

α-particles monitoring of reactor plasmas

Acknowledgements

Beaumont P. S., Beldishevski M., Ghani Z., Hussain R., Jones I., Kandan B., Marsh R., Mianowski S., Mianowska Z., Tilley A. & Turner A.,

JET contributors* and the EUROfusion Tokamak Exploitation Team**

UKAEA, Culham Campus, Abingdon, Oxfordshire, OX14 3DB, UK

^{*}See the author list of C.F. Maggi et al 2024 Nucl. Fusion 64 112012

^{**} See the author list of E. Joffrin et al 2024 Nucl. Fusion 64 112019

Outline

- ☐ JET fusion diagnostics
 - \triangleright γ -ray spectrometry
 - \checkmark α -particle studies
 - ✓ fusion reaction control
 - \triangleright α -particle loss detectors
- \Box Fusion γ -ray spectrometer for next step devices
 - FUGAS prototype
 - FUGAS tests
- □ Alpha-particle loss monitoring in fusion plants
 - \triangleright α -particle loss monitoring with γ -rays
 - \triangleright α -particle charge collectors
- Conclusions

JET vs ITER

 $V_{ITER} / V_{JET} \sim 10$

 W_{JET} (D-T) = 59 MJ

JET Diagnostics

> 100 diagnostic instruments

JET fusion diagnostics experience

Gamma-ray spectrometers

Vertical spectrometers

Gamma-ray diagnostics became a routine instrument to study fast-ions and fusion-born α-particles on JET in this century

Kiptily V G et al 2002 NF 999
Kiptily V G, Cecil F E and Medley S S, 2006 PPCF 48 R59
Tardocchi M, Nocente M & Gorini G 2013 PPCF 55 074014
Nocente N et al 2020 PPCF 62 014015

γ-ray spectrometry: <u>fast-ion studies</u>

D-ions accelerated by ICRF produce 3.6-MeV **alphas** in **D**³**He**-plasmas

γ-ray spectrometry: DT α-particle studies

Vertical spectrometers

- α-particle related γ-emission from the ⁹Be(α,nγ)¹²C reaction ~ 20-30% of total (depends on Be%)
- Background 4.44-MeV γ-emission due to ¹²C(n,n'γ)¹²C: W-CFC divertor in LoS

Kiptily V G et al 2024 NF **64** 086059

γ-ray spectrometry: <u>fusion gammas</u>

T-plasmas with H-minority heating 1000 The first ever observation! Vertical spectrometer Tangential spectrometer al 2024 NF **64** 086059 100 $T(p,\gamma)^4He$ Q = 19.98 MeVdN, / dE 10 -Kiptily V G 10 12 20 14 18 24

 $T(d,\gamma_{17\text{MeV}})^5$ He is a weak branch (~10⁻⁵) of the $T(d,n)^4$ He

 $T(p,\gamma_{20MeV})^4He: \sigma(E_p=1 \div 3MeV) \sim 0.03 \div 0.1 \text{ mb}$

E (MeV)

γ-ray spectrometry: <u>fusion gammas</u> cont.

ICRF heating of D-T-plasmas

T(d,γ)⁵He & T(p,γ)⁴He: n_D/n_T fuel-ratio & <T> in the plasma core.

γ-ray spectrometry: <u>fusion gammas</u> cont.

H-minority heating of T-plasmas

In burning plasmas, γ20-MeV due to DD-protons can be used to infer the core temperature

γ-ray tomography: image of confined alphas

Before sawtooth

γ-ray images of accelerated ⁴He-ions in ICRF heating experiment in He-plasmas

- Detected 4.44MeV γ-ray emission from the reaction ⁹Be(α,nγ)¹²C (E_α>1.7 MeV)
- Reconstructed γ-ray images of ⁴He-ions in different phases of the plasma discharge

Kiptily V et al 2005 Nucl. Fusion 45 L21

 $\triangleright \gamma$ -ray images of D³He fusion α -source, see

Panontin E. et al. 2021 RSI 92 053529

#10

#11

6055

7620

Detector

box

-1.0 -

2.5

3.5

Remotely

controlled

collimators

#10

Fast ion / α -particle loss detection: FILD & FC

Fast Ion Loss Detector

Faraday Cups

on DTE alpha-particles: Kiptily V G et al 2024 NF 64 086059, Bonofiglo P J et al 2024 NF 64 096038

