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PSD algorithm for LaCl3 

Types of raw waveforms
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Conclusions
An algorithm based on Convolutional Neural Networks (CNNs) has been developed for automated processing of data from 
measurements performed with a LaCl3 scintillator. The algorithm processes raw input waveforms and classify them based on 
their type, rejecting those identified as potentially dangerous for dataset pollution. Pile-up waveforms are identified and 
recovered with a Recursive Neural Network to become individual pulses. The only exception are the waveforms of type “close 
pile-up”, which are only labeled without determining the energy information of their pulse pairs. Different CNNs predict the 
particle type associated to each pulse, selecting the label among “alpha”, “gamma”, and “neutron”. Training and testing of the 
CNNs were performed using experimental data from two different neutron facilities: PTB (Germany) and NILE (UK). 
The algorithm will be tested in a nuclear fusion environment using data acquired from the MAST-U experiment (UK).
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Waveform type discrimination
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processing architecture

Number of test waveforms = 65 000. Good performance in discriminating the 
waveform type. Moreover, misclassified events are not problematic: 

● Pulses mistakenly identified as trash are simply thrown away without polluting the 
dataset.

● Trash pulses identified as close are superclose pulses misclassified as close 
pulses. Maybe they are actually distinguishable (in any case, just 0.1%).

● Cut pulses identified as single are not a problem due to window extraction. 
● Single pulses identified as trash are characterized by higher noise.

● Low Scatter Measurement Hall at PTB, Germany → Experimental 
data used for training and validation. 

● Testing dataset measured at the NILE facility, UK
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Tested with 65 000 waveforms

total histogram counts 
= total number of 
processed peaks with 
energy information 
preserved = 37351 

Training (supervised 
learning) performed 
with 40140 single pulse 
waveforms (balanced 
classes). 

"High confidence" threshold: 
Predicted probability > 85%

● Percentage of pulses discarded (wrt 
the total): 13.15%

● Percentage of neutron-containing 
wfs discarded (wrt the total number of 
neutrons): 16.73%

● Percentage of alpha-containing wfs 
discarded(wrt the total number of 
alphas): 8.85%

● Percentage of gamma-containing wfs 
discarded(wrt the total number of 
gammas): 12.57%

Example of a synthetic close waveform:
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14.46%

● Percentage of neutron-
containing wfs discarded 
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● Percentage of alpha-
containing wfs discarded(wrt 
the total number of alphas): 
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● Percentage of gamma-
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the total number of 
gammas): 13.58%
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superclose, noisy, 
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The input to the NN is just a 
portion of the waveform 
around the peak (164 samples = 328 ns)

Full architecture discrimination 
performance:

This classification of waveforms and their 
subsequent processing were inspired by the 
following work:
Fu, C., Di Fulvio, A., Clarke, S. D., Wentzloff, D., 
Pozzi, S. A., & Kim, H. S. (2018). “Artificial neural 
network algorithms for pulse shape 
discrimination and recovery of piled-up pulses in 
organic scintillators”. Annals of Nuclear Energy, 
120, 410–421.
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