
Installazione e amministrazione Kubernetes

9, 10, 11 Dicembre 2024

Container e
virtualizzazione

Alessandro Costantini



2

➢ Containers
➢ Containers vs VMs
➢ Working with containers
➢ Management
➢ Best practices and security

Overview



3

Containers

Alessandro Costantini



Containers

Alessandro Costantini



5

• Building a web service on a Ubuntu 
machine

• Code works fine on local machine
• Moved to a remote server …. does not work 

Background

• Reasons:
• Different OS => missing libraries or files for the 

runtime

• Incompatible version of software (python, java)

It is essential to find a solution to these problems

Alessandro Costantini



6Alessandro Costantini



7Alessandro Costantini



8Alessandro Costantini



9

Intermodal Shipping Container 
Ecosystem



10

OK, not everything always goes as 
planned…

Alessandro Costantini



11

Analogue solution: virtual containers

Alessandro Costantini



12

• What is “Virtualization” in general?

• It is the creation of a virtual version
 of something: an Operating System, 
a storage device, a network resource: 
pretty much almost anything can be 
made virtual.

• This is done through an abstraction, 
that hides and simplifies the details 
underneath.

Virtualization

Alessandro Costantini



13

• As server processing power and capacity 
increased, bare metal applications weren’t able to 
exploit the new abundance in resources. 
➢Thus, VMs were born, designed by running software on 

top of physical servers to emulate a particular 
hardware system. 

➢A hypervisor (VMM) - > is software, firmware, or 
hardware that creates and runs VMs. 
➢ sits between the hardware and the virtual machine and is 

necessary to virtualize the server.

• Within each VM runs a unique guest OS. 
• VMs with different operating systems can run on the 

same physical server

What are VMs?

Alessandro Costantini



14

Virtual Machines (VMs) carry quite some overhead with them

Going beyond …. Virtual Machines

Virtual Machine
➢ Each virtualized application includes not only the 

application — which may be only 10s of MB — and the 
necessary binaries and libraries, but also an entire 
guest operating system — which may weigh 10s of GB.

Container
➢ comprises just the application and 

its dependencies. It runs as an 
isolated process in userspace on 
the host operating system, sharing 
the kernel with other containers. 
Thus, it enjoys the resource 
isolation and allocation benefits of 
VMs but is much more portable 
and efficient.

Alessandro Costantini



15

• Operating system (OS) virtualization has grown in 
popularity over the last decade to enable software to 
run predictably and well when moved from one server 
environment to another.
• containers provide a way to run these isolated systems on a 

single server or host OS.
• containers sit on top of a physical server and its host OS

• shares the host OS kernel, the binaries and libraries 
• Shared components are read-only  =>”light”
• reduce management overhead as they share a common OS
operating system 

• Differences 
• Containers provide a way to virtualize an OS so that multiple 

workloads can run on a single OS instance
• VMs, the hardware is being virtualized to run multiple OS 

instances

What are containers?

Alessandro Costantini



16

A container is a standard unit of software that packages up code and 
all its dependencies, so the application runs quickly and reliably from 
one computing environment to another

Containers as «lightweight VMs»

Source: http://goo.gl/4jh8cX

Alessandro Costantini

http://goo.gl/4jh8cX


17

Docker

Alessandro Costantini



18

“Lightweight”, in practice

• Containers require less resources: they start faster and run faster than VMs, and you 
can fit many more containers in a given hardware than VMs.

• Very important: they provide enormous simplifications to software development and 
deployment processes, because they allow to simply encapsulate applications in a 
controlled and extensible way.

• Provide a uniformed wrapper around a software package:
➢ «Build, Ship and Run Any App, Anywhere»

“Similar to shipping containers: The container is always the same, regardless of the 
contents and thus fits on all trucks, cranes, ships, …”



19

Docker
• Docker is an open-source platform that automates the development and deployment 

of applications inside portable and self-sufficient software “containers”.
• Like virtualenv for Python

 
• Main components:

• Docker Engine 

• portable runtime and packaging system 

that gives standardized environments for 

the development and flexibility for 

workload deployment so that it is not 

restricted by infrastructure technology. 

• Docker Hub

• Docker Hub is a cloud solution for sharing 

apps and automating workflows. 

