Kubernetes
Security

An In-Depth Look

Lisa Zangrando

PNV WIS IV Wl Whivaal e

Bearer Tokens
ARtOonve Aulhenlication,\,)g Basic Authentication

Service Account Tokens

_ Authentication and Authorization Roles
T ClusterRoles

\ Role-Based Access Control (RBAC) . —
f . O RoleBindings
J Service Accounts o

(ClusterRoleBindings
\ o Ingress Rules
' _Network Policies =y

‘ ——__ EgressRules
Encryption (e.g.. mTLS)

Kubernetes Security |/ pustorosconmncaen, =il
high-level mind map ’

Ingress Ttaﬁic,\/ TLS Termination
NS
Security Annotations

Egress Traffic . Egress Network Policies

__Kubernetes Secrets
// Third-Party Secret Management Solutions

Secrets Management %.Encrym@n_a! Rest_
Encryption in Transit Seccomp Profiles
Container Runtime Security ()< AppArmor Profiles
Pod Security Policies SELinux Policies

Runtime i :
e ~—____Security Context
Runtime Monitoring and Alerts

Image Scanning and Vuinerability Assessment

Image Signing and Verification
~____Private Image Registries

Image Update and Patching

* Security in Kubernetes is not only about securing the S Sy
cluster as a whole;

* Itisbased on a multi-layered model that addresses
potentialrisks, both at the cluster and application
levels.

* Cluster-level, Workload, Network Ssecurity

| '\ Image Security

1\ Resource Limits and Quotas
PodDisruptionBudgets

Rolling Updates and Rollbacks
Health Checks and Readiness Probes

1\
\. __Workload Security -
|

* Each layerrequires specific approaches and tools to |\
\ Secure Kubelet Configuration

ensure a secure environment. \
% API Server Security

| _Cluster Hardening . eted Security
\ Control Plane Security

“__Node Security _

Logging and Monitoring

\ __Audit Logging

Security Monitoring and Aud:lingm__,--""'— Intrusion Detection Systems (IDS)

N~ Security Information and Event Management (SIEM)

Compliance and Regulatory Requirements

KUHCCESS
SECURITY

Access Security

APl-server
AUTHERICATION

[trang lasre) vergoes va calliais
rfo] JUlNe) (RO oEs Ofl GULNTE

* The API Server is the central entry point of
Kubernetes.

* Everyinteraction with the cluster, whether from
users or applications, passes through it.

* Protecting access to the APl Server is essential
to ensure the overall security of the system.

* Access security is divided into three

fundamental aspects end related best
practices:

o authentication, authorization, and auditing

AP| Server

AUTHERCATION
INE10DID00 MO CDINVCE] clh[INere AUTH O RZAT l O N ez geiineceIedile Ganl
youl kitorraed go cnsine JOIIN RUIGTIGEB U8 AUISIC
NoRye . BN haerooyaia reldBflara
aU-orR BNOeTER® 68 calillilT

KUHCCESS
SECURITY

— _ Authentication in Kubernetes
AUTHERICATION [((&E ~ AUTHORZ

s Lasiol Yeraoes e calias Y ‘ Imooo kumnwaeew i * Authentication in Kubernetes is the first layer of security
0! U181 10Toser SR GUINT ' 4 o) (e Billl duasioy o to control who can access the cluster.

* Main authentication methods:
o Basic Authentication (Not Recommended)
o X.509 Client Certificates
o OpenlD Connect (OIDC)
o Webhook authentication

* Best practices for authentication in Kubernetes:
o Limitpublic access to the API Server: vpn, firewall, etc
o Disable Basic Authentication: deprecated method

o Limitclient certificates: they are difficult to revoke and
manage at scale

o Use OIDC for centralized user management
_ * Toenable OIDC, configure the API Server:
AP\ Server /! --oidc-issuer-url=https://<OIDC_ PROVIDER URL>

AUTHERCAT'ON ‘ --oidc-client-id=<CLIENT ID>

INE10DID00 O M GBIV clhEer: AUTHO RZAT'O N ez geiiNee eIBsls G| --oidc-username-claim=email
youl kitorraed go cnsine , : JOIIN RUIOTIGRE US AuIgIr -—oidc-groups—-claim=groups
NORYe.0 BN hagrooyaa reldfiar

BlrerR BNgeTere 6. callilit

KUHCCESS
SECURITY

AUTHERICATION

[trang lasre) vergoes va calliais
rfo] JUlNe) (RO oEs Ofl GULNTE

AUTHERCATION

IREI0DI000HOE CDIVEET et
you) KOIrGed &b cusic

AP| Server

AUTHORZATION

NoRye . BN haerooyaia reldBflara
SU-c’A BNIeTER® 6% callilfT

AUTHORZ

@00 kWmuade G« G
Al rUcnREO) PULTY

ez geiineceIedile Ganl
YOI RUIOPIGEE US AUIEIC

Authorization in Kubernetes

* This authorization layer, ensure that each entity can only
accesstheresources and actions it is actually authorized
for.

