
A. Costantini

K8s Load balancing
Alessandro Costantini

alessandro.costantini@cnaf.infn.it

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International license

A. Costantini

Managing network connectivity

• Kubernetes provides several mechanisms to manage network
connettivity, both internal and external, to handle different scenarios
and requirements.

• The most used are:
• Internal connectivity

• ClusterIP
• External connectivity

• NodePort
• Ingress
• LoadBalancer

A. Costantini

Internal connectivity

• Refers to distributing traffic within the Kubernetes cluster, typically
among pods of the same application or service.

• Distributing traffic across pods to improve performance and reliability.
• High availability ensures traffic can still be routed to pods even if some are

unavailable.
• Isolating traffic between different applications or services.

A. Costantini

ClusterIP

• ClusterIP service type creates an internal load balancer that exposes
the service to pods within the same cluster.

• ClusterIP services do not have a public IP, it has a virtual IP and can
only be accessed by pods within the cluster.

• This IP address is stable and doesn’t change even if the pods behind
the service are rescheduled or replaced.

A. Costantini

Cluster IP

• Using the Kubernetes Proxy we
can access the service via the
Kubernetes API

• Usage:
• Debugging your services, or

connecting to them directly from
your laptop for some reason

• Allowing internal traffic,
displaying internal dashboards,
etc.

A. Costantini

External Connectivity

• Refers to distributing traffic from outside the Kubernetes cluster to
appropriate pods within the cluster.

A. Costantini

External connectivity

• NodePort
• LoadBalancer
• Ingress

A. Costantini

NodePort

• Exposes a specific port on each
node in the cluster, allowing access
to your service through that port.

• The Kubernetes control plane
assigns a port within a specified
range (typically 30000-32767).

• Each node then acts as a proxy for
the same port number, ensuring
consistent service access.

A. Costantini

NodePort

• You can only have one service per port
• You can only use ports 30000–32767
• it doesn't do any kind of load balancing, it

simply directs traffic

apiVersion: v1
kind: Service
metadata:
 name: my-nodeport-service
spec:
 selector:
 app: my-app
 type: NodePort
 ports:
 - name: http
 port: 80
 targetPort: 80
 nodePort: 30036
 protocol: TCP

A. Costantini

External load balancer

• Provisions an external load
balancer, typically supplied by
cloud providers, to distribute
incoming traffic uniformly to the
service.

• These services serve as traffic
controllers, efficiently directing
client requests to the appropriate
nodes hosting your pods.

A. Costantini

External load balancer

• Used to directly expose a service.
• All traffic on the port you specify

will be forwarded to the service.
• There is no filtering, no routing,

etc. This means you can send
almost any kind of traffic to it,
like HTTP, TCP, UDP, Websockets,
gRPC, or whatever.

apiVersion: v1
kind: Service
metadata:
 name: api-service
spec:
 selector:
 app: api-app
 ports:
 - protocol: TCP
 port: 80
 targetPort: 8080
 type: LoadBalancer

A. Costantini

External load balancer

• External load balancers exist outside of the Kubernetes
cluster

So…
• the cluster must be running on a provider that supports

external load balancers
• different load balancer providers have their own settings
• are defined per service, they can only route to a single

service

A. Costantini

Ingress

• Ingress is a native Kubernetes resource that exposes HTTP and HTTPS
routes from outside the cluster to services within the cluster.

• It relies on rules set in the Ingress resource to control traffic routing.
• Helps on DNS routing.
• Can provide SSL termination and name-based virtual hosting.

A. Costantini

Ingress
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: my-ingress
spec:
 backend:
 serviceName: other
 servicePort: 8080
 rules:
 - host: foo.mydomain.com
 http:
 paths:
 - backend:
 serviceName: foo
 servicePort: 8080
 - host: mydomain.com
 http:
 paths:
 - path: /bar/*
 backend:
 serviceName: bar
 servicePort: 8080

A. Costantini

Ingress

• Ingress is actually NOT a type of service
• act as a “smart router” or entrypoint

into the cluster.

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: my-ingress
spec:
 backend:
 serviceName: other
 servicePort: 8080
 rules:
 - host: foo.mydomain.com
 http:
 paths:
 - backend:
 serviceName: foo
 servicePort: 8080
 - host: mydomain.com
 http:
 paths:
 - path: /bar/*
 backend:
 serviceName: bar
 servicePort: 8080

A. Costantini

Ingress

• An Ingress requires an associated
controller to manage it.

• Kubernetes provides controllers for
most objects like deployments and
services, it does not include an ingress
controller by default.

• The most popular is the nginx ingress
controller (AWS, GCE also supported
and maintained).

• Annotations field used to pass specific
configurations into the ingress
controller.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: ingress-example
 annotations:
 nginx.ingress.kubernetes.io/rewrite-target: /

https://kubernetes.io/docs/concepts/services-
networking/ingress-controllers/

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

A. Costantini

Kubernetes services comparison

A. Costantini

Ingress vs Load balancer

https://spacelift.io/blog/kubernetes-load-balancer

https://spacelift.io/blog/kubernetes-load-balancer

A. Costantini

Ingress + LB
• External load balancers alone aren’t a practical solution for providing the

networking capabilities necessary for a K8s environment.
• Kubernetes architecture allows to combine load balancers with an Ingress

Controller:
• Instead of provisioning an external load balancer for every application service that

needs external connectivity, we can deploy and configure a single load balancer that
targets an Ingress Controller.

• The Ingress Controller serves as a single entrypoint and can then route traffic to
multiple applications in the cluster.

A. Costantini

Best practices
• Carefully consider your requirements. Is a layer 4 load balancer sufficient

for your needs, or do you require the option for application layer 7 routing
or more advanced features such as SSL termination?

• Different implementation, different features. Consult the documentation
of the solution you are using (Ingress controller, Cloud load balancer).

• Implement readiness and liveness probes to check the health of your pods,
enabling the load balancer to distribute traffic only to healthy instances.

• Enable connection draining where supported. Connection draining ensures
that existing connections are gracefully handled when a pod or instance is
being terminated or scaled.

• Properly configure Pod autoscaling to automatically scale the number of
pods based on resource utilization or custom metric.

• Regularly monitor your system and analyze metrics.

A. Costantini

Best practices
• Apply security best practices, such as enabling SSL/TLS termination on

the load balancer and ensure proper access controls (IAM) are in place
to prevent unauthorized access.

• Simulating failure scenarios to test your configuration.

A. Costantini

	K8s Load balancing
	Managing network connectivity
	Internal connectivity�
	ClusterIP
	Cluster IP
	External Connectivity�
	External connectivity�
	NodePort�
	NodePort�
	External load balancer�
	External load balancer�
	External load balancer�
	Ingress�
	Ingress�
	Ingress�
	Ingress�
	Kubernetes services comparison�
	Ingress vs Load balancer�
	Ingress + LB�
	Best practices�
	Best practices�
	Diapositiva numero 22

