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12.1 Introduction
The masses and mixings of quarks have a common origin in the Standard Model (SM). They

arise from the Yukawa interactions with the Higgs condensate,
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d
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Li „ d

I
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u
ij Q

I
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ú
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I
Rj + h.c., (12.1)

where Y
u,d are 3◊3 complex matrices, „ is the Higgs field, i, j are generation labels, and ‘ is the 2◊2

antisymmetric tensor. Q
I
L are left-handed quark doublets, and d

I
R and u

I
R are right-handed down-

and up-type quark singlets, respectively, in the weak-eigenstate basis. When „ acquires a vacuum
expectation value, È„Í = (0, v/

Ô
2), Eq. (12.1) yields mass terms for the quarks. The physical states
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f = u, d. As a result, the charged-current W

± interactions couple to the physical uLj and dLk

quarks with couplings given by
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This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2] is a 3 ◊ 3 unitary matrix. It can be
parameterized by three mixing angles and the CP -violating KM phase [2]. Of the many possible
conventions, a standard choice has become [3]
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where sij = sin ◊ij , cij = cos ◊ij , and ” is the phase responsible for all CP -violating phenomena in
flavor-changing processes in the SM. The angles ◊ij can be chosen to lie in the first quadrant, so
sij , cij Ø 0.

It is known experimentally that s13 π s23 π s12 π 1, and it is convenient to exhibit this
hierarchy using the Wolfenstein parameterization. We define [4–6]
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---- ,
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These relations ensure that fl̄ + i÷̄ = ≠(VudV
ú

ub)/(VcdV
ú

cb) is phase convention independent, and the
CKM matrix written in terms of ⁄, A, fl̄, and ÷̄ is unitary to all orders in ⁄. The definitions of fl̄, ÷̄

reproduce all approximate results in the literature; i.e., fl̄ = fl(1≠⁄
2
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2
/2+. . .),

and one can write VCKM to O(⁄4) either in terms of fl̄, ÷̄ or, traditionally,
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describes quark flavor weak mixings

 plays a pivotal role for hierarchy of the Wolfenstein parameterizationVus = sinθc

first-row unitarity:  = 1 in the SM|Vu |2 = |Vud |2 + |Vus |2 + |Vub |2

outline

 
can be neglected

|Vub | = 0.00382 (24)

- determinations of  with the SM (SS)

-  and global fits within EFT (T. Tong)
|Vus |

|Vud |



Figure 10: The plot compares the information for |Vud|, |Vus| obtained using lattice QCD
for Nf = 2 + 1 and Nf = 2 + 1 + 1 with |Vud| extracted from nuclear � transitions Eq. (69).
The black dotted line indicates the correlation between |Vud| and |Vus| that follows if the
CKM-matrix is unitary.

5.3.3 Extraction of |Vud| and |Vus|
It is instructive to convert the averages for f+(0) and fK±/f⇡± into a corresponding range
for the CKM matrix elements |Vud| and |Vus|, using the relations in Eq. (65). Consider
first the results for Nf = 2 + 1 + 1. The average for f+(0) in Eq. (72) is mapped into
the interval |Vus| = 0.22328(58), depicted as a horizontal red band in Fig. 10. That
for fK±/f⇡± in Eq. (76) is converted into |Vus|/|Vud| = 0.23126(50) using the result
for |Vus/Vud|(fK±/f⇡±) in Eq. (65), shown as a tilted red band. The red ellipse is the
intersection of these two bands and represents the 68% likelihood contour, obtained by
treating the above two results as independent measurements. Repeating the exercise for
Nf = 2 + 1 leads to the green ellipse.24 The vertical band shows |Vud| from nuclear �
decay, Eq. (69). The PDG value (69) indicates a tension with both the Nf = 2 + 1 + 1
and Nf = 2 + 1 results from lattice QCD.

As we mentioned, the isospin corrections are becoming relevant for the extraction of
the CKM elements at the current precision of lattice QCD inputs. We obtain |Vus|/|Vud| =
0.23131(45) by taking the average of fK/f⇡ in isosymmetric QCD and combining it with
the value for |Vus|fK/|Vud|f⇡ in Eq. (68). This estimate plotted in Fig. 11 is consistent
with that obtained from Eq. (65) using the isospin corrections from ChPT. Unlike the
corrections from ChPT, the accuracy of the isospin corrections from lattice QCD can be
readily improved by more realistic simulations and higher statistics, further sharpening
the comparisons shown in the figure.

