ITS3: Report on the analysis/paper on micro-ITS3

Shyam Kumar, Gianfranco, Bogdan, Francesco and others

INFN Bari, Italy

Micro-ITS3 test beam data analysis

Demonstration of tracking capabilities of bent ALPIDE MAPS mimicking a truly cylindrical barrel configuration in view of the ITS3 upgrade of ALICE

ALICE ITS project*

micro-ITS3 setup using ALPIDE bent sensors (DUT)

X-ray tomography

Analysis using Corryvreckan software and local scripts:

- → Alignment
- Tracking
- Vertexing
- Event display

Difficult to align bent sensors so developed local scripts

Estimation of DCA between beam and tracks and interaction vertex

05/11/24

Alignment using ROOT code

$$res_{x/y} = reco_{x/y} - meas_{x/y}$$

Unbiased:

$$\sigma_{\text{single hit x/y}} = \sqrt{\sigma_{\text{res x/y}}^2 - \sigma_{\text{tracking}}^2}$$

Is uncertainity underestimated?

05/11/24

Track fitting and Modified Sketch (η-ranges)

05/11/24

ITS3 meeting-Shyam Kumar

Test beam data analysis: Results

Selection of tracks based on p-value: To avoid sensitivity to the ndf

p-value =
$$1 - \text{CDF}(\chi^2, ndf)$$

3, 4, 5, and 6 hits tracks: ndf are 2, 4, 6, 8 respectively

double pvalue = ROOT::Math::chisquared_cdf_c(chi2, ndf);

p-value is the probability of having χ^2 value larger than what you observed, i.e. $P(\chi^2 > \chi^2 fit)$. If this probability is very small, it means that the hypothesis that your fit function is a good representation of your data is very unlikely

PYTHIA8 Simulation

Event details

Process A B -> X B single diffractive with code 103 is 2 -> 2. It has s = 2.269e+02, t = -2.522e-01, u = -2.120e+02, pT = 4.870e-01, m3 = 3.467e+00, m4 = 9.383e-01, theta = 6.863e-02, phi = 7.014e-01.

----- End PYTHIA Info Listing -----

----- PYTHIA Event Listing (complete event) ------

id name mothers daughters colours p x no status p y pz m e 0.000 119.996 178.618 132.308 0 90 (system) -11 0 0 0 0 0 0.000 2212 (p+) 0.000 119.996 120.000 0.938 1 -12 0 0 3 0 0 0.000 21000290630 (63Cu) -0.000 58.618 58.619 -12 0 0.000 0.000 2212 (p+) 0.000 119.996 120.000 0.938 3 -13 0.000 0 2212 (p+) 0.000 0.000 -0.000 0.938 0.938 4 -13 2 0 6 0 0 0 9902210 (p_diffr+) 0 0.372 0.314 119.814 119.866 3.467 -15 5 2212 p+ -0.3140.182 0.938 6 14 -0.3721.073 7 2 (u) -24 0.386 0.326 3.630 3.679 0.325 201 0 -5 2101 (ud_0) 0.650 8 -0.014 -0.011 116.184 116.186 9 1000280629 NucRem 0.000 57.680 57.680 14 2 0.000 0.000 0 111 (pi0) -83 7 -0.1790.155 1.580 1.604 0.135 10 8 13 0 0.938 2212 p+ 0.415 32.150 32.177 11 83 0.822 111 (pi0) -0.256 86.084 86.085 0.135 12 -84 -0.27122 gamma 0.025 0.086 0.097 0.000 13 91 -0.037n 22 gamma 14 91 -0.1410.130 1.494 1.507 0.000 Ω 22 gamma -0.190 15 -0.19347.011 47.012 0.000 91 -0.066 39.073 39.073 0.000 16 22 gamma 91 0 -0.07912 0 0 Charge sum: 30.000 Momentum sum: 0.000 0.000 119.996 178.618 132.308

 $p+Cu \rightarrow p+\pi^0(\gamma \gamma)$

05/11/24

Hit Multiplicity

6 hits more combinations in data

My idea is just try once outward->Inward fitting (?)

Check event display with all properties of tracks

Eta distribution

All Outgoing tracks (p-value>=0)

Selected tracks (p-value>0.001)

Remnant beam tracks (tracks formed with 12 hits)

Incoming beam (3319 Events)

has a an angle with respect to z-axis

DCA Resolution vs Nhits

All data (p-value>=0) Data with (p-value >0.001) Data with (p-value >0.05) ToyMC (χ^2 <5)

4 hits and 5-hits tracks are suppressed after applying a selection based on p-value?

Issue by Andrea and Fabrizio (solved):

- Comment: we are using only large eta-tracks only means using not using bent region
- Answer: Now we are also showing results for pure 3 hits means accessing bent region of DUT

05/11/24

DCAxy Resolution for ITS3

Qualitative Comparison:

- Black marker with 3 hits (our result)
- Magenta marker with 6 hits (our results)
- Three hits case can be compared with the hyperon tracking

Values of the DCA resolution in the order of 30 μm are found when the tracks of the hyperons are made of three or more hits

05/11/24

Cu-target thickness = 1.16 mm

Z-vertex resolution must include DCAz resolution: Fit with step function convoluted with Gaussain?

