
Kubernetes
Security

An In-Depth Look

Lisa Zangrando

Kubernetes Security
high-level mind map

• Security in Kubernetes is not only about securing the
cluster as a whole;

• It is based on a multi-layered model that addresses
potential risks, both at the cluster and application
levels.

• Cluster-level, Workload, Network Ssecurity

• Each layer requires specific approaches and tools to
ensure a secure environment.

Access Security
API-server

• The API Server is the central entry point of
Kubernetes.

• Every interaction with the cluster, whether from
users or applications, passes through it.

• Protecting access to the API Server is essential
to ensure the overall security of the system.

• Access security is divided into three
fundamental aspects end related best
practices:
o authentication, authorization, and auditing

Authentication in Kubernetes

• Authentication in Kubernetes is the first layer of security
to control who can access the cluster.

• Main authentication methods:
o Basic Authentication (Not Recommended)
o X.509 Client Certificates

o OpenID Connect (OIDC)
o Webhook authentication

• Best practices for authentication in Kubernetes:
o Limit public access to the API Server: vpn, firewall, etc
o Disable Basic Authentication: deprecated method
o Limit client certificates: they are difficult to revoke and

manage at scale

o Use OIDC for centralized user management
• To enable OIDC, configure the API Server:

--oidc-issuer-url=https://<OIDC_PROVIDER_URL>

--oidc-client-id=<CLIENT_ID>

--oidc-username-claim=email

--oidc-groups-claim=groups

Authorization in Kubernetes

• This authorization layer, ensure that each entity can only
access the resources and actions it is actually authorized
for.

• Main authorization methods:
• ABAC (Attribute-Based Access Control)
• RBAC (Role-Based Access Control)

• Node authorization
• Webhook authorization

• Best practices
• Principle of Least privilege
• Use Service Accounts for applications

• Isolate Permissions by namespace
• Avoid unnecessary ClusterRoleBindings

• Audit RBAC Configurations
• Automate RBAC Management

• Configure Default Deny Access

Role-Based Access Control

• Definition:
• Role-Based Access Control (RBAC) is the most common

method for managing permissions in Kubernetes.
• It allows you to define who can perform specific actions on

which resources within the cluster by assigning roles to users or
groups.

• RBAC is flexible, scalable, and ensures that only authorized
users can interact with the Kubernetes cluster.

• Key concepts:
• Role: a set of permissions that define what actions can be

performed on which resources. Roles are specific to
namespaces.

• ClusterRole: a role that defines permissions at the cluster
level, including across namespaces.

• RoleBinding: a binding that associates a Role with a user or
group within a namespace.

• ClusterRoleBinding: a binding that associates a ClusterRole
with a user or group across the entire cluster.

Role

• A Role is a set of permissions that specify what actions
can be performed on which resources.

• These permissions are scoped to a specific namespace,
making Roles ideal for managing access within a limited
scope.

• Actions: common verbs include get, list, create,
update, delete, etc.

• Resources: these can be Kubernetes resources like
Pods, Deployments, ConfigMaps, Secrets, etc.

The following example defines a Role that allows users to manage Pods in the
development namespace:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 namespace: development

 name: pod-manager

rules:

 - apiGroups: [""]

 resources: ["pods"]

 verbs: ["get", "list", "create", "delete"]

 - apiGroups: [""]

 resources: ["configmaps"]

 resourceNames: ["my-config"]

 verbs: ["get"]

In this example:
• the Role applies to the development namespace.
• the user can manage Pods but cannot interact with other resources like

Services, but he can get access to my-config ConfigMaps.

ClusterRole

• A ClusterRole is similar to a Role but operates at the
cluster level. It can define permissions that span
multiple namespaces or even apply to cluster-wide
resources such as nodes or PersistentVolumes.

• Use Cases
o Granting access to non-namespaced resources (e.g.,

nodes, persistentvolumes).
o Managing permissions across all namespaces.

