
Kubernetes
Networking

An In-Depth Look

Lisa Zangrando

Kubernetes Networking

Overview

The Kubernetes networking model allows the different parts of a
Kubernetes cluster, such as Nodes, Pods, Services, and outside
traffic, to communicate with each other.

Why understanding it matters

• Properly configure your environment.

• Enable complex networking scenarios.

Key concepts covered

• Networking Model

• Cluster communication types:

• Container-to-Container

• Pod-to-Pod

• Pod-to-Service

• Internet-to-Service

Kubernetes Networking
model

• The Kubernetes networking model is designed around the following
key principles:

• Every pod gets its own IP address
• Containers within a pod share the pod IP address and can

communicate freely with each other
• Pods can communicate with all other pods in the cluster using pod IP

addresses (without NAT)
• Isolation (restricting what each pod can communicate with) is

defined using network policies
• Plugin-based flexibility and customization.

• This style of network is referred to as a “flat network”
• From a pod's view, the cluster is a single network plane

https://www.tigera.io/learn/guides/kubernetes-networking/

Kubernetes Networking
model

• Given these constraints, Kubernetes networking can be
broken into four distinct problems to solve:

o Container-to-Container Networking: how containers
within the same Pod communicate.

o Pod-to-Pod Networking: how Pods communicate with each
other across nodes.

o Pod-to-Service Networking: how Pods interact with
Services, including load balancing and discovery.

o Internet-to-Service Networking: how external traffic
reaches cluster Services.

• And to solve them, Kubernetes employs several key
networking components and resources:

• Network namespaces, iptables, CNI plugins, Services...

Container-to-Container
networking

• Pod is modelled as a group of containers

• How containers within the same Pod communicate?

• Occurs through the Pod (Linux) Network Namespace
o logical networking stack with its own logical router, firewall,

and other network devices.
o It allows for separate network interfaces and routing tables

isolated from the rest of the system.
o Container within the Pods will communicate with each

other via localhost within the same Pod Network
namespace

o each Pods will communicate with each other with Root
Network Namespace created within the Node (eth0)

Pod-to-Pod networking
(same node)

• Pods network namespaces are connected via virtual ethernet
devices (veth pairs) to root network namespace

• A virtual network bridge allows traffic between these interfaces,
with communication using ARP (Address Resolution Protocol)

• Operates at Layer 2 (Data Link) using MAC addresses for packet
forwarding.

• When a packet arrives:
1. The bridge checks the destination MAC address.
2. If the destination is local (on the same node), it forwards the

packet to the appropriate veth interface.
3. If the destination is not local, it sends the packet to the default

route (gateway).

Pod-to-Pod networking
(same node)

• If data is sent from Pod 1 to Pod 2, the flow of events would like
this (refer to diagram)

1. Pod 1 traffic flows through eth0 to the root network namespaces
virtual interface veth0.

2. Then traffic goes via veth0 to the virtual bridge which is
connected to veth1.

3. Traffic goes via the virtual bridge to veth1.
4. Finally, traffic reaches eth0 interface of Pod 2 via veth1.

Pod-to-Pod networking
(different nodes)

• How do Pods communicate across Nodes?
o The CNI plugin assigns each Pod a unique IP within the cluster.
o When a Pod sends traffic to another Pod on a different node:

• The traffic exits the Pod through its veth interface.

• The virtual bridge forwards the traffic to the default route if
the destination is not local.

• The default route sends the packet to the overlay/underlay
network.

• Role of Overlay/Underlay networks:
o Overlay networks (e.g., VXLAN) encapsulate traffic and handle

IP-based routing between nodes.
o Underlay networks rely on physical infrastructure (switches,

routers) to forward packets based on Pod IPs (unencapsulated
network as Border Gateway Protocol – BGP)

• On the destination node:
o The packet enters the node's root network namespace.
o It is forwarded to the destination Pod via the virtual bridge and

veth interface.

Pod-to-Pod networking
(different nodes)

Container Network Interface
(CNI plugin)

• The Container Network Interface (CNI) is a specification by the Cloud
Native Computing Foundation (CNCF) that standardizes the
configuration of network interfaces for Linux containers.

• A CNI plugin is a software component based on the CNI specification. It:
• Configures network interfaces for Linux containers.
• Allocates networking resources like IPs.
• Implements routing and enforces network policies.