24Note that the ellipses shown in Fig. 5 of both Ref. [1] and Ref. [2] correspond instead to the 39% likelihood
contours. Note also that in Ref. [2] the likelihood was erroneously stated to be 68% rather than 39%.
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main determinations of  and  from  decays within the SM|Vud | |Vus | β

FLAG-6 (2411.04268) 

0.97367 (32)
0.97441 (88)
0.9739 (27)

superallowed 
neutron 

πe3

|Vud |

source: PDG review 2024

0.22330 (53)
0.2207 (14)
0.2250 (27)

 
 decay 

hyperon

Kℓ3
τ

|Vus |
0.23108 (51) Kμ2 /πμ2

|Vus | / |Vud |

|Vu |2 ≡ |Vud |2 + |Vus |2 + |Vub |2 = 0.99867 (68) ≃ 2.0σ Kμ2 /πμ2

= 0.99791 (67) ≃ 3.1σ Kℓ3

first-row unitarity:

(use of LQCD results with )Nf = 2 + 1 + 1

(use of LQCD results with )Nf = 2 + 1 + 1

|Vus | / |Vud | = 0.23126 (50) Kμ2 /πμ2

|Vus | = 0.22328 (58) Kℓ3

using  |Vud | = 0.97373 (31)

|Vu |2 = 0.99888 (67) ≃ 1.7σ Kμ2 /πμ2

= 0.99802 (66) ≃ 3.0σ Kℓ3

SM:  |Vu |2 = 1

first-row unitarity deficit 
between  and 2σ (Kμ2/πμ2) 3σ (Kℓ3)



=> leptonic  decays:  using LQCD determinations of    (axial weak current in SM)

=> semileptonic  decays: using LQCD determinations of   (vector weak current in SM)

Kℓ2 /πℓ2
|Vus |
|Vud |

fK
fπ

Kℓ3 |Vus | f+(q2 = 0)

most precise determinations of the Cabibbo angle

results from these two sources have been consolidated by lattice QCD+QED simulations in recent years

there are quite interesting news from recent lattice QCD simulations of  (and also )Rus Rud

=> hadronic -decays:  from determinations of     (V-A weak current in SM)τ |Vus | Rus =
Γ(τ ↦ Xusντ)
Γ(τ ↦ eνeντ)

=> hyperon decays:  from semileptonic hyperon decays with  (V-A weak current in SM)

      [Cabibbo et al. hep-ph/0307214]

|Vus | ΔS = 1

|Vus | = 0.2250 (27)

other processes

https://arxiv.org/abs/hep-ph/0307214


extraction of  from leptonic  and  decays|Vus | / |Vud | Kℓ2 πℓ2
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 = strong SU(2)-breaking corrections (due to ) 

 = EM corrections depending on the hadronic structure of the decaying meson ( )

δPS+

SU2 mu ≠ md

δPS+

EM αEM ≠ 0

same does not hold as well in the case of final electrons (see
Ref. [8]). This important finding will be investigated by an
ongoing dedicated lattice study on the real photon emission
amplitudes in light and heavy P-meson leptonic decays.
After extrapolating our lattice data to the physical pion

mass and to the continuum and infinite volume limits, the
main result of the present work is

δRphys
Kπ ¼ −0.0122" 0.0016; ð6Þ

where the uncertainty includes both statistical and system-
atic errors, including an estimate of the uncertainty due to
the QED quenching. Our result (6) can be compared with
the current estimate δRphys

Kπ ¼ −0.0112 ð21Þ from
Refs. [17,18] adopted by the Particle Data Group
(PDG) [19].
Details of the simulation.—The gauge ensembles used in

this Letter were generated by the ETMC with Nf ¼ 2þ
1þ 1 dynamical quarks and used in Ref. [20] to determine
the up, down, strange, and charm quark masses. The main
parameters of the simulations are collected in [12]. We
employ the Iwasaki action [21] for gluons and the Wilson
twisted mass action [22–24] for sea quarks. In the valence
sector we adopt a nonunitary setup [25] in which the
strange quark is regularized as an Osterwalder-Seiler
fermion [26], while the up and down quarks have the
same action as the sea. Working at maximal twist, such a
setup guarantees an automatic OðaÞ improvement [24,25].
The two valence quarks in the Pmeson are regularized with
opposite values of the Wilson r parameter in order to
guarantee that discretization effects on the P-meson mass
are of order Oða2μΛQCDÞ. The lepton l is a free twisted-
mass fermion with mass ml ¼ mμ ¼ 105.66 MeV [19].
The neutrino is simply considered to be a free fermion field.
In this Letter we make use of the bootstrap samplings