Alessandro Costantini



20

Containers vs. Images

• “A container image is a lightweight, 
standalone, executable package of software 
that includes everything needed to run an 
application: code, runtime, system tools, 
system libraries, and settings.”
➢A Docker image is an immutable (unchangeable) 

file that contains the source code, libraries, 
dependencies, tools, and other files needed for an 
application to run.
➢ They are templates, read-only, cannot run
➢Container is a running image 

Alessandro Costantini



21

Docker container

• From a container image, you can start a container based on it. Docker 
containers are the way to execute that package of instructions in a runtime 
environment

• Containers run until they fail and crash, stopped.
• does not change the image on which it is based

• Docker image = recipe for a cake 

• and a container = cake you baked from it.

Alessandro Costantini



22

Docker Image

• A Docker image typically specifies:
• Which external image to use as the basis for the 

container, unless the container image is written 
from scratch;

• Commands to run when the container starts;
• How to set up the file system within the 

container; and
• Additional instructions, such as which ports to 

open on the container, and how to import data 
from the host system.

• It is a set of instructions that defines what should run inside a container.

Alessandro Costantini



23

Container terminology

• Container: 

• In Linux, containers are an operating system virtualization technology used to package applications and their dependencies and run them in isolated environments. 

• Container Image: 

• Container images are static files that define the filesystem and behavior of specific container configurations. Container images are used as a template to create 
containers.

• Docker: 

• Docker was the first technology to successfully popularize the idea Linux containers. 

• Among others, Docker’s ecosystem of tools includes docker, a container runtime with extensive container and image management features, docker-compose, a system 
for defining and running multi-container applications, and Docker Hub, a container image registry.

• Linux cgroups: 

• or control groups, are a kernel feature that bundles processes together and determines their access to resources. Containers in Linux are implemented using cgroups 
in order to manage resources and separate processes.

• Linux namespaces: 

• a kernel feature designed to limit the visibility for a process or cgroup to the rest of the system. Containers in Linux use namespaces to help isolate the workloads and 
their resources from other processes running on the system.

• LXC: 

• LXC is a form of Linux containerization that predates Docker and many other technologies while relying on many of the same kernel technologies. Compared to Docker, 
LXC usually virtualizes an entire operating system rather than just the processes required to run an application, which can seem more similar to a virtual machine.

• Virtual Machines: 

• Virtual machines, or VMs, are a hardware virtualization technology that emulates a full computer. A full operating system is installed within the virtual machine to 
manage the internal components and access the computing resources of the virtual machine.

Alessandro Costantini

https://hub.docker.com/


24

Docker for different OS

Supported OS:
• https://docs.docker.com/engine/install/

• Windows: https://docs.docker.com/desktop/install/windows-install/
• Linux: 

• for RedHat see https://docs.docker.com/engine/install/centos/
• MacOS: https://docs.docker.com/desktop/install/mac-install/

Alessandro Costantini

https://docs.docker.com/engine/install/


25

Working with images

Alessandro Costantini



26

• To avoid specifying sudo before each docker command, the 
users has been added to the docker Unix group. Check it:
$ id
(where do you see it?)

$ docker info
[…]
Containers: 0
 Running: 0
 Paused: 0
 Stopped: 0

[…]

Check hands-on environment

Alessandro Costantini



27

Search, pull, run

• Try these commands on your environment:
• Search for a container image at Docker Hub:

• $ docker search ubuntu (or e.g. docker search rhel – what would 
this do?)

• Fetch (pull) a Docker image (in this case, an Ubuntu container image):
• $ docker pull ubuntu

• List images
• $ docker images

• Execute (run) a docker container:
• Run the “echo” command inside a container and then exit:

• $ docker run ubuntu echo "hello from the container”
hello from the container

• Run a container in interactive mode:
• $ docker run -it ubuntu /bin/bash

Alessandro Costantini



28

How efficient is docker?
$ docker images

REPOSITORY      TAG         IMAGE ID       CREATED       SIZE

ubuntu        latest        7698f282e524     2 weeks ago     72.9MB

=> the latest Ubuntu image takes about 70MB of disk space as a container. If you 
had just to download a full Ubuntu (server) distribution, it would be more in the 
range of 900MB.