α-particle loss detection: <u>FILD</u>

Fast Ion Loss Detector

Footprint of **D-T fusion alphas** first-orbit losses

Kiptily V G et al 2024 NF **64** 086059

α-particles losses and their orbits related to the different pitch-angles (a back-in-time calculation from the footprint)

α-particle loss detection: <u>FILD</u>

Fast Ion Loss Detector

C

Footprint of **D-T fusion alphas** fishbone losses

Baumel S et al 2004 RSI 75 3563 Kiptily V G et al 2009 NF **49** 065030 MHD-related α-particle losses were detected and analysed

Kiptily V G et al 2024 NF 64 086059

Bonofiglo P J 2025 NF to be published

α-particle loss detection: Faraday Cups

Faraday Cups were used for lost α-particle poloidal measurements in DT-plasmas

Bonofiglo P J et al 2024 NF **64** 096038

MHD-related α-particle losses were detected and analysed

JET DTE lessons learnt

- ❖ JET γ-ray diagnostics led to new and unique observations relevant to burning plasmas
- Gamma-ray spectrometers can be used as a backup of the DT-neutron monitors
 - ✓ Note: 17-MeV γ-rays & DT-neutrons should be cross-calibrated
- **!** Measurements of the $T(p,\gamma_{20MeV})^4$ He reaction are feasible in D-T plasmas
 - V Note: in reactors 1) simultaneous measurements of 20-MeV & 17-MeV γ -rays can provide the n_D/n_T fuel-ratio monitoring in the plasma core; 2) 20-MeV γ -rays provide the core temperature.
- Confined α-particle studies with gammas are possible at least in the pre-burning phase
 - \checkmark Note: avoid/supress the background 4.44-MeV γ -rays by selection of LoS and neutron attenuators & shieldings
- \diamond FILD can be used for lost α -particle studies at least in the pre-burning phase
- Performance of γ-ray spectrometers should be significantly increased to deliver the feasible scope for reactors
- \square Robust alternative tools are needed for continuous lost α -particle monitoring in reactors

Fusion γ-ray spectrometer for next step devices

Varenna – 1995: GAMMACELL presented

Fusion Gamma-ray Spectrometer -1995

<u>Gamma-ray spectrometer for fusion plasma diagnostics</u> <u>Kiptily V G et al, 1999 Plasma Devices and Operations **7** 255</u>

Fusion Gamma-ray Spectrometer

- * A high-performance γ-ray spectrometer, **FUGAS**, is under development in UKAEA
 - it consist of a stack of several fast high-Z scintillators
 - scintillators optically isolated and functioning as γ-ray detectors
 - detectors are equipped with independent signal readouts & fast digitisers
- FUGAS measurement capabilities
 - 17-MeV & 20-MeV γ-rays for monitoring DT-fusion, n_D/n_T -ratio and temperature in the core

y-rays

- γ -rays from nuclear reactions for α -particle studies
- HXR a bremsstrahlung emission of runaway electrons (up to ~30 MeV)
- ❖ Advantages of FUGAS vs single-crystal detector
 - substantial increase of the γ-ray detection performance
 - heavy background reduction with active filtering, Compton suppression etc.
- Drawbacks
 - post-processing time increase
 - cost

FUGAS prototype under development

Scintillators were selected

☐ Photon detection - Multi-Pixel Photon Counters (MPPC)

- ☐ Data acquisition based on the Teledyne ADQ36-PXIE
 - ✓ a high-end 12-bit quad-channel flexible data acquisition board optimized for high channel-count scientific applications.

FUGAS prototype under development cont.

☐ Assembling and tests in the Lab

☐ Prototype housing design & manufacture

FUGAS prototype tests

- ☐ FUGAS is in preparation for tests using beams of the High Flux Accelerator-Driven Neutron Facility in the University of Birmingham :
 - \checkmark I_{protons} > 30mA DC / 2.6 MeV
 - ✓ Neutron yield > $2.5 \cdot 10^{13}$ primary neutrons

Scope of FUGAS prototype tests

In-beam tests with HFA-DNF will include:

- high-performance γ-ray spectrometry of the reactions
 - ⁷Li(p,γ)⁸Be (up to 20 MeV gammas)
 - ¹¹B(p,γ)¹²C (4.44 MeV and higher)
- > test of the n-/ γ-ray shielding
- etc.