generated for the input parameters of the quark mass
analysis of Ref. [20]. There, eight branches of the analysis
were adopted differing in (i) the continuum extrapolation,
adopting for the matching of the lattice scale either the
Sommer parameter r0 or the mass of a fictitious P meson
made up of two valence strangelike (charmlike) quarks,
(ii) the chiral extrapolation performed with fitting functions
chosen to be either a polynomial expansion or a ChPT
ansatz in the light-quark mass, and (iii) the choice between
the methods M1 and M2, which differ by Oða2Þ effects,
used to determine the mass renormalization constant
Zm ¼ 1/ZP in the RI’-MOM scheme.
Evaluation of the amplitudes.—Following Ref. [8] the

quantity δRK − δRπ is given by

δRKπ ¼ 2
δAK

Að0Þ
K

− 2
δMK

Mð0Þ
K

þ δΓðptÞ
K ðΔEγÞ

− 2
δAπ

Að0Þ
π

þ 2
δMπ

Mð0Þ
π

− δΓðptÞ
π ðΔEγÞ; ð7Þ

where δΓðptÞ
P ðΔEγÞ represents the OðαemÞ correction to the

tree-level decay rate for a pointlike meson and can be read
off from Eq. (51) of Ref. [8], while δAP and δMP are the
e.m. and IB corrections to the weak amplitude and mass of
the P meson, respectively.
Within the qQED approximation, the evaluation of δAP

and δMP requires the evaluation of only the connected
diagrams shown in Figs. 1–4 for Kl2 decays. The correc-
tions δAP and δMP can be written as

δAP ¼ δAQCD
P þ

X

i¼J;T;P;S

δAi
P þ δAl

P; ð8Þ

δMP ¼ δMQCD
P þ

X

i¼J;T;P;S

δMi
P; ð9Þ

where δAQCD
P (δMQCD

P ) represents the strong IB corrections
corresponding to the diagrams of Fig. 3, while the other
terms are QED corrections coming from the insertions of
the e.m. current and tadpole operators of the pseudoscalar
and scalar densities (see Refs. [2,27]).
In Eqs. (8) and (9), the term δAJ

P (δMJ
P) is generated by

the diagrams of Figs. 1(a)–1(c), δAT
P (δMT

P) by the diagrams
of Figs. 1(d)–1(e), δAP

P (δMP
P) by the diagrams of

Figs. 2(a)–2(b), and δAS
P (δMS

P) by the diagrams of
Figs. 3(a)–3(b). The term δAl

P corresponds to the photon
exchange between the quarks and the final lepton. It arises
from Figs. 4(a) and 4(b), while Fig. 4(c) (lepton wave
function renormalization) can be safely omitted, since it
cancels out exactly in the difference Γ0ðLÞ − Γpt

0 ðLÞ.

(a) (b) (c)

(d) (e)

FIG. 1. Connected diagrams contributing at OðαemÞ to the
Kþ → lþνl decay amplitude, in which the photon is attached to
quark lines: (a) exchange, (b),(c) self-energy, and (d),(e) tadpole
diagrams.

(a) (b)

FIG. 2. Connected diagrams contributing at OðαemÞ to the
Kþ → lþνl decay amplitude corresponding to the insertion of
the pseudoscalar density related to the e.m. shift of the critical
mass, δmcrit

f , determined in Ref. [5].
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The evaluation of δMQCD
P and the δMi

P is described in
Ref. [5], where the quark mass difference ðmd −
muÞðM̄S; 2 GeVÞ ¼ 2.38 ð18Þ MeV was determined using
the experimental charged and neutral kaon masses. The
terms δAQCD

P , δAi
P, and δAl

P are extracted from the
correlators described in Ref. [8]. Their numerical determi-
nation is illustrated briefly in Refs. [28,29] and in detail in
Ref. [30]. The quality of the extraction of δAl¼μ

P /δAð0Þ
P is

illustrated in [12].
Finite-volume effects at OðαemÞ.—The subtraction

Γ0ðLÞ − Γpt
0 ðLÞ makes the rate IR finite and cancels the

structure-independent FVEs. The pointlike decay rate
Γpt
0 ðLÞ is given by

Γpt
0 ðLÞ ¼ 2

αem
4π

YPðLÞΓtree
P ; ð10Þ

where the factor YPðLÞ is explicitly given by Eq. (98) of
Ref. [11]. Equation (8) is therefore replaced by

