Global fits of the SM Effective Field Theory

The impact of flavour observables on constraining SMEFT interactions

Based on work in collaboration with: J. de Blas, A. Goncalves, V. Miralles, L. Silvestrini, and M. Valli

Beyond the Flavour Anomalies

Roma – Centro Congressi Sapienza April 11, 2025

<u>Laura Reina</u> (Florida State University and INFN, University of Roma *La Sapienza*)

Setting the stage

- Global fits are a powerful means to test the consistency of a theory and point to new physics effects.
- They are typical of a mature precision program such as the one we can build today thanks to the level of accuracy reached both in theory and experiments over a very broad range of observables.
- Adding flavour physics observables is a big change given the strong constraints imposed by flavour on new physics.
- > In this section we will present two complementary examples:
 - > A global fit of the SMEFT | This talk
 - A global analysis of a class of strong-dynamics models through their EFT projection at and below the EW scale

Alfredo Glioti's talk

Emphasizing in particular the role of flavour observables.

General framework

Extend the SM Lagrangian by effective interactions (SM EFT)

$$\mathcal{L}_{SM}^{(6)} = \mathcal{L}_{SM}^{\text{eff}} \stackrel{(4)}{\longrightarrow} \stackrel{(4)}{$$

Built of SM fields and respecting the SM gauge symmetry. **Expansion in** $(v, E)/\Lambda$: affects all SM observables at both low and high energy

- ➤ SM masses and couplings → rescaling
- ➤ Rates and branching ratios → new tree-level contributions
- \blacktriangleright Differential rates \rightarrow shape distortions in kinematic distributions

Connecting far apart scales: the EFT picture

Global fits: EW, DY, di-boson, Higgs, top, flavour

Constraining new physics through collider and flavour observables

• EW precision observables

- Z-pole observables (LEP/SLD): Γ_{z} , sin² θ_{eff} , A_I, A_{FB}, ...
- W observables (LEP II, Tevatron, LHC): M_w , Γ_w
- m_t , M_H , $sin^2\theta_{eff}$ (Tevatron/LHC)

• Higgs boson observables

- Production and decay rates
- Simplified Template Cross Sections (STXS)

• Top quark observables

- $pp \rightarrow t\bar{t}, t\bar{t}Z, t\bar{t}W, t\bar{t}\gamma, tZq, t\gamma q, tW, \dots$
- Drell-Yan, Di-boson measurements
 - $pp \to W, Z \to f_i \overline{f_j}$
 - $pp \rightarrow WZ, WW, ZZ, Z\gamma$

Flavour observables

- $\Delta F=2: \Delta MB_{d,s}, D^0 \overline{D}^0, \varepsilon_K$
- Leptonic decays: $B_s \to \mu^+ \mu^-, B \to \tau \nu, K \to \ell \nu, \pi \to \ell \nu$
- Semi-leptonic decays: $B \to D^{(*)} l\nu, B \to \pi \ell \nu, K \to \pi \ell \nu$
- Radiative B decays: $B \rightarrow X_{s,d} \gamma$

ALMA MATER STUDIORUN

<u>Exp</u>: PDG <u>Th</u>: best available predictions ain

Complementarity in bounding new physics

Flavour- and low-energy observables can be more sensitive to the scale of new physics, but they may not be able to unambiguously test it.

of new physics over a uniquely broad spectrum of measurements.

SMEFT predictions

A given observable is written as

Observables have been calculated either analytically and via parametrizations reported in the literature (e.g. EW observables) or obtained using various tools (MG5_aMC@NLO with SMEFTci2, a new UFO file developed for this study, Feynart+Feyncalc for loop-induced Higgs decays, ...)

Including direct and indirect SMEFT effects from dim-6 operators up to O(1/ Λ ^4), by A. Goncalves

See also, SmeftFR-v3, Dedes et al. 2302.01353

Beyond EW fits – Higgs, top, flavor observables

The HEPfit framework

Open-source tool

Statistical framework based on a Bayesian MCMC analysis as implemented in BAT (Bayesian Analysis Toolkit) Caldwell et al., arXiv:0808.2552

Supports SM (fully implemented) and BSM models, in particular the dim-6 SMEFT

Used for several global fit and future collider projections

New release will include EW, Higgs, top, and flavour observables in the SM and the SMEFT with

- □ SM predictions at NLO or higher
- □ SMEFT at tree level (dim-6 operators only)
- □ Linear (and quadratic) effects from dim-6 operators
- **Geb Record** RGE running of the SMEFT Wilson Coefficients

http://hepfit.roma1.infn.it

J. De Blas et al., 1910.14012

Other existing frameworks for SMEFT global fits: SMEFIT, Celada et al. 2105.00006, 2302.06660, 2404.12809 Fitmaker, Ellis et al. 2012.02779 Allwicher et al, 2311.00020 Cirigliano et al. 2311.00021 Bartocci et al, 2311.04963

Lower bounds on NP scale - Bosonic operators

Bound on scale depends on assumptions on WC Λ_{max} for $C \sim 4\pi \times O(1)$

$\mathcal{O}_G = f^{ABC} G^{A\nu}_\mu G^{B\rho}_\nu G^{C\mu}_\rho$
$\mathcal{O}_W = \varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$
$\mathcal{O}_{\phi G} = \phi^{\dagger} \phi G^A_{\mu\nu} G^{A\mu\nu}$
$\mathcal{O}_{\phi W} = \phi^{\dagger} \phi W^{I}_{\mu \nu} W^{I \mu \nu}$
$\mathcal{O}_{\phi B} = \phi^{\dagger} \phi B_{\mu\nu} B^{\mu\nu}$
$\mathcal{O}_{\phi WB} = \phi^{\dagger} \tau^{I} \phi W^{I}_{\mu\nu} B^{\mu\nu}$
$\mathcal{O}_{\phi\Box} = (\phi^{\dagger}\phi)\Box(\phi^{\dagger}\phi)$
$\mathcal{O}_{\phi D} = \left(\phi^{\dagger} D^{\mu} \phi\right)^{\star} \left(\phi^{\dagger} D_{\mu} \phi\right)$

5	Most important effects from EW and Higgs observables										
	G ➤ Very strong	bound from	main Higgs pro	duction mode	:(gg -	→ H)					
	CW	2.4	0.95								
5	ିଦା ନ୍ତି GE can enhanc	e/suppressse	ensitivity to NP								
	СНЖ	7.44	7.53								
	CHP	12 5	14.4								

Unarti

Lower bounds on NP scale – Effect of B^0 - \overline{B}^0 mixing

18

Lower bounds on NP scale – Effect of $B_s \rightarrow \mu^+ \mu^-$

 $\mathcal{O}_{lq}^{(3)[prst]} = (\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$

 $\mathcal{O}_{\phi q}^{(1)[pr]} = (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\bar{q}_{p} \gamma^{\mu} q_{r})$

 $\mathcal{O}_{\phi q}^{(3)[pr]} = (\phi^{\dagger} i \overset{\leftrightarrow}{D_{\mu}^{I}} \phi) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$

> Higher lower bound on NP scatted

	RGE	noRGE		
CHq^(1)_33	thy onbancol	7.56	ivity to ND	
CHq^(1)_aa	6.76	7.08		
CHq^(3)_33	pe complicato	ea by tull glopa	ΙΤΙΤ	
CHq^(3)_aa	6.88	7.08		

Transitioning to the next talk

- Global fits stress-test the SM and provide a very strong indirect constraint on new physics.
- Effects of new physics can then be constrained using the broad spectrum of precision measurement available from EW, Higgs, top, flavor physics and more.
- The SMEFT (→LEFT) framework can be used to connect unknown physics at the UV scale (> 1 TeV) to the EW scale and below within a systematic framework that allows some model independence.
- Flavor assumptions at the UV scale are crucial to distinguish broad classes of models, which can inform and add meaning to the SMEFT analysis.

Back-up slides

SM strength: consistency at the quantum level

Ę

For M_w we combine:

□ All I FP 2 measurements Previous Tevatron average □ ATLAS and LHCb early measurements \Box CDF [M_W=(80.4335±0.0094) GeV] □ ATLAS [M_w=(80.3665±0.016) GeV]

 \Box CMS [M_w=(80.3602±0.010) GeV]

 $M_W = 80.366 \pm 0.0080 \text{ GeV}$ (without CDF) 80.356 ± 0.0045 GeV (from fit)

For m_t we combine:

2016 Tevatron combination □ ATLAS Run 1 and early Run2 results □ CMS Run 1 and early Run 2 results \Box CMS I+j [m_t=(171.77 \pm 0.38) GeV] **CMS** I+j boosted $[m_t=(173.06\pm0.83) \text{ GeV}]$ \Box ATLAS I+j boosted [mt=172.95 \pm 0.53) GeV

 $m_t = 172.31 \pm 0.32 \text{ GeV}$ 172.38 ± 0.31 GeV (from fit)