• Role in Kubernetes
• It allows the Pod networking by working with the container runtime (e.g.,

containerd).
• Ensures reliable communication between: Pods, Nodes, External

network components

Container Network Interface
(CNI plugin)

• Common CNI Plugins
o Calico: focuses on security and network policies using BGP for routing.
o Flannel: simplifies networking by creating an overlay network using

VXLAN.
o Weave Net: provides a simple and fast overlay network for Kubernetes.
o Cilium: advanced networking with eBPF-based security policies and

observability.
o Canal: combines Flannel for networking and Calico for network policies.
o Kube-Router: integrated networking, firewall, and routing for Kubernetes

clusters.
o Multus: allows Pods to attach to multiple network interfaces.
o Amazon VPC CNI: optimized for AWS, enabling Pods to use VPC-native

networking.
o Azure CNI: integrates with Azure virtual networks for Kubernetes

workloads.
o Google Cloud CNI: provides seamless networking for Pods in GKE.
o Antrea: implements Open vSwitch for Kubernetes networking.

Pod-to-Service networking

• Pods are Dynamic!
• Scale up or down in response to changes in demand.
• Recreated automatically after a crash or node failure.
• IP addresses change with these events, which can

complicate networking.

• Kubernetes solution: the Service abstraction:
• Provides stable network access to a set of Pods, shielding

clients from the dynamic changes of Pods.
• Assigns a long-term virtual IP to the frontend, ensuring

reliable communication with backend Pods.
• Load-balances traffic directed to the virtual IP, distributing it

evenly among the backend Pods.

• Clients connect with the static virtual IP of the Service.

Pod-to-Service networking

• Kubernetes supports four primary Service types, each serving a
distinct purpose:

• ClusterIP (Default)
• Exposes the Service on a cluster-internal IP, making it

accessible only within the cluster.
• internal communication only.

• NodePort
• Makes the Service accessible externally by exposing it on

each Node's IP address and a static port (NodePort).
• Can be accessed externally via <NodeIP>:<NodePort>.

• LoadBalancer
• Provides external access to the Service using a cloud

provider’s load balancer.

• For environments requiring a single external endpoint.

• ExternalName
• Maps the Service to a CNAME record specified in the

externalName field (e.g., foo.bar.example.com).

• For directing traffic to external services outside the cluster.

Defining a Service
(ClusterIP example)

• This example illustrates how to set up a Service to route traffic
to two NGINX Pods, using a ClusterIP Service for exposure.

• The Pods are accessible only within the cluster

apiVersion: v1

kind: Service

metadata:

 name: nginx-clusterip

spec:

 type: ClusterIP

 selector:

 app: nginx

 ports:

 - protocol: TCP

 port: 80

 targetPort: 80

$ kubectl get pods

NAME READY STATUS RESTARTS AGE IP NODE

nginx1 1/1 Running 0 65m 10.244.1.3 k8s-node

nginx2 1/1 Running 0 65m 10.244.1.4 k8s-node

$ kubectl get svc -o wide

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR

nginx-clusterip ClusterIP 10.103.197.222 <none> 80/TCP 46m app=nginx

$ kubectl describe svc nginx-clusterip

...

IPs: 10.103.197.222

Port: <unset> 80/TCP

TargetPort: 80/TCP

Endpoints: 10.244.1.3:80,10.244.1.4:80

#Access the Service from within the cluster (e.g., using another Pod):

kubectl exec -it dnsutils – sh

curl http://10.103.197.222

<html>

<body>

 <h1>Nginx 1</h1>

</body>

</html>

curl http://10.103.197.222

<html>

<body>

 <h1>Nginx 2</h1>

</body>

</html>

Defining a Service
(NodePort example)

• Kubernetes services can also define how a service is accessed from
outside of the cluster, using one of the following:

o A node port, where the service can be accessed via a specific port on
every node

o A load balancer, where a network load balancer provides a virtual IP
address that the service can be accessed via from outside the cluster

• Same example as before but using NodePort type to expose our nginx

apiVersion: v1

kind: Service

metadata:

 name: nginx-clusterip

spec:

 type: NodePort

 selector:

 app: nginx

 ports:

 - protocol: TCP

 port: 80

 targetPort: 80

$ kubectl get pods

NAME READY STATUS RESTARTS AGE IP NODE

nginx1 1/1 Running 0 65m 10.244.1.3 k8s-node

nginx2 1/1 Running 0 65m 10.244.1.4 k8s-node

$ kubectl get svc -o wide

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) SELECTOR

nginx-nodeport NodePort 10.105.120.195 <none> 80:30155/TCP app=nginx

$ kubectl describe svc nginx-nodeport

...

IPs: 10.105.120.195

Port: <unset> 80/TCP

TargetPort: 80/TCP

NodePort: <unset> 30155/TCP

Endpoints: 10.244.1.3:80,10.244.1.4:80

#Access the Service from outside the cluster using the IP of the node:

curl http://localhost:30155

<html>

<body>

 <h1>Nginx 1</h1>

</body>

</html>

curl http://192.168.81.87:30155

<html>

<body>

 <h1>Nginx 2</h1>

</body>

</html>

Kube-proxy

• Each node runs a kube-proxy, the K8s process implementing
Services

• kube-proxy creates and manages iptables rules to route incoming
traffic destined for the Service IP to one or more backend pods.

• These iptables rules are maintained in the NAT table and are
dynamically updated as pods are added or removed.

• iptables -t nat -A PREROUTING -p tcp -d <Service-IP> --dport

<Service-Port> -j DNAT --to-destination <Pod-IP>:<Pod-Port>

• iptables -t nat -A POSTROUTING -p tcp -d <Pod-IP> --dport <Pod-

Port> -j SNAT --to-source <Node-IP>

• In this example, PREROUTING rules modify incoming packets before they get routed,
and POSTROUTING rules modify packets as they are about to leave the node, ensuring
that packets reach the correct backend pods.

Kubernetes DNS

• Kubernetes DNS is a built-in service that enables name resolution
within a Kubernetes cluster. It facilitates communication between
pods and services using human-readable names instead of IP
addresses.

• DNS records are automatically configured for all services and pods,
streamlining service discovery.

• Service Discovery: automatically resolves service names to their
Cluster IPs, enabling seamless communication.

• Support for Namespaces: uses Fully Qualified Domain Names
(FQDNs) to uniquely identify services across namespaces.

o service-name.namespace.svc.cluster.local

• CoreDNS Integration: Kubernetes uses CoreDNS as its default DNS
server for efficient and scalable name resolution.

Kubernetes DNS
(example)

• Assume our nginx-service is running in the default namespace, its
FQAN is: nginx-service.default.svc.cluster.local.

• Inside a pod, use the following command to resolve the service
name: nslookup nginx-service.default.svc.cluster.local.

$ kubectl get pods

NAME READY STATUS RESTARTS AGE IP NODE

nginx1 1/1 Running 0 65m 10.244.1.3 k8s-node

nginx2 1/1 Running 0 65m 10.244.1.4 k8s-node

$ kubectl get svc -o wide

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR

nginx-clusterip ClusterIP 10.103.197.222 <none> 80/TCP 46m app=nginx

$ kubectl describe svc nginx-clusterip

...

IPs: 10.103.197.222

Port: <unset> 80/TCP

TargetPort: 80/TCP

Endpoints: 10.244.1.3:80,10.244.1.4:80

#Access the Service from within the cluster (e.g., using another Pod):

kubectl exec -it dnsutils – sh

nslookup 10.103.197.222

222.197.103.10.in-addr.arpa name = nginx-service.default.svc.cluster.local.

curl nginx-service.default.svc.cluster.local.

<html>

<body>

 <h1>Nginx 2</h1>

</body>

</html>

Internet-to-Service
(external traffic)

• Kubernetes services are isolated by default, making external access
complex.

• NodePort and LoadBalancer limitations:
o NodePort: manual port management, limited scalability.
o LoadBalancer: high costs for multiple services.

• Security Risks: exposing services individually creates vulnerabilities.

• Lack of centralized control: difficult to manage traffic policies and routing.

• Advanced solutions: Ingress and Gateways
o Simplifies external access management by abstracting networking

complexities.
o Keeps services decoupled from external dependencies.

o Example
o Direct traffic to a backend application based on URL paths (e.g., /api →

Service A, /web → Service B).

Ingress

• Overview:
• Acts as a central entry point for HTTP/HTTPS traffic.
• Defines routing rules based on paths or hostnames.
• Handles TLS termination and other Layer 7 functions of OSI model.
• An Ingress Controller (e.g. nginx, haproxy) applies these rules to

route traffic effectively.

• Advantages:
• Centralized Management: One entry point for multiple services.
• Cost-Efficiency: Reduces reliance on individual load balancers.
• Extensibility: Supports traffic shaping and basic policies.

• Limitations:
• Limited to Layer 7 (HTTP/HTTPS) protocols.
• Fragmentation due to controller-specific customizations.
• Advanced features (e.g., rate limiting, canary releases) require

external tools.

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: ingress-myservicea

spec:

 ingressClassName: nginx

rules:

 - host: myservice-a.foo.org

 http:

 paths:

 - path: /

 pathType: Prefix

 backend:

 service:

 name: myservice-a

 port:

 number: 80

This configuration allows external HTTP requests to http://myservice-a.foo.org/ to
be directed to the appropriate service within the cluster.

You need to configure a DNS A record to point the hostname (myservice-
a.foo.org) to the external IP address of your Kubernetes ingress controller.

Gateway API
(new approach)

• What is Gateway?
• A next-generation API standardizing how traffic is managed.
• Expands beyond HTTP/HTTPS to support L4-L7 protocols (TCP/UDP,

gRPC)

• Advantages over Ingress:
• Protocol agnostic: handles traffic for diverse protocols.
• Improved extensibility: native support for advanced policies like

authentication, rate limiting, and A/B testing.
• Standardization: provides consistent behavior across different

implementations.

• Key Components:
• Gateway: represents the physical or logical entry point (e.g., load

balancer or proxy).
• HTTPRoute/TCPRoute: specifies routing rules for different

protocols.
• GatewayClass: defines the capabilities of the underlying

implementation (e.g., NGINX, Istio).

Thanks!

References

• https://kubernetes.io/docs/concepts/cluster-
administration/networking/

• https://kubernetes.io/docs/concepts/services-
networking/

• https://kubernetes.io/docs/concepts/services-
networking/service/

• https://kubernetes.io/docs/concepts/services-
networking/ingress-controllers/

• https://kubernetes.io/docs/concepts/services-
networking/gateway/

• https://medium.com/@extio/understanding-kubernetes-
node-to-node-communication-a-deep-dive-
e1d6a5ff87f3

• https://support.tools/post/kubernetes-networking-deep-
dive/

• https://docs.cilium.io/en/stable/network/concepts/routi
ng/

https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/services-networking/
https://kubernetes.io/docs/concepts/services-networking/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/gateway/
https://kubernetes.io/docs/concepts/services-networking/gateway/
https://medium.com/@extio/understanding-kubernetes-node-to-node-communication-a-deep-dive-e1d6a5ff87f3
https://medium.com/@extio/understanding-kubernetes-node-to-node-communication-a-deep-dive-e1d6a5ff87f3
https://medium.com/@extio/understanding-kubernetes-node-to-node-communication-a-deep-dive-e1d6a5ff87f3
https://support.tools/post/kubernetes-networking-deep-dive/
https://support.tools/post/kubernetes-networking-deep-dive/

	Slide 1: Kubernetes Networking
	Slide 2: Kubernetes Networking
	Slide 3: Kubernetes Networking model
	Slide 4: Kubernetes Networking model
	Slide 5: Container-to-Container networking
	Slide 6: Pod-to-Pod networking (same node)
	Slide 7: Pod-to-Pod networking (same node)
	Slide 8: Pod-to-Pod networking (different nodes)
	Slide 9: Pod-to-Pod networking (different nodes)
	Slide 10: Container Network Interface (CNI plugin)
	Slide 11: Container Network Interface (CNI plugin)
	Slide 12: Pod-to-Service networking
	Slide 13: Pod-to-Service networking
	Slide 14: Defining a Service (ClusterIP example)
	Slide 15: Defining a Service (NodePort example)
	Slide 16: Kube-proxy
	Slide 17: Kubernetes DNS
	Slide 18: Kubernetes DNS (example)
	Slide 19: Internet-to-Service (external traffic)
	Slide 20: Ingress
	Slide 21: Gateway API (new approach)
	Slide 22: Thanks!