δAP ¼ δAQCD
P þ

X

i

δAi
P þ δAl

P −
αem
4π

YPðLÞA
ð0Þ
P ; ð11Þ

where YPðLÞ has the form

YPðLÞ ¼ bIR logðMPLÞ þ b0 þ
b1

MPL

þ b2
ðMPLÞ2

þ b3
ðMPLÞ3

þOðe−MPLÞ ð12Þ

with the coefficients bj (j ¼ IR; 0; 1; 2; 3) depending on the
dimensionless ratio ml/MP [11]. The important point is
that the SD FVEs start only at Oð1/L2Þ; i.e., all terms up to
Oð1/LÞ in Eq. (12) are “universal” [11]. Being independent
of the structure, they can be computed for a pointlike
charged meson.
The FVE subtraction (11) up to order Oð1/LÞ is

illustrated in Fig. 5 for δRK, δRπ , and δRKπ in the inclusive

case ΔEγ ¼ ΔEmax;P
γ ¼ MPð1 −m2

μ/M2
PÞ/2, which corre-

sponds to ΔEmax;K
γ ≃ 235 MeV and ΔEmax;π

γ ≃ 29 MeV,
respectively. It can be seen that after subtraction of the
universal terms the residual FVEs are almost linear in 1/L2

and ≈3 times smaller in the case of δRKπ .
Results for the ratio ΓðKl2Þ/Γðπl2Þ.—The (inclusive)

data for δRKπ, obtained using Eqs. (7), (11), and (12), are
shown in Fig. 6. The “universal” FVEs are subtracted from
the data and the combined chiral, continuum, and infinite-
volume extrapolations are performed using the following
ansatz:

δRKπ ¼ R0 þ Rχ logðmudÞ þ R1mud þ R2m2
ud þDa2

þ K2

L2

!
1

M2
K
− 1

M2
π

"
þ Kl

2

L2

!
1

ðEK
l Þ2

− 1

ðEπ
lÞ2

"

þ δΓptðΔEmax;K
γ Þ − δΓptðΔEmax;π

γ Þ; ð13Þ

(a) (b)

FIG. 3. Connected diagrams contributing at OðαemÞ and
Oðmd −muÞ to the Kþ → lþνl decay amplitude related to the
insertion of the scalar density (see Ref. [5]).

(a) (b) (c)

FIG. 4. Connected diagrams contributing at OðαemÞ to the
Kþ → lþνl decay amplitude corresponding to photon exchanges
involving the final-state lepton.

FIG. 5. Results for the corrections δRπ , δRK , and δRKπ for the
gauge ensemblesA40.20,A40.24,A40.32, andA40.40 sharing the
same lattice spacing, pion and kaon masses, but different lattice
sizes (see [12]). The universal FVEs, i.e., the terms up to order
Oð1/LÞ in Eq. (12), are subtracted for each quantity. The lines are
linear fits in1/L2.ThemaximumphotonenergyΔEγ corresponds to
the inclusive case ΔEγ ¼ ΔEmax;P

γ ¼ MPð1 −m2
μ/M2

PÞ/2.

FIG. 6. Results for the correction δRKπ [Eqs. (7) and (11)] after
the subtraction of both the universal FVEs in Eq. (12) and the
residual FVEs obtained from the fitting function (13). The dashed
lines are the (central) results at each β, while the shaded area
identifies the continuum limit at the 1-σ level. The cross is the
extrapolated value at mphys

ud ðM̄S; 2 GeVÞ ¼ 3.70ð17Þ MeV [20].
The blue dotted lines correspond to the value −0.0112ð21Þ from
Refs. [17,18] adopted by the PDG [19]. Errors are statistical only.
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mechanism known as the “universality of infrared diver-
gences” (see e.g. Refs. [3,4]) that finds its physical
explanation in the fact that ultrasoft photons cannot resolve
the internal structure of the meson. On the other hand, the
ultrasoft limit is an idealization and experimental measure-
ments, particularly in the case of heavy mesons, are
inclusive up to photon energies that may be too large to
safely neglect the structure-dependent (SD) corrections to
the pointlike approximation.
In the region of hard (experimentally detectable) photon

energies, radiative leptonic decays represent important
probes of the internal structure of the mesons. Moreover,
radiative decays can provide independent determinations of
CKM matrix elements with respect to the purely leptonic
channels. A nonperturbative calculation of the radiative
decay rates can be particularly important for heavy mesons
since, unlike the case of pions and kaons where such
decays have been studied using chiral perturbation theory
(ChPT) [5–9], no model-independent calculations have
ever been performed. Even in the case of light mesons,
although the quoted ChPT calculations represent a first-
principles approach to the problem, the low-energy con-
stants entering in the final results at Oðp6Þ have been
estimated in phenomenological analyses relying in part on
model-dependent assumptions.
In Ref. [10], a strategy to compute QED radiative cor-

