm{H} \rightarrow^{3}\mathrm{He}\pi)$$

Primary fraction correction (for helium)

- Needed to account for secondary helium contamination
- Estimation based on DCA_{xy} distribution fit
- Primary template from MC w/inj.
- Secondary template from GP MC
- Weak decay template from MC w/inj., scaled by w_{weak} (≈ 8.5 x 10⁻³)

$$w_{\text{weak}} = \frac{\mathrm{d}N/\mathrm{d}y(^{3}_{\Lambda}H)}{\mathrm{d}N/\mathrm{d}y(^{3}\mathrm{He})} \times \mathrm{B.R.}(^{3}_{\Lambda}\mathrm{H} \rightarrow^{3}\mathrm{He}\pi)$$

Results - Corrected spectra

Average of TPC/TPC+TOF, fit w/ Lévy-Tsallis function

Results - Corrected spectra (helium)

Results - Corrected spectra (anti-helium)

Comparison w/ Run 2 pp \sqrt{s} = 13 TeV

•	
	ALICE

TYPE	SPECIES	ENERGY	<d<i>N/d<i>y</i>></d<i>	# σ wrt this work
This work Measured (Run3)	³ He	13.6 TeV	(2.98 ± 0.28 ± 0.75) x 10 ⁻⁷	/
This work Measured (Run 3)	³ He	13.6 TeV	(2.79 ± 0.25 ± 0.54) x 10 ⁻⁷	/
Measured (Run 2)	$\frac{{}^{3}\text{He} + {}^{3}\overline{\text{He}}}{2}$	13 TeV	(2.4 ± 0.3 ± 0.4) x 10 ⁻⁷	<1
Thermal-FIST, V = V_c	$\frac{{}^{3}\text{He} + {}^{3}\overline{\text{He}}}{2}$	13.6 TeV	2.76 x 10 ⁻⁷	< 1
Thermal-FIST, V = 1.6 V _c	$\frac{{}^{3}\text{He} + {}^{3}\overline{\text{He}}}{2}$	13.6 TeV	9.16 x 10 ⁻⁷	> 5

- Exciting preliminary results, compatible with both Run 2 data and theoretical prediction
- The analysis is being extended to 2023 and 2024 pp data (largest dataset ever)
- Systematics partially inherited from Run 2 studies and estimated using the anti-helium spectra only

To be improved differentiating charge dependent contributes

- **Primary fraction** estimation must be improved (fit not always consistent, empty bins, weak decay approx to 0)
- Event and track selection will be reconsidered (e.g. DCA cuts)

Thanks for your attention