* Main authorization methods:
* ABAC (Attribute-Based Access Control)
* RBAC (Role-Based Access Control)
* Node authorization
* Webhook authorization

* Best practices
* Principle of Least privilege
* Use Service Accounts for applications
* Isolate Permissions by namespace
* Avoidunnecessary ClusterRoleBindings
* Audit RBAC Configurations
Automate RBAC Management

* Configure Default Deny Access

Role-Based Access Control

* Definition:

Role-Based Access Control (RBAC) is the most common
method for managing permissions in Kubernetes.

It allows you to define who can perform specific actions on
which resources within the cluster by assigning roles to users or
groups.

RBAC is flexible, scalable, and ensures that only authorized
users can interact with the Kubernetes cluster.

* Key concepts:

Role: a set of permissions that define what actions can be
performed on which resources. Roles are specific to
namespaces.

ClusterRole: a role that defines permissions at the cluster
level, including across namespaces.

RoleBinding: a binding that associates a Role with a user or
group within a namespace.

ClusterRoleBinding: a binding that associates a ClusterRole
with a user or group across the entire cluster.

ATION

301 ch[STerns
Q) Cres 3100

KHLECCESS
SECURITY

@ AUTHORZA

AP| Server

AUTHORZATION

Moo BN haerooxaia reldflarn
QU o’ BNUeTER® 6B calilllf!

moon Wmwdee '« G
AUt rYson Rde) puL

AUDTINC

ez gaiNeeeibbile Gl

YOI RUIOPTIGER US AU

Role

A Role is a set of permissions that specify what actions
can be performed on which resources.

These permissions are scoped to a specific namespace,
making Roles ideal for managing access within a limited
scope.

Actions: common verbs include get, 1ist, create,
update, delete, etc.

Resources: these can be Kubernetes resources like
Pods, Deployments, ConfigMaps, Secrets, etc.

The following example defines a Role that allows users to manage Pods in the
development namespace:

apiVersion: rbac.authorization.k8s.io/vl
kind: Role
metadata:
namespace: development
name: pod-manager
rules:
- apiGroups: [""]
resources: ["pods"]
verbs: ["get", "list", "create", "delete"]
- apiGroups: [""]
resources: ["configmaps"]
resourceNames: ["my-config"]
verbs: ["get"]

In this example:

* the Role applies to the development namespace.

* the user can manage Pods but cannot interact with other resources like
Services, but he can get access to my-config ConfigMaps.

The following ClusterRole allows users to view nodes and PersistentVolumes:

Clu SterROle apiVersion: rbac.authorization.k8s.io/vl

kind: ClusterRole

metadata:
name: cluster-viewer
rules:
.. - apiGroups: [""]
* AClusterRole is similarto a Role but operates at the resources: ["nodes", "persistentvolumes"]
cluster level. It can define permissions that span verbs: ["get", "list"]

multiple namespaces or even apply to cluster-wide
resources such as nodes or PersistentVolumes.

This ClusterRole can be bound to users or groups that need to interact with

e Use Cases cluster-wide resources.

o Granting access to non-namespaced resources (e.g.,
nodes, persistentvolumes).

o Managing permissions across all namespaces.

RoleBinding

A RoleBinding connects a Role to specific users, groups,
or service accounts within a namespace.

It grants the permissions defined in the Role to the
specified subjects.

OIDC TOKEN
"sub": "1234567890",
"name": "John Doe",

"email": johndoelexample.com,

"groups": ["developers", "admins"]

The following RoleBinding associates the pod-manager Role with a specific user:

apiVersion: rbac.authorization.k8s.io/vl
kind: RoleBinding
metadata:
name: bind-pod-manager
namespace: development
subjects:
- kind: User
name: johndoe@example.com
apiGroup: rbac.authorization.k8s.io
roleRef:
kind: Role
name: pod-manager
apiGroup: rbac.authorization.k8s.1io

In this example, the user johndoe@example.com cannowmanage Podsin
the development namespace:
* Subjects: defines who receives the permissions (e.g., users, groups, or
service accounts).
* roleRef: specifies the Role being assigned.