rections to the P → lν̄lðγÞ decay rates at OðαemÞ by
starting from first-principles lattice calculations was pro-
posed. The strategy has subsequently been applied in
Refs. [11–15], within the RM123 approach [16,17], to
provide the first nonperturbative model-independent calcu-
lation of the decay rates π− → μ−ν̄μðγÞ and K− → μ−ν̄μðγÞ.
In these calculations, the real soft-photon contributions have
been evaluated in the pointlike effective theory and, using the
ChPT results quoted above, the SD corrections have been
estimated to be negligible for these processes (see [10]). In
the same phenomenological analysis, it has been shown that
the SD correctionsmight instead be relevant for the decays of
pions and kaons into electrons. Moreover, by using the same
single-pole dominance approximation as originally used in
Ref. [18], SD contributions have been estimated to be
phenomenologically important for decays of heavy-flavor
mesons.
In this paper, we present the first nonperturbative lattice

calculation of the rates for the radiative decays P → lν̄γ,

where P is a pion, kaon, D or Ds meson. We use the Nf ¼
2þ 1þ 1 gauge ensembles generated by the European
Twisted Mass Collaboration (ETMC) and analyzed for
mesonic observables in Ref. [19]. Preliminary results from
this study were presented in Ref. [20]; the decays of bottom
mesons will be studied in future papers. Note also that Kane
et al. have presented preliminary results for the decays
Dþ

s → lþνγ and K− → l−ν̄γ, where l% represents the
charged leptons and γ is a hard photon with energy in the
range of about 0.5–1 GeV in Ref. [21].
The plan of the remainder of this paper is as follows. In

Sec. II, we introduce the basic quantities which enter in the
amplitude for the leptonic decay of a pseudoscalar meson
with the emission of a real photon; in particular, we define
the axial and vector form factors FA and FV . We express the
decay rates in terms of these quantities in Appendix A. In
Sec. III, we describe the general strategy that we followed
to extract the amplitudes from suitable Euclidean correla-
tion functions and discuss finite-time effects. The presence
of discretization effects which diverge at small photon
momenta is demonstrated in Sec. IV and Appendix C,
together with a strategy for subtracting them nonperturba-
tively. In Sec. V, we present the numerical results for pions,
kaons,D andDs mesons. Many formulas which are used in
the paper are discussed and derived in Appendices A–C.
Finally, in Appendix D, we present some of our numerical
results, including the correlation matrices, in a way which
we hope may be useful to readers who wish to use them in
phenomenological applications.

II. DEFINITION OF THE FORM FACTORS

The nonperturbative contribution to the radiative lep-
tonic decay rate for the processes P → lν̄lγ is encoded in
the following hadronic matrix element, see the left panel of
Fig. 1:

Hαr
W ðk; pÞ ¼ ϵrμðkÞH

αμ
W ðk; pÞ

¼ ϵrμðkÞ
Z

d4yeik·yTh0jjαWð0Þj
μ
emðyÞjPðpÞi; ð1Þ

where ϵrμðkÞ is the polarization vector of the outgoing
photon with four-momentum k, p is the momentum of the
ingoing pseudoscalar meson of mass mP (p≡ ðE; pÞ,
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

P þ p2
p

, and p2 ¼ m2
P). Here and in the following

FIG. 1. Feynman diagrams representing the amplitudes with the emission of a real photon from the P− meson (left panel) or from the
final-state charged lepton l− (right panel).
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mechanism known as the “universality of infrared diver-
gences” (see e.g. Refs. [3,4]) that finds its physical
explanation in the fact that ultrasoft photons cannot resolve
the internal structure of the meson. On the other hand, the
ultrasoft limit is an idealization and experimental measure-
ments, particularly in the case of heavy mesons, are
inclusive up to photon energies that may be too large to
safely neglect the structure-dependent (SD) corrections to
the pointlike approximation.
In the region of hard (experimentally detectable) photon

energies, radiative leptonic decays represent important
probes of the internal structure of the mesons. Moreover,
radiative decays can provide independent determinations of
CKM matrix elements with respect to the purely leptonic
channels. A nonperturbative calculation of the radiative
decay rates can be particularly important for heavy mesons
since, unlike the case of pions and kaons where such
decays have been studied using chiral perturbation theory
(ChPT) [5–9], no model-independent calculations have
ever been performed. Even in the case of light mesons,
although the quoted ChPT calculations represent a first-
principles approach to the problem, the low-energy con-
stants entering in the final results at Oðp6Þ have been
estimated in phenomenological analyses relying in part on
model-dependent assumptions.
In Ref. [10], a strategy to compute QED radiative cor-

