
Kubernetes
Storage

An In-Depth Look

Lisa Zangrando

Kubernetes and Storage:
beyond Cloud-Native
applications

• Kubernetes for Cloud-Native applications
• designed to manage distributed architectures,

dynamic scalability, and resilience.
• ideal for stateless workloads.

• The challenge of scientific applications
• scientific applications often require persistent and

reliable data access, especially for use cases like:
Data Analysis applications, logging systems,
databases

Why is storage indispensable
in Kubernetes?

1. Data persistence across Pod restarts
• Pods are temporary by design.
• Without persistent storage, data is lost when Pods are deleted or restarted.
• Persistent storage decouples the lifecycle of data from the lifecycle of

Pods, ensuring data survives infrastructure changes.

2. Data sharing between Pods
• Distributed applications often require multiple Pods to simultaneously

access the same data.
• Kubernetes supports shared volumes, enabling efficient and

straightforward data sharing.

3. Compatibility with Diverse Storage Backends
• Kubernetes supports a wide range of storage solutions to meet application

needs:
• Block Storage: high-performance storage for transactional databases.

• Shared File Systems: collaborative or distributed applications.

• Object Storage: scalable, long-term storage for big data systems.

Storage integration in Kubernetes

• Kubernetes simplifies storage management by providing native
integrations with various types of infrastructures:

• Local storage: directly using physical disks attached to cluster nodes.
• Network systems: solutions like NFS or Ceph, offering shared access

and scalability.
• Cloud-Native services: options such as Amazon EBS, Google

Persistent Disk, Azure Disk, and S3-like object storage services.

• Kubernetes supports custom storage plugins through the Container
Storage Interface (CSI).

• CSI allows developers to integrate any storage system:
• Commercial solutions
• Custom setups

• This makes Kubernetes a universal solution for:
• On-Premises
• Hybrid
• Cloud-Native Environments

A flexible architecture
based on Volumes

• The core of Kubernetes storage: Volumes
• Volumes are abstractions that allow containers to access storage resources without

being dependent on the underlying infrastructure.
• A Kubernetes Volume is essentially a directory mounted into containers within a Pod.

• Simplified data handling for applications
• Volumes provide Pods with a mechanism to read and write files, abstracting the

complexities of storage backend connections.
• Containers remain unaware of the complexity of the underlying storage.

• Volume usage in Pods
• Once created, a Volume is mounted into containers as a directory, becoming an

integral part of the container's filesystem.
• Enables data sharing between containers in the same Pod:

• Ideal for multi-container applications where one container generates data for another.

How Volumes work?

apiVersion: v1

kind: Pod

metadata:

name: my-pod

spec:

containers:

- name: my-container

image: busybox

volumeMounts:

- mountPath: /data

name: my-volume-1

- mountPath: /app

name: my-volume-2

volumes:

- name: my-volume-1

<VOLUME-DEFINITON>

- name: my-volume-2

<VOLUME-DEFINITON>

A volume is defined in the pod spec.

Volumes are mounted into containers, making
them shared and accessible at specified paths.

apiVersion: v1

kind: Pod

metadata:

 name: my-pod

spec:

 containers:

 - name: my-container-1

 image: busybox

 volumeMounts:

 - mountPath: /data

 name: my-volume

- name: my-container-2

 image: busybox

 volumeMounts:

 - mountPath: /storage

 name: my-volume

 volumes:

 - name: my-volume

 <VOLUME-DEFINITON>

Types of Volumes

• Ephemeral Volumes:
• Temporary and tied to the lifecycle of the Pod.
• Commonly used for caching, temporary data,

or inter-container communication.

• Persistent Volumes (PVs):
• Designed for long-term storage, independent of

a Pod’s lifecycle.
• Ideal for applications requiring durable

storage, such as databases.
• Each type of volume serves distinct use cases,

addressing different levels of data persistence
and lifecycle requirements.

Ephemeral Volumes

• Definition:
• Ephemeral volumes are temporary storage solutions tied to the

lifecycle of a pod. They are created when the pod starts and are
deleted when the pod is terminated.

• Use cases:
• Scratch space: temporary storage for processing data within a

single pod lifecycle.
• Caching: speed up operations with local, short-term storage.
• Config and Secrets: lightweight storage for sensitive or temporary

data.