DCA_{xy} and DCA_z Resolution

Beam is precisely known in transverse plane with an uncertainity of ~ 4 μm because of very high-momentum

What about z-position of interaction vertex? Fit the vertex using produced tracks

DCA_{xy} and DCA_z Resolution

hDCAXY

Considering 6 hit tracks with a very high momentum: fast simulations

05/11/24

Rejected

05/11/24

Selected and Rejected tracks

P-val (>0.001) vs Chi2 (selected)

05/11/24

X Residuals for selected tracks with 3 hits

Y Residuals for selected tracks with 3 hits

Layer 7 has large residuals

X Residuals for rejected tracks with 3 hits

Layer 7 has large residuals

Y Residuals for rejected tracks with 3 hits

Layer 7 has large residuals

Layer 8 Layer 6 Layer 7 v hit residual for non selected tacks with 3 hits v hit residual for non selected tacks with 3 hits v hit residual for non selected tacks with 3 hits 124 124 Entries Entries Entries 124 16 16 14 12 10 8 6 Mean 0.5548 Mean -6.213 Mean 0.5516 2.276 Std Dev 29.57 Std Dev Std Dev 2.267 Underflow 0 Underflow Underflow 0 Overflow 0 Overflow Overflow 0 1.1 -900 -100 -100 -80 -60 -40 -20 0 20 40 60 80 100 -60 -40 60 80 100 -80 -60 _40 -20 0 20 100 -80 -20 0 20 40 res [µm] res [µm] res [µm] Layer 10 Layer 9 Layer 11 y hit residual for non selected tacks with 3 hits y hit residual for non selected tacks with 3 hits y hit residual for non selected tacks with 3 hits Entries 0 Entries 0 Entries 0 0 0 0 Mean Mean Mean Std Dev 0 Std Dev 0 Std Dev 0 Underflow 0 Underflow 0 0 0.8 0.8 0.8 Underflow Overflow 0 Overflow 0 Overflow 0 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 -900 -40 80 -900 60 80 100 -100 -40 40 80 -80-60-20 0 20 40 60 100 -80-60-40-200 20 40 -80-60 -20 0 20 60 100 res [µm] res [µm] res [µm]

X Residuals for rejected tracks with 4 hits

Layer 7

Layer 6

Layer 8

Layer 9

Layer 10

Y Residuals for rejected tracks with 4 hits

Layer 7

Layer 6

Layer 8

Layer 9

Layer 10

X Residuals for rejected tracks with 5 hits

Layer 7

Layer 6

Layer 8

Layer 9

Y Residuals for rejected tracks with 5 hits

Layer 7

Layer 6

Layer 8

Layer 9

res [µm]

Layer 10

X Residuals for selected tracks with 6 hits

Layer 7

x hit residual for tacks with 6 hits

Layer 6 x hit residual for tacks with 6 hits Entries Mean Std Dev

450

400

5526

2.013

0

-0.02331

200

180

160

140

120

100

80

60

40

20

-100

Overflow 350 300 250 200 150 100 50 I I I -100 -80 -60 -40 -20 Ó 20 40 60 80 100

Entries 5526 0.01773 Mean 4.638 Std Dev Overflow 0 -80 -60 -40 -20 0 20 40 60 80 100 res [µm]

x hit residual for tacks with 6 hits 5526 Entries Mean 0.2054 Std Dev 5.982 Overflow

0

Layer 8

160

140

120

100

20

-100

-80

-60 -40 -20 0

Layer 9

res [µm]

Layer 10

Layer 11

res [µm]

20

40

60

80 100

x hit residual for tacks with 6 hits x hit residual for tacks with 6 hits x hit residual for tacks with 6 hits 600 5526 5526 5526 Entries Entries Entries 140 90
80
70
60
50
40
30
20 -0.3541 -0.1669 0.03598 Mean Mean Mean 13.61 7.207 Std Dev Std Dev 500 Std Dev 1.606 120 Overflow 0 Overflow 0 Overflow 0 100 400 80 300 60 200 40 100 20 10 Verning and a state of the stat -80 -60 -40 -0 20 40 60 80 -900 -100 -100 -80 -60 -40 -20 0 20 60 80 100 -60 -40 -20 0 20 40 60 80 100 -20 20 100 -80res [µm] res [µm] res [µm]

Y Residuals for selected tracks with 6 hits

Layer 6

Layer 9

Layer 10

X Residuals for rejected tracks with 6 hits

Layer 7

Layer 6

350

300

250

200

150

100

Layer 8

Layer 9

_40

_20

Layer 10

Y Residuals for rejected tracks with 6 hits

Layer 6

Layer 9