rections to the P → lν̄lðγÞ decay rates at OðαemÞ by
starting from first-principles lattice calculations was pro-
posed. The strategy has subsequently been applied in
Refs. [11–15], within the RM123 approach [16,17], to
provide the first nonperturbative model-independent calcu-
lation of the decay rates π− → μ−ν̄μðγÞ and K− → μ−ν̄μðγÞ.
In these calculations, the real soft-photon contributions have
been evaluated in the pointlike effective theory and, using the
ChPT results quoted above, the SD corrections have been
estimated to be negligible for these processes (see [10]). In
the same phenomenological analysis, it has been shown that
the SD correctionsmight instead be relevant for the decays of
pions and kaons into electrons. Moreover, by using the same
single-pole dominance approximation as originally used in
Ref. [18], SD contributions have been estimated to be
phenomenologically important for decays of heavy-flavor
mesons.
In this paper, we present the first nonperturbative lattice

calculation of the rates for the radiative decays P → lν̄γ,

where P is a pion, kaon, D or Ds meson. We use the Nf ¼
2þ 1þ 1 gauge ensembles generated by the European
Twisted Mass Collaboration (ETMC) and analyzed for
mesonic observables in Ref. [19]. Preliminary results from
this study were presented in Ref. [20]; the decays of bottom
mesons will be studied in future papers. Note also that Kane
et al. have presented preliminary results for the decays
Dþ

s → lþνγ and K− → l−ν̄γ, where l% represents the
charged leptons and γ is a hard photon with energy in the
range of about 0.5–1 GeV in Ref. [21].
The plan of the remainder of this paper is as follows. In

Sec. II, we introduce the basic quantities which enter in the
amplitude for the leptonic decay of a pseudoscalar meson
with the emission of a real photon; in particular, we define
the axial and vector form factors FA and FV . We express the
decay rates in terms of these quantities in Appendix A. In
Sec. III, we describe the general strategy that we followed
to extract the amplitudes from suitable Euclidean correla-
tion functions and discuss finite-time effects. The presence
of discretization effects which diverge at small photon
momenta is demonstrated in Sec. IV and Appendix C,
together with a strategy for subtracting them nonperturba-
tively. In Sec. V, we present the numerical results for pions,
kaons,D andDs mesons. Many formulas which are used in
the paper are discussed and derived in Appendices A–C.
Finally, in Appendix D, we present some of our numerical
results, including the correlation matrices, in a way which
we hope may be useful to readers who wish to use them in
phenomenological applications.

II. DEFINITION OF THE FORM FACTORS

The nonperturbative contribution to the radiative lep-
tonic decay rate for the processes P → lν̄lγ is encoded in
the following hadronic matrix element, see the left panel of
Fig. 1:

Hαr
W ðk; pÞ ¼ ϵrμðkÞH

αμ
W ðk; pÞ

¼ ϵrμðkÞ
Z

d4yeik·yTh0jjαWð0Þj
μ
emðyÞjPðpÞi; ð1Þ

where ϵrμðkÞ is the polarization vector of the outgoing
photon with four-momentum k, p is the momentum of the
ingoing pseudoscalar meson of mass mP (p≡ ðE; pÞ,
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

P þ p2
p

, and p2 ¼ m2
P). Here and in the following

FIG. 1. Feynman diagrams representing the amplitudes with the emission of a real photon from the P− meson (left panel) or from the
final-state charged lepton l− (right panel).
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FLAG and PDG reviews make use of ChPT estimates [see Cirigliano and Neufeld 1102.0563]

δK+

SU(2) − δπ+

SU(2) = − 0.0043 (12) δK+

EM − δπ+

EM = − 0.0069 (17)

δK+ − δπ+ = − 0.0112 (21)

in 2018/2019 the first QCD+QED determination of the isospin-breaking corrections on the lattice 
by the RM123+Soton collaboration using ETMC gauge configurations [see arXiv:1711.06537 and 
arXiv:1904.08731]

δK+ − δπ+ = − 0.0126 (14)

ChPT

lattice QCD+QEDL

δK+

SU(2) − δπ+

SU(2) = − 0.0064 (7) δK+

EM − δπ+

EM = − 0.0062 (12)

it is customary to include strong SU(2)-breaking corrections as  
fK+

fπ+
=

fK
fπ

1 + δK+

SU(2) − δπ+

SU(2)

Γ(Kμ2)
Γ(πμ2) exp.