The following ClusterRole allows users to view nodes and PersistentVolumes:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: cluster-viewer

rules:

 - apiGroups: [""]

 resources: ["nodes", "persistentvolumes"]

 verbs: ["get", "list"]

This ClusterRole can be bound to users or groups that need to interact with
cluster-wide resources.

RoleBinding

• A RoleBinding connects a Role to specific users, groups,
or service accounts within a namespace.

• It grants the permissions defined in the Role to the
specified subjects.

• OIDC TOKEN

{ "sub": "1234567890",

 "name": "John Doe",

 "email": johndoe@example.com,

 "groups": ["developers", "admins"]

}

The following RoleBinding associates the pod-manager Role with a specific user:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: bind-pod-manager

 namespace: development

subjects:

 - kind: User

 name: johndoe@example.com

 apiGroup: rbac.authorization.k8s.io

roleRef:

 kind: Role

 name: pod-manager

 apiGroup: rbac.authorization.k8s.io

In this example, the user johndoe@example.com can now manage Pods in
the development namespace:

• Subjects: defines who receives the permissions (e.g., users, groups, or
service accounts).

• roleRef: specifies the Role being assigned.

RoleBinding

• A RoleBinding connects a Role to specific users, groups,
or service accounts within a namespace.

• It grants the permissions defined in the Role to the
specified subjects.

• OIDC TOKEN

{ "sub": "1234567890",

 "name": "John Doe",

 "email": johndoe@example.com,

 "groups": ["developers", "admins"]

}

The following RoleBinding associates the pod-manager Role with a specific user:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: bind-pod-manager

 namespace: development

subjects:

 - kind: Group

 name: developers

 apiGroup: rbac.authorization.k8s.io

roleRef:

 kind: Role

 name: pod-manager

 apiGroup: rbac.authorization.k8s.io

In this example, the group developers can now manage Pods in the
development namespace

ClusterRoleBinding

• A ClusterRoleBinding is the cluster-wide equivalent of a
RoleBinding.

• It associates a ClusterRole with users, groups, or service
accounts, granting permissions across the entire cluster.

The following ClusterRoleBinding grants cluster-wide read-only access to all
resources for a specific group:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: read-only-cluster-binding

subjects:

 - kind: Group

 name: developers

 apiGroup: rbac.authorization.k8s.io

roleRef:

 kind: ClusterRole

 name: cluster-viewer

 apiGroup: rbac.authorization.k8s.io

Here, members of the developers group can view resources cluster-wide.

RBAC: Group membership

• If a user belongs to multiple groups, such as user and admin,
Kubernetes does not choose a single group.

• Instead, it evaluates the combined permissions of all
groups.

• Implications:
o Kubernetes checks all RoleBindings and

ClusterRoleBindings associated with the user's
groups.

o The user is granted the union of permissions from all
their groups.

• Kubernetes RBAC is permissive. If one group grants elevated
access, it prevails over restrictive rules from other groups.

Example scenario:
• User belongs to two groups:

o user → Limited permissions (e.g. Read-only access to Pods
in app-namespace)

o admin → Full administrative permissions.
• The user gains all permissions granted by both groups.

RoleBinding with ClusterRole

• Create a RoleBinding that refers to a ClusterRole is allowed.

• The RoleBinding is used to bind a ClusterRole to a specific
group of users within a given namespace, allowing them to
inherit the permissions associated with the ClusterRole.

• In this example, the RoleBinding allows users in the
developer group to inherit cluster-wide permissions from the
ClusterRole but applies them in the app-namespace.

• Key benefit: enables flexible access control, allowing
cluster-wide permissions to be scoped within a specific
namespace.

The ClusterRole grants read-only access to Pods and other resources across the
entire cluster.

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 # Name of the ClusterRole

 name: view-only

rules:

- apiGroups: [""]

 resources: ["pods"]

 verbs: ["get", "list", "watch"]

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: developer-view-binding

 namespace: app-namespace

subjects:

- kind: Group

 name: developer

 apiGroup: ""

roleRef:

 kind: ClusterRole

 name: view-only

 apiGroup: rbac.authorization.k8s.io

How RBAC works?

