

A Convolutional Neural Network Algorithm for 2.5 MeV Neutron Discrimination in LaCl₃ Scintillators

Author: F. Guiotto

Co-Authors: G. Guarino, D. Rigamonti, G. Croci, C. Cazzaniga, A. Dal Molin, M. Tardocchi, M. Nocente, E. Perelli Cippo, M. Rebai, G. Gorini, P. Franz, M. Zuin, A. Muraro

Funded by the European Union

NextGenerationEU

LaCl₃ scintillators: neutron spectroscopy

Main reaction of interest for neutron spectroscopy: $^{35}Cl(n,p)^{35}S \rightarrow Q$ -value = 0.6 MeV

Figure 1. Cross sections of the different reaction channels from ENDF/B-VIII.0 library [10].

- LaCl₃ scintillators
 → inorganic crystals.
- 2.5 MeV neutron spectroscopy in NF.
- Compact alternative to TOFOR and MPR spectrometers

 multi-lines-of-sight cameras possible
- Good alternative to CLYC scintillators: faster signal: ~100 ns vs > 1 µs → higher rate capability
- Energy resolution ~10% at 2.5 MeV
- Main application at the moment:
 - Fast ion studies

D Rigamonti, G Guarino, et al 2025 Meas. Sci. Technol. 36 015907

Expected diffculties in using Lacl3 in nuclear fusion experiments

D Rigamonti, G Guarino, et al 2025 Meas. Sci. Technol. 36 015907

LaCl₃ efficiency for gammas > efficiency for neutrons → high gamma counts

- Efficiency for 2.5 MeV neutrons through the 35 Cl(n,p) 35 S reaction channel is ~ 1-3 %
- Efficiency for Gamma rays:
- ~ 50% at 500 keV
- ~ 40% at 1 MeV
- ~ 30% at 10 MeV

- AFSD: better discrimination compared to standard PSD.
- However, optimal extraction regions might be different for different experiments and somewhat subjective.
- → This could complicate FPGA implementation for real-time processing.
 - → Possible solution: alternative algorithm with similar performance.
 - → Convolutional Neural Network

Single pulse NN discriminator:

training and validation measurements

at PTB (Physikalisch Technische Bundesanstalt, Germany)

neutron dataset:

Measurements of neutrons with 9 different energies from ~2 MeV to 5 MeV

gamma and alpha dataset:

Gamma (= beta) **and alpha** particles: intrinsic radioactivity of the LaCl₃ crystal + gamma calibration sources + PTB data

activation = Relu

Federico Guiotto

activation = Softmax

slide 3/6

Example of AFSD sampling for training data (careful selection):

activation = Relu

- Low-scatter measurement hall of PTB:
 - H and D beams, solid Ti(T) target or gas target made of D2 molecules.
 - Nuclear reactions: p(T,n)3He or D(D,n)3He.
- Changing detector angle wrt beam direction → selection of different neutron energies.
- Training with balanced classes: Nalpha = Nneutrons = Ngammas = 208645.
- **Supervised learning:** "true label" = **AFSD label.**
- AFSD regions carefully selected to have high confidence).

D-D neutron measurements (2.5 MeV) at NILE, UK:

- **Neutron Irradiation Laboratory for Electronics (NILE)** at the Rutherford Appleton Laboratory (RAL, in UK).
- Compact **Deuterium-Deuterium neutron generator** (2.5 MeV).
- Significant amount of gamma background, thermal and scattered neutrons.
- Radiation field **significantly more complex** than PTB.
 - → test PSD performances in more realistic environment, similar to fusion experiments.

rationale: better to reject pulses ▼ than to pollute measurements **Normalized Confusion Matrix** 99.9030% 0.0000% 0.0970%

0.0000%

99.5573%

1.0

8.0

0.6

0.4

0.2

0.0

Predicted Labe

0.2739%

NOTE: with "neutron" we mean a neutron that creates p and 35S in the crystal.

Future test: data from LaCl₃ at MAST-U

Additional developments (presented in the poster session)

- Algorithm upgraded: composite architecture to process data from LaCl₃ neutron measurements in an automated way.
 - → in view of **FPGA implementation** for real-time analysis: supervision by the operator is not feasible.
- The algorithm processes raw waveforms from the detector and classify them, rejecting those identified as potentially dangerous for dataset pollution (noisy, out of scale, degenerate pile-ups, etc).
- Pile-up pulses are totally or partially restored, depending on the waveform type.
 - → More details in the poster presentation:

Poster number: 4

Conclusions

- A **Convolutional Neural Network** able to discriminate **alphas, gammas and neutrons** (reacting through the ³⁵Cl(n, p)³⁵S channel) has been developed as an alternative PSD method to the traditional one and the AFSD method.
- Training (supervised learning) was performed using experimental data from intrinsic radiation, gamma calibration sources and neutrons at different energies (2 5 MeV) measured at the PTB facility in Germany. The "true" labels were determined using the AFSD method (PSD based on Fourier Transforms).
- A test was performed using 2.5 MeV neutrons, measured at the NILE (UK) facility, exploiting the D-D reaction. Good agreement was found in terms of accuracy, confusion matrix, classification report and energy spectra comparison.
- **Results** presented in this work should be considered **preliminary.**
 - New data will be used to train the NN, e.g. protons from INFN-Legnaro experiments.
 - The algorithm will be further tested with data from a nuclear fusion experiment: MAST-Upgrade (UK), where a LaCl₃ scintillator was recently installed (July 2025) for the detection of Deuterium-Deuterium neutrons.

Backup slides

Author: F. Guiotto

Co-Authors: G. Guarino, D. Rigamonti, G. Croci, C. Cazzaniga, A. Dal Molin, M. Tardocchi, M. Nocente, E. Perelli Cippo, M. Rebai, G. Gorini, P. Franz, M. Zuin, A. Muraro

Funded by the European Union

NextGenerationEU

Test on 14.8 MeV neutrons measured at PTB

Model trained without gammas and alphas from PTB

- D beam, solid Ti(T) target: D(T,n)⁴He reaction.
- AFSD vs Energy plot: **overlap among different classes**: choice of
- Optimal regions subjective to the operator problem for automatization.
- **AFSD** and convNN both applied to the dataset: results are very close.
- **GEANT4** simulation: 14.8 MeV neutrons impinging on a
- **Isolated LaCl3 crystal** → simulated neutron and experimental spectra comparison --> good agreement despite simple model simulation.