$ time docker run ubuntu echo “hello from the container”
hello from the container

real  0m1.384s
user  0m0.069s
sys  0m0.106s

=> The total time it takes on this system (not a really powerful one) to start a 
container, execute a command inside it and exit from the container is about 
half a second. 

Alessandro Costantini



29

How to extend a docker container (1)

• Suppose you need a command inside a container, but it is not 
installed in the image you pulled from Docker Hub. For example, you 
would like to use the ping command but by default it’s not available:

• $ docker run ubuntu ping www.google.com
docker: Error response from daemon: OCI runtime create failed: 
container_linux.go:345: starting container process caused "exec: \"ping\": 
executable file not found in $PATH": unknown.

• We can install it ourselves; it is in the package iputils-ping:
• $ docker run ubuntu /bin/bash -c "apt update; apt -y install inetutils-ping"

• But it still doesn’t work!?
• $ docker run ubuntu ping www.google.com
docker: Error response from daemon: OCI runtime create failed: 
container_linux.go:345: starting container process caused "exec: \"ping\": 
executable file not found in $PATH": unknown.

Alessandro Costantini

http://www.google.com/
http://www.google.com/


30

How to extend a docker container (2)
• Whenever you issue a docker run <container> command, a new container is started, 

based on the original container image.
• Check it yourself with $ docker ps -a command.

• If you modify a container and then want to reuse it (which is often the case!), you need 
to save the container, creating a new image.

• So, install what you need to install (e.g. the iputils-ping package) , and then issue a 
commit command like
$ docker commit xxxx ubuntu_with_ping

• This locally commits a container, creating an image with a proper name 
(ubuntu_with_ping). Take xxxx from the container ID shown by the docker ps –a output.

Alessandro Costantini

• $ docker images

REPOSITORY      TAG         IMAGE ID       CREATED       SIZE

ubuntu_with_ping   latest        3e7a8818665f     11 minutes ago    97.2MB

ubuntu        latest        7698f282e524     7 days ago      69.9MB



Workshop on management of distributed resources for genomic 
communities

31

Dockerfile



32

Container Layers

• Dockerfile
• A series of instruction for building 

images
• Each Dockerfile command creates a 

Layer
• Only ADD, RUN and COPY influence the 

size of the image

• Container layers
• From image to container

•$ cat Dockerfile 

FROM ubuntu

ENV DEBIAN_FRONTEND=noninteractive

RUN apt update

RUN apt install –y inetutils-ping

This Dockerfile:
• Starts from the Ubuntu container
• Updates all installed packages
• Installs inetutils-ping



33

Image building process
$ docker build -t ubuntu_ping .

[+] Building 13.6s (7/7) FINISHED                                                                               docker:default

 => [internal] load build definition from Dockerfile                                                                      0.6s

 => => transferring dockerfile: 133B                                                                                      0.0s

 => [internal] load metadata for docker.io/library/ubuntu:latest                                                          0.0s

 => [internal] load .dockerignore                                                                                         0.8s

 => => transferring context: 2B                                                                                           0.0s

 => [1/3] FROM docker.io/library/ubuntu:latest                                                                            0.0s

 => [2/3] RUN apt update                                                                                                  5.6s

 => [3/3] RUN apt install -y inetutils-ping                                                                               4.9s

 => exporting to image                                                                                                    0.7s

 => => exporting layers                                                                                                   0.6s

 => => writing image sha256:58aef102eafa16e65541bf7446aa8ac24c8edf61079f7999bf549ad9caf13d51                              0.0s

 => => naming to docker.io/library/ubuntu_ping                                                                            0.0s



34

Inspect image building 

$ docker images

REPOSITORY  TAG  IMAGE ID  CREATED  SIZE

ubuntu_ping        latest  58aef102eafa  5 minutes ago  121MB

ubuntu  latest  26b77e58432b  2 weeks ago  78.1MB

hello-world  latest  d1165f221234  6 weeks ago  13.3kB

$ docker history 58aef102eafa

IMAGE          CREATED         CREATED BY                                      SIZE      COMMENT

58aef102eafa   3 minutes ago   RUN /bin/sh -c apt install -y inetutils-ping…   1.02MB    buildkit.dockerfile.v0

<missing>      3 minutes ago   RUN /bin/sh -c apt update # buildkit            42.1MB    buildkit.dockerfile.v0