RoleBinding

A RoleBinding connects a Role to specific users, groups,
or service accounts within a namespace.

It grants the permissions defined in the Role to the
specified subjects.

OIDC TOKEN
"sub": "1234567890",
"name": "John Doe",

"email": johndoelexample.com,

"groups": ["developers", "admins"]

The following RoleBinding associates the pod-manager Role with a specific user:

apiVersion: rbac.authorization.k8s.io/vl
kind: RoleBinding
metadata:
name: bind-pod-manager
namespace: development
subjects:
- kind: Group
name: developers
apiGroup: rbac.authorization.k8s.io
roleRef:
kind: Role
name: pod-manager
apiGroup: rbac.authorization.k8s.1io

In this example, the group developers can now manage Pods inthe
development namespace

ClusterRoleBinding

A ClusterRoleBinding is the cluster-wide equivalent of a
RoleBinding.

It associates a ClusterRole with users, groups, or service
accounts, granting permissions across the entire cluster.

The following ClusterRoleBinding grants cluster-wide read-only access to all
resources for a specific group:

apiVersion: rbac.authorization.k8s.io/vl
kind: ClusterRoleBinding
metadata:
name: read-only-cluster-binding
subjects:
- kind: Group
name: developers
apiGroup: rbac.authorization.k8s.io
roleRef:
kind: ClusterRole
name: cluster-viewer
apiGroup: rbac.authorization.k8s.1io

Here, members of the developers group can view resources cluster-wide.

Example scenario:
* User belongs to two groups:

RBAC: G I"OU p me mbeI‘Ship o user - Limited permissions (e.g. Read-only access to Pods

in app-namespace)
o admin - Full administrative permissions.

* The user gains all permissions granted by both groups.

* |fauserbelongs to multiple groups, such as user and admin,
Kubernetes does not choose a single group.

* Instead, it evaluates the combined permissions of all
groups.

* Implications:

o Kubernetes checks all RoleBindings and
ClusterRoleBindings associated with the user's
groups.

o The useris granted the union of permissions from all
their groups.

* Kubernetes RBAC is permissive. If one group grants elevated
access, it prevails over restrictive rules from other groups.

The ClusterRole grants read-only access to Pods and other resources across the
entire cluster.

RoleBinding with ClusterRole

apiVersion: rbac.authorization.k8s.io/vl
kind: ClusterRole
metadata:

Name of the ClusterRole

name: view-only

rules:
. . . —) G : nwn
* Create a RoleBinding that refers to a ClusterRole is allowed. GpLBToURs ["] .
resources: ["pods"]
* The RoleBinding is used to bind a ClusterRole to a specific verbs: ["get", "list", "watch"]
group of users within a given namespace, allowing them to o
inherit the permissions associated with the ClusterRole. apiVersion: rbac.authorization.k8s.io/vl
* Inthis example, the RoleBinding allows users in the kind: RoleBinding
metadata:

developer group to inherit cluster-wide permissions from the

. ” name: developer-view-binding
ClusterRole but applies them in the app-namespace.

namespace: app-namespace
subjects:
- kind: Group
name: developer
apiGroup: ""
roleRef:
kind: ClusterRole
name: view-only
apiGroup: rbac.authorization.k8s.io

* Key benefit: enables flexible access control, allowing
cluster-wide permissions to be scoped within a specific

namespace.

KUCCESS
SECURITY e
o §

How RBAC works? |
AUTHORZA

moon Wmwdee '« G

« Defining Roles and ClusterRoles: T N\ , -
o) rUronBdey uaY

* Administrators define what actions are permissible on
specific resources by creating Roles or ClusterRoles.

* Binding Roles to Users:

* RoleBindings and ClusterRoleBindings assign these
roles to specific users, groups, or service accounts.

* Authorization:

* When a user or process sends arequest to the API
server, Kubernetes checks the RBAC policies to
determine if the action is allowed.

- ‘
NCATION AUDTINC
- o1 cBh(STerns AUTH O RZAT I O N |’\'Cf:zll ;;"L’jﬁif;;g [(:35/;/(,;

Q) Cres 3100
Moo BN haerooxaia reldflarn
ok eNgeTere 68 caliliil

KUECESS
2 SECURITY

RBAC limitations
AUTHORZA

* Nosupport for fine-grained permissions M A N ¢ @000 kyeiadeo i au
* e.g.:restrictusersto only delete their own Pods R TR / Al rYLonEde) PuaT
* ownership not natively supported
* requires combining RBAC with Admission Controllers to enforce
label-based restrictions or using tools like OPA (Open Policy Agent)
* Granularity of permissions

* e.g.:controlling who can modify only specific annotations or
labels within a Pod

* No support for Resource Quotas
* e.g.:restrict the number of Pods a user can create

' AP\ Server)
ATION AUDTINCG

201 cth[Sherns ez 7@ 166 0I06IE Gl

) 3 ¢ Ll.:[lﬂ: 4 A U I HO RZAT I O N | C:;lll/)ﬂ.’ Py\ll!uc;ﬁ‘?sle; LUS/;A(,.

Moo BN haerooxaia reldflarn
QU o’ BNUeTER® 6B calilllf!

Audit logging

e Definition:

Audit logs record detailed information about API requests
and responses, including the user or service that made the
request, the resources accessed, and the outcome of the
action.

These logs are invaluable for detecting unauthorized
access, troubleshooting issues, and ensuring that
Kubernetes operates according to organizational policies.

* Key features:

Tracks all requests made to the APl Server

Captures detailed metadata, including user identity,
resource types, actions, and timestamps

Helps in monitoring and enforcing compliance with
security policies

Enables detailed analysis for auditing and debugging
purposes

apiVersion: audit.k8s.io/vl
kind: Policy

How to configure Audit el Metadata

resources:
- group:
resources: ["pods"]
- level: RequestResponse
resources:
« step1: Create an Audit Policy - EZZEE;C;?.DPS[:: deployments”]
namespaces: ["developers"]

* To enable audit logging in Kubernetes, you need to configure the API
Server to capture and store the audit logs.

o An audit policy defines which events should be logged and at which
level of detail. The policy is specified in a YAML file (see exmple).

* step 2: Enable Audit logging on the API Server In this example:

o You need to modify the APl Server's configuration to enable audit * Metadata level logs basic details (e.g., request timestamp, user, resource

logging and specify the audit policy file. name).
* RequestResponse level logs full request and response data for deployments

* Best Practices in the apps group.

o Enable Audit logs

o Define a custom Audit Policy API Server configuration example:

o Monitor logs for anomalies --audit-policy-file=/etc/kubernetes/audit-policy.yaml

o Link Audit to Access Control

o Automate log analysis --audit-log-path=/var/log/kubernetes/audit. log

o Schedule periodic reviews --—audit-log-maxage=30

-—audit-log-maxbackup=10

—-—audit-log-maxsize=100

g%
A

Thanks! - Role-Bacod Ascuriey Control

Ml S oy BENCIE P ERTITVCT O

S— % R ’ Y-

* https://kubernetes.io/docs/concepts/security/ I : . i

Netaice
Polices

Role-Bacizeszs Cont
ICcate 8 ECOPRUEGR na
ioenolala notoondntod pno

sowhenroy Pod setod sect

References

* https://kubernetes.io/docs/concepts/security/controlling-
access/

* https://kubernetes.io/docs/reference/access-authn-
authz/authentication/

* https://kubernetes.io/docs/reference/access-authn-authz/rbac

* https://kubernetes.io/docs/tasks/debug/debug-cluster/audit/

Uzeing Servico Poli
for contyaliieg Kaborn
with Huenretas secret:

e Using Notwork Seecrity Cogalion Encoyoonmaking Loghir
‘a~om DIEND AOIRTIONENEE 0 IIAS GADOAKON HEABENE 0 COLEOISI00M60NE!
a5 with emoanrdanpiso nenontiur wollkomes Secure CJ/CD plpanes

	Slide 1: Kubernetes Security
	Slide 2: Kubernetes Security high-level mind map
	Slide 3: Access Security API-server
	Slide 4: Authentication in Kubernetes
	Slide 5: Authorization in Kubernetes
	Slide 6: Role-Based Access Control
	Slide 7: Role
	Slide 8: ClusterRole
	Slide 9: RoleBinding
	Slide 10: RoleBinding
	Slide 11: ClusterRoleBinding
	Slide 12: RBAC: Group membership
	Slide 13: RoleBinding with ClusterRole
	Slide 14: How RBAC works?
	Slide 15: RBAC limitations
	Slide 16: Audit logging
	Slide 17: How to configure Audit
	Slide 18: Thanks!