• Defining Roles and ClusterRoles:
• Administrators define what actions are permissible on

specific resources by creating Roles or ClusterRoles.

• Binding Roles to Users:
• RoleBindings and ClusterRoleBindings assign these

roles to specific users, groups, or service accounts.

• Authorization:
• When a user or process sends a request to the API

server, Kubernetes checks the RBAC policies to
determine if the action is allowed.

RBAC limitations

• No support for fine-grained permissions
• e.g.: restrict users to only delete their own Pods
• ownership not natively supported
• requires combining RBAC with Admission Controllers to enforce

label-based restrictions or using tools like OPA (Open Policy Agent)

• Granularity of permissions
• e.g.: controlling who can modify only specific annotations or

labels within a Pod

• No support for Resource Quotas
• e.g.: restrict the number of Pods a user can create

Audit logging

• Definition:
• Audit logs record detailed information about API requests

and responses, including the user or service that made the
request, the resources accessed, and the outcome of the
action.

• These logs are invaluable for detecting unauthorized
access, troubleshooting issues, and ensuring that
Kubernetes operates according to organizational policies.

• Key features:
• Tracks all requests made to the API Server
• Captures detailed metadata, including user identity,

resource types, actions, and timestamps
• Helps in monitoring and enforcing compliance with

security policies
• Enables detailed analysis for auditing and debugging

purposes

How to configure Audit

• To enable audit logging in Kubernetes, you need to configure the API
Server to capture and store the audit logs.

• step 1: Create an Audit Policy
o An audit policy defines which events should be logged and at which

level of detail. The policy is specified in a YAML file (see exmple).

• step 2: Enable Audit logging on the API Server
o You need to modify the API Server's configuration to enable audit

logging and specify the audit policy file.

• Best Practices
o Enable Audit logs
o Define a custom Audit Policy
o Monitor logs for anomalies
o Link Audit to Access Control
o Automate log analysis
o Schedule periodic reviews

apiVersion: audit.k8s.io/v1

kind: Policy

rules:

 - level: Metadata

 resources:

 - group: ""

 resources: ["pods"]

 - level: RequestResponse

 resources:

 - group: "apps"

 resources: ["deployments"]

 namespaces: ["developers"]

In this example:
• Metadata level logs basic details (e.g., request timestamp, user, resource

name).
• RequestResponse level logs full request and response data for deployments

in the apps group.

API Server configuration example:

--audit-policy-file=/etc/kubernetes/audit-policy.yaml

--audit-log-path=/var/log/kubernetes/audit.log

--audit-log-maxage=30

--audit-log-maxbackup=10

--audit-log-maxsize=100

Thanks!

References

• https://kubernetes.io/docs/concepts/security/

• https://kubernetes.io/docs/concepts/security/controlling-
access/

• https://kubernetes.io/docs/reference/access-authn-
authz/authentication/

• https://kubernetes.io/docs/reference/access-authn-authz/rbac

• https://kubernetes.io/docs/tasks/debug/debug-cluster/audit/

	Slide 1: Kubernetes Security
	Slide 2: Kubernetes Security high-level mind map
	Slide 3: Access Security API-server
	Slide 4: Authentication in Kubernetes
	Slide 5: Authorization in Kubernetes
	Slide 6: Role-Based Access Control
	Slide 7: Role
	Slide 8: ClusterRole
	Slide 9: RoleBinding
	Slide 10: RoleBinding
	Slide 11: ClusterRoleBinding
	Slide 12: RBAC: Group membership
	Slide 13: RoleBinding with ClusterRole
	Slide 14: How RBAC works?
	Slide 15: RBAC limitations
	Slide 16: Audit logging
	Slide 17: How to configure Audit
	Slide 18: Thanks!