• Types:
• EmptyDir: storage created on the node’s disk or memory, shared

among containers in the pod.
• ConfigMap and Secret: store configuration files or sensitive data.
• CSI Ephemeral Volumes: temporary storage from a CSI driver.

apiVersion: v1

kind: Pod

metadata:

 name: ephemeral-example

spec:

 containers:

 - name: app-container

 image: nginx

 volumeMounts:

 - mountPath: "/usr/share/nginx/html"

 name: scratch-volume

 volumes:

 - name: scratch-volume

 emptyDir: {}

Explanation:
• The emptyDir volume is created when the pod starts.
• It mounts at /usr/share/nginx/html in the app-container.
• The volume is deleted when the pod is terminated.

Ephemeral Volumes
(ConfigMap example)

• Definition:
• ConfigMap is a type of ephemeral volume used to provide

configuration data, such as environment variables or configuration
files, to containers.

• Key Features:
• Allows decoupling configuration from container images.
• Automatically updates when the ConfigMap changes (depending on

pod settings).

• Example:
• The ConfigMap example-config contains a simple HTML file.
• The pod mounts the ConfigMap as a volume (config-volume) at

/usr/share/nginx/html.
• When the pod runs, the NGINX server serves the content of the

index.html file from the ConfigMap.

apiVersion: v1

kind: ConfigMap

metadata:

 name: example-config

data:

 index.html: |

 <html>

 <head><title>Welcome</title></head>

 <body><h1>Hello, Kubernetes!</h1></body>

 </html>

apiVersion: v1

kind: Pod

metadata:

 name: configmap-example

spec:

 containers:

 - name: app-container

 image: nginx

 volumeMounts:

 - mountPath: "/usr/share/nginx/html"

 name: config-volume

 volumes:

 - name: config-volume

 configMap:

 name: example-config

Persistent Volumes

• Definition:
• A Persistent Volume (PV) is a cluster-wide storage resource

provisioned independently of any specific pod. It enables data
persistence beyond the lifecycle of pods.

• Key Features:
• Decouples storage from pod lifecycle.
• Supports multiple backends (e.g., NFS, Ceph, AWS EBS, GCE

Persistent Disk).
• Provisioned:

• statically (manually) by the administrator
• dynamically by a storage provider via StorageClass defined by

the adminisrtator.

• Components:
• PersistentVolume (PV): Represents the physical storage resource.
• PersistentVolumeClaim (PVC): A request for storage by a pod.

apiVersion: v1

kind: PersistentVolume

metadata:

 name: static-pv

spec:

 capacity:

 storage: 1Gi

 accessModes:

 - ReadWriteOncePod

 hostPath:

 path: /data/static-pv

• A static hostPath volume is created, with 1Gi of storage and access mode
ReadWriteOncePod.

• The volume is created on a node at the path /data/static-pv.

Persistent Volume Claim

• Definition:
• A PersistentVolumeClaim (PVC) is a request for storage resources

in Kubernetes.
• It is used by pods to request and consume persistent storage that

has been provisioned via a PersistentVolume (PV).
• PVCs enable dynamic or static provisioning of storage resources in

Kubernetes.

• How PVC works
• Create PVC: a user or pod creates a PVC that specifies the desired

storage capacity, access mode, and other parameters (such as
storage class).

• Binding: the Kubernetes control plane looks for an available PV that
matches the request in the PVC. If a matching PV is found, the PVC
is bound to it.

• Pod usage: once bound, the PVC can be used by one or more pods
to mount the volume and access its data.

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: static-pvc

spec:

 accessModes:

 - ReadWriteOncePod

 resources:

 requests:

 storage: 1Gi

• PersistentVolumeClaim:
• A PVC requests 1Gi of storage with ReadWriteOncePod access.
• Kubernetes will try to find a PV that satisfies the claim's requirements (1Gi

storage and access mode ReadWriteOncePod).
• Binding:

• The PVC will bind to the static-pv if it matches the criteria.
• Once bound, the volume is ready for use by a pod.

kubectl get pv static-pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM

static-pv 1Gi RWOP Retain Bound static-

pvc

k get pvc static-pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES

static-pvc Bound static-pv 1Gi RWOP

Using PVC in a Pod

• A pod can then use the PVC to mount the volume

• Key Points to Remember:
• PVCs abstract storage management: PVCs allow users to request

storage without needing to understand the specifics of the
underlying infrastructure (such as whether the volume is hostPath,
NFS, or cloud storage).

• Binding: PVCs are bound to PVs based on criteria such as access
modes and storage capacity.