→
|Vus |
|Vud |

fK+

fπ+
= 0.27599 (41) ( ≃ 0.15%) [see Moulson 1704.04104]  

adopted by FLAG-6 (2411.04268) 

|Vus |
|Vud |

fK+

fπ+
= 0.27683 (29)exp (20)th [35] ( ≃ 0.13%)using  from lattice QCD+QED:δEM

reassuring agreement … 

- another recent lattice result:   from RBC/UKQCD 2211.12865 (power-law FVEs) δK+ − δπ+ = − 0.0086 (39)

- an interesting approach is QED∞ + QCD with IVR [see Christ et al. 2304.08026] (exponentially small FVEs) 
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fK/f⇡ fK±/f⇡±

ETM 21 [45] 2+1+1 A F F F 1.1995(44)(7) 1.1957(44)(7)
CalLat 20 [44] 2+1+1 A F F F 1.1964(32)(30) 1.1942(32)(31)
FNAL/MILC 17 [20] 2+1+1 A F F F 1.1980(12)(+5

�15) 1.1950(15)(+6
�18)

ETM 14E [43] 2+1+1 A � F � 1.188(11)(11) 1.184(12)(11)
FNAL/MILC 14A [21] 2+1+1 A F F F 1.1956(10)(+26

�18)
ETM 13F [356] 2+1+1 C � F � 1.193(13)(10) 1.183(14)(10)
HPQCD 13A [42] 2+1+1 A F � F 1.1948(15)(18) 1.1916(15)(16)
MILC 13A [357] 2+1+1 A F F F 1.1947(26)(37)
MILC 11 [358] 2+1+1 C � � � 1.1872(42)†stat.
ETM 10E [359] 2+1+1 C � � � 1.224(13)stat

CLQCD 23 [10] 2+1 A F F F 1.1907(76)(17)
QCDSF/UKQCD 16 [50] 2+1 A � F � 1.192(10)(13) 1.190(10)(13)
BMW 16 [49, 360] 2+1 A F F F 1.182(10)(26) 1.178(10)(26)
RBC/UKQCD 14B [12] 2+1 A F F F 1.1945(45)
RBC/UKQCD 12 [229] 2+1 A F � F 1.199(12)(14)
Laiho 11 [54] 2+1 C � F � 1.202(11)(9)(2)(5)††

MILC 10 [47] 2+1 C � F F 1.197(2)(+3
�7)

JLQCD/TWQCD 10 [361] 2+1 C � ⌅ F 1.230(19)
RBC/UKQCD 10A [119] 2+1 A � � F 1.204(7)(25)
BMW 10 [48] 2+1 A F F F 1.192(7)(6)
MILC 09A [19] 2+1 C � F F 1.198(2)(+6

�8)
MILC 09 [196] 2+1 A � F F 1.197(3)( +6

�13)
Aubin 08 [362] 2+1 C � � � 1.191(16)(17)
RBC/UKQCD 08 [236] 2+1 A � ⌅ F 1.205(18)(62)
HPQCD/UKQCD 07 [46] 2+1 A � � � 1.189(2)(7)
MILC 04 [239] 2+1 A � � � 1.210(4)(13)

† Result with statistical error only from polynomial interpolation to the physical point.
†† This work is the continuation of Aubin 08.

Table 17: Colour codes for the data on the ratio of decay constants: fK/f⇡ is the pure
QCD isospin-symmetric ratio, while fK±/f⇡± is in pure QCD including the isospin-breaking
correction. In this and previous editions [4, 5], old results with two red tags have been
dropped.

In ETM 21 [45], the ETM collaboration presented an independent estimate of fK/f⇡
in isosymmetric QCD with 2+1+1 dynamical flavours of the twisted-mass quarks. Their
new set of gauge ensembles reaches the physical pion mass. The quark action includes
the Sheikoleslami-Wohlert term [364] for a better control of discretization e↵ects. The
finite-volume e↵ects are examined by simulating three spatial volumes, and are corrected
by SU(2) �PT formulae [184]. Their new estimate fK/f⇡ = 1.1995(44)stat+fit(7)sys is
consistent with ETM 14E with the total uncertainty reduced by a factor of ⇠ 3.5.

FNAL/MILC 17 has determined the ratio of the decay constants from a comprehensive
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FLAG-6 (2411.04268) 

three methods to include strong 
SU(2)-breaking corrections

- extrapolation to  or  

- insertion of the scalar density 
(RM123 method) 

- estimate using ChPT

mu md

δextrapolation
SU(2) = − 0.0054 (14) HPQCD

δextrapolation
SU(2) = − 0.0052 (9) FNAL/MILC

δinsertion
SU(2) = − 0.0064 (7) ETMC

δChPT
SU(2) = − 0.0043 (12)

only results with A and no red tags 
enter the FLAG averages



Figure 9: Comparison of lattice results for fK±/f⇡± . This ratio is obtained in pure QCD
including the isospin-breaking correction (see Sec. 5.3). The black squares and grey bands
indicate our averages in Eqs. (76) and (77).