<missing>      3 minutes ago   ENV DEBIAN_FRONTEND=noninteractive              0B        buildkit.dockerfile.v0

<missing>      2 weeks ago     /bin/sh -c #(nop)  CMD ["/bin/bash"]            0B

<missing>      2 weeks ago     /bin/sh -c #(nop) ADD file:34dc4f3ab7a694ecd…   78.1MB

<missing>      2 weeks ago     /bin/sh -c #(nop)  LABEL org.opencontainers.…   0B

<missing>      2 weeks ago     /bin/sh -c #(nop)  LABEL org.opencontainers.…   0B

<missing>      2 weeks ago     /bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH     0B

<missing>      2 weeks ago     /bin/sh -c #(nop)  ARG RELEASE                  0B



35

Reduce Layers

• More layers mean a larger image
• The larger the image, the longer that it takes to build, push and pull

• Smaller images mean faster builds and deploys

• How reduce layers
• Use shared base images (where possible)
• Limit the data written on the container layers
• Chain RUN statemets

• Some links
• https://dzone.com/articles/docker-layers-explained
• https://stackoverflow.com/questions/32738262/whats-the-

differences-between-layer-and-image-in-docker

https://dzone.com/articles/docker-layers-explained
https://stackoverflow.com/questions/32738262/whats-the-differences-between-layer-and-image-in-docker
https://stackoverflow.com/questions/32738262/whats-the-differences-between-layer-and-image-in-docker


36

Best practices and security

Alessandro Costantini



37

Some best practices for building 
containers
1. Put a single application per container. For example, do not

 run an application and a database used by the application 
in the same container.

2. Do not confuse RUN with CMD. 
• RUN runs a command and commits the result; 

• CMD does not execute anything at build time, it specifies the intended command for the image.

3. If in a Dockerfile you have layers  that change often, 
put them at the bottom of the Dockerfile. This way, you 
speed up the process of building the image.

4. Keep it small: use the smallest base image possible, remove unnecessary tools, install only 
what is needed.

5. Properly tag your images, so that it is clear which version 
of a software it refers to.

6. Do you really want / can you use a public image? 
Think about possible vulnerabilities, but also about 
potential license issues.

7. Passwords, certificates, encryption keys, etc. 
Do not embed them into the containers, and do not store them e.g. in GitHub repositories!

More (and more detailed) information available at
https://bit.ly/2Zr6Hyq 

Alessandro Costantini

https://bit.ly/2Zr6Hyq


38

Recap of Containers

• We covered the basic concepts about Containers, comparing 
them to Virtual Machines.

• We see how to execute some basic command like list docker 
images and extend them to create new containers.

• We then saw how to build an image via Dockerfiles.

• We then discussed about some Docker limitations, in particular 
with regard to security

Alessandro Costantini


	Diapositiva 1: Container e virtualizzazione
	Diapositiva 2: Overview
	Diapositiva 3: Containers
	Diapositiva 4
	Diapositiva 5: Background
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9: Intermodal Shipping Container Ecosystem
	Diapositiva 10: OK, not everything always goes as planned…
	Diapositiva 11: Analogue solution: virtual containers
	Diapositiva 12: Virtualization
	Diapositiva 13: What are VMs?
	Diapositiva 14: Going beyond …. Virtual Machines
	Diapositiva 15: What are containers?
	Diapositiva 16: Containers as «lightweight VMs»
	Diapositiva 17: Docker
	Diapositiva 18: “Lightweight”, in practice
	Diapositiva 19: Docker
	Diapositiva 20: Containers vs. Images
	Diapositiva 21: Docker container
	Diapositiva 22: Docker Image
	Diapositiva 23: Container terminology
	Diapositiva 24: Docker for different OS
	Diapositiva 25: Working with images 
	Diapositiva 26
	Diapositiva 27: Search, pull, run
	Diapositiva 28: How efficient is docker?
	Diapositiva 29: How to extend a docker container (1)
	Diapositiva 30: How to extend a docker container (2)
	Diapositiva 31: Dockerfile
	Diapositiva 32: Container Layers
	Diapositiva 33: Image building process
	Diapositiva 34: Inspect image building 
	Diapositiva 35: Reduce Layers
	Diapositiva 36: Best practices and security
	Diapositiva 37: Some best practices for building containers
	Diapositiva 38: Recap of Containers