Spectrum recorded by GAMMACEL – predecessor of FUGAS

Alpha-particle loss monitoring in fusion plants

α-particle loss measurements in ITER

- ✓ ITER FILD (based on scintillator) is reciprocating system.
- ✓ Active cooling is necessary because of nuclear heating
- ✓ The FILD exposure to measure lost α -particles < 1s

Veshchev E. A. et al 2012 Fusion Sci. Tech. 61 172

Advanced α-particle loss monitoring

I. GRAM technique (Gamma-Ray Alpha-particle Monitor) with FUGAS as a main detection instrument has been proposed for continuous loss measurements

Kiptily V G et al 2018 NF 58 082009

- II. Advanced Faraday Cups for burning fusion plasma reactors are under development in UKAEA (proposed for ITER):
 - ✓ Concept SFILD Strip Film Ion Loss Detector
 - ✓ Concept FILCA Fast Ion Loss Collector Array

I. α-particle loss monitoring: <u>GRAM</u>

- * Be- or B-targets (several μm thick or more) should be in the field of view of collimated γ-ray spectrometer (FUGAS)
- Escaped α-particles strike the target
- ❖ Be-target: gammas from ${}^{9}\text{Be}(\alpha, n\gamma)^{12}\text{C}$ reaction $\text{E}_{\alpha} > 1.7 \text{ MeV} \rightarrow \gamma 4.44\text{-MeV}$, $\gamma 3.21\text{-MeV}$
- ❖ ¹⁰B-target: gammas from ¹⁰B(α ,p γ)¹³C reaction E_{α} > 1 MeV → γ 3.08-MeV , γ 3.68-MeV, γ 3.68-MeV
- An identical "blind" detector for the background monitoring is needed.
- This is a robust technique for continuous monitoring of α-particle losses
- Direct access to the vacuum vessel not required
- It can be used in fusion power plants (it was proposed for ITER)

Kiptily V G et al 2018 NF **58** 082009

II. α-particle loss detector: FC + FILD

FC is feasible for continuous monitoring losses in reactors

FILD provides the gyro-radius & pitch-angle distributions

This concept of FC can provide continuous monitoring pitch-angle & gyro-radius distributions of lost alphas in reactors

Pitch-angle

α-particle loss detector #1: <u>SFILD</u>

Strip Film Ion Loss Detector

Stack of

- Protection layers
- Dielectric / insulator layers
- Thin strip FC layers for collection of lost MeV-alphas & 1-MeV tritons
- Dielectric substrate

FC material selection: Ni, Mo, W etc.

α-particle loss detector #2: FILCA

Fast Ion Loss Collector Array

α-particle loss signal assessments

- \square n-/ γ -induced currents in collectors:
 - > SFILD: < 3 nA
 - > FILCA: < 0.6 nA

- \Box Prompt α-particle losses (as for 500MW ITER)
 - collector current due to prompt alphas ~ 30 nA

> collector current ~ 3 μA

Note: these assessments are based on ITER plasma parameters, modelling data and ITER FILD head design

Conclusions

- JET experience shows that γ-ray diagnostics can provide unique and useful information in all reactor plasma phases for
 - ✓ initial setup of plasma discharges (start-up REs, disruptions)
 - ✓ ICRH and NBI heating characterisation
 - √ scenarios development
 - \checkmark α -particle studies
 - ✓ burning plasma monitoring
- Presented diagnostic techniques are being developed for reactor conditions
- High-performance FUGAS is an advanced instrument for burning plasma monitoring: fusion rate, fuel ratio, temperature and α-particle losses
- Alpha-particle loss detectors SFILD & FILCA are robust to be used in fusion reactors providing
 - ✓ continuous measurements of lost alphas
 - ✓ *pitch-angle* & *gyro-radius* distributions of losses
- These advanced instruments can be used in ITER, SPARC, BEST, STEP etc.

Thank you for your attention