set of HISQ ensembles with Nf = 2 + 1 + 1 dynamical flavours. They have generated 24
ensembles for six values of the lattice spacing (0.03–0.15 fm, scale set with f⇡+) and
with both physical and unphysical values of the light sea-quark masses, controlling in
this way the systematic uncertainties due to chiral and continuum extrapolations. With
respect to FNAL/MILC 14A they have increased the statistics and added three ensembles
at very fine lattice spacings, a ' 0.03 and 0.042 fm, including for the latter case also
a simulation at the physical value of the light-quark mass. The final result of their
analysis is fK±/f⇡± = 1.1950(14)stat(

+0
�17)a2(2)FV (3)f⇡,PDG(3)EM (2)Q2 , where the errors

are statistical, due to the continuum extrapolation, finite-volume, pion decay constant
from PDG, electromagnetic e↵ects and sampling of the topological charge distribution.22

HPQCD 13A has analyzed ensembles generated by MILC and therefore its study of
fK±/f⇡± is based on the same set of ensembles as FNAL/MILC 17 bar the ones at the
finest lattice spacings (namely, only a = 0.09–0.15 fm, scale set with f⇡+ and relative
scale set with the Wilson flow [115, 365]) supplemented by some simulation points with
heavier quark masses. HPQCD employs a global fit based on continuum NLO SU(3)
�PT for the decay constants supplemented by a model for higher-order terms including
discretization and finite-volume e↵ects (61 parameters for 39 data points supplemented by
Bayesian priors). Their final result is fK±/f⇡± = 1.1916(15)stat(12)a2(1)FV (10), where
the errors are statistical, due to the continuum extrapolation, due to finite-volume e↵ects
and the last error contains the combined uncertainties from the chiral extrapolation, the
scale-setting uncertainty, the experimental input in terms of f⇡+ and from the uncertainty
in mu/md.

Because CalLat 20, FNAL/MILC 17 and HPQCD 13A partly share their gauge ensem-

22To form the average in Eq. (76), we have symmetrized the asymmetric systematic error and shifted the
central value by half the di↵erence as will be done throughout this section.
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|Vus |
|Vud |

= 0.23126 (50) Nf = 2 + 1 + 1 ( ≃ 0.22%)

|Vus |
|Vud |

= 0.23161 (75) Nf = 2 + 1 ( ≃ 0.32%)

fK+

fπ+
= 1.1934 (19) Nf = 2 + 1 + 1

fK+

fπ+
= 1.1916 (34) Nf = 2 + 1

CalLat, ETMC, FNAL/MILC, HPQCD

BMW, CLQCD, HPQCD, 
MILC, QCDSF, RBC/UKQCD

open issues 
experiment: present database dominated by a single experiment (KLOE) 

theory: removal of the electroquenched approximation (null electric charges for sea quarks)

( ≃ 0.16%)

( ≃ 0.29%)



Q from 

Q from LQCD

η → 3π

nice consistency between the channels  and K+ → π0 K0 → π−

Cirigliano et al.
0807.4507

ChPT

extraction of  from leptonic   decays|Vus | Kℓ3

Γ(K+,0 → π0,−ℓ+νℓ) =
G2

FM5
PS+

192π3
C2

K+,0SEW |Vus fK 0π−

+ (0) |2 I(0)
Kℓ (1 + δK+,0ℓ

EM + δK+,0π
SU(2))

 = Clebsch-Gordan coefficient ( ) 

 = vector form factor at zero momentum transfer 

 = phase-space integral sensitive to the momentum dependence of vector (and scalar) form factor

 = strong SU(2)-breaking and long-distance EM corrections

CK+,0 CK+ = 1/ 2 , CK0 = 1

f+(0) ≡ fK 0π−

+ (0)

I(0)
Kℓ

δK+,0ℓ
EM , δK+,0π

SU2

δK+π0

SU(2) = (2.61 ± 0.17) %
= (2.52 ± 0.11) %

δK 0π−

SU(2) = 0

δK+π0

SU(2) ∝ChPT Q−2 =
m2

d − m2
u

m2
s − m2

ud

Colangelo et al. 1807.11937

Cirigliano et al. 2208.11707

K 0
e3 0.495 ± 0.110 0.580 ± 0.016

K±
e3 0.050 ± 0.125 0.105 ± 0.024

K 0
μ3 0.700 ± 0.110 0.770 ± 0.019

K±
μ3 0.008 ± 0.125 0.025 ± 0.027

Seng et al. 
2203.05217

hybrid with LQCD for 
the  boxγW