• Access Modes: a PVC with ReadWriteOncePod can only mount the
volume in read-write mode on one pod at a time.

apiVersion: v1

kind: Pod

metadata:

 name: nginx

spec:

 containers:

 - name: container1

 image: nginx

 volumeMounts:

 - mountPath: "/usr/share/nginx/html"

 name: storage

 volumes:

 - name: storage

 persistentVolumeClaim:

 claimName: static-pvc

• The claimName: static-pvc in the pod's volumes section tells
Kubernetes to mount the volume that is bound to the static-pvc claim.

• The pod can now access the /data path on the PV (/data/static-pv on
the node).

StorageClass
(dynamic provisioning)

• Definition:
• A StorageClass is a Kubernetes abstraction that defines

the characteristics of dynamic storage.
• It allows administrators to specify storage

configurations (e.g. type, performance, and policies) to
automate the creation of Persistent Volumes

• Why is it important?
• Dynamic provisioning: automates the PV creation

process when an application requests storage via a
PersistentVolumeClaim.

• Flexibility: provides predefined "profiles" of storage (e.g.,
high-speed, cost-effective, or highly available) for
developers to use without worrying about infrastructure
details.

• Centralized management: enables administrators to
configure StorageClasses to meet diverse application
needs while retaining resource management control.

How does a StorageClass work?

1. Definition: administrator create a StorageClass, specifying a
storage driver and its options.

2. Request via PVC: A PersistentVolumeClaim (PVC) specifies a
StorageClass.

3. Dynamic Provisioning: Kubernetes uses the driver in the
StorageClass to automatically create a PV that matches the PVC's
requirements.

4. Binding: The created PV is automatically bound to the PVC.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: nfs-csi

provisioner: nfs.csi.k8s.io

parameters:

 server: 192.168.81.177

 share: /srv/nfs_share

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: nfs-pvc

spec:

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 1Gi

 storageClassName: nfs-csi

Types of Persistent Volumes

• Kubernetes supports various types of Persistent Volumes, each with
different characteristics and use cases.

• Kubernetes manages the two kind of storage plugins (drivers) that
handle these PVs: in-tree and out-of-tree

• In-tree drivers
• Integrated directly into Kubernetes' source code.
• Each driver is part of the core system, meaning updates and

modifications depend on Kubernetes release cycles.
• Examples: awsElasticBlockStore, gcePersistentDisk, azureDisk.

• Out-of-tree drivers
• Implemented externally to Kubernetes' source code.
• Built using the modular, flexible and standardize CSI (Container

Storage Interface) architecture.
• Updates independent of Kubernetes release cycles.

PV Type Access Modes Use Case

hostPath ReadWriteOnce Local storage on a
specific node

NFS ReadWriteMany
Shared storage
accessible by multiple
nodes

iSCSI ReadWriteOnce High-performance block
storage over the network

CephFS ReadWriteMany Distributed file system
with high availability

AWS EBS ReadWriteOnce Persistent block storage
on AWS

Azure Disk ReadWriteOnce Persistent block storage
on Azure

Google Cloud Persistent
Disk ReadWriteOnce Persistent block storage

on Google Cloud

CSI Depends on provider
External storage
solutions integrated with
Kubernetes

Summary of PV types:

Thanks!

References

• https://kubernetes.io/docs/concepts/storage/volumes/
• https://kubernetes.io/docs/concepts/storage/persistent-

volumes/
• https://kubernetes.io/docs/concepts/storage/ephemeral-

volumes/
• https://kubernetes.io/docs/concepts/storage/storage-

classes/
• https://kubernetes.io/docs/concepts/storage/dynamic-

provisioning/
• https://medium.com/geekculture/storage-kubernetes-

92eb3d027282
• https://medium.com/@martin.hodges/adding-persistent-

storage-to-your-kubernetes-cluster-5e12adb81592

https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/
https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/
https://medium.com/geekculture/storage-kubernetes-92eb3d027282
https://medium.com/geekculture/storage-kubernetes-92eb3d027282

	Slide 1: Kubernetes Storage
	Slide 2: Kubernetes and Storage: beyond Cloud-Native applications
	Slide 3: Why is storage indispensable in Kubernetes?
	Slide 4: Storage integration in Kubernetes
	Slide 5: A flexible architecture based on Volumes
	Slide 6: How Volumes work?
	Slide 7: Types of Volumes
	Slide 8: Ephemeral Volumes
	Slide 9: Ephemeral Volumes (ConfigMap example)
	Slide 10: Persistent Volumes
	Slide 11: Persistent Volume Claim
	Slide 12: Using PVC in a Pod
	Slide 13: StorageClass (dynamic provisioning)
	Slide 14: How does a StorageClass work?
	Slide 15: Types of Persistent Volumes
	Slide 16: Thanks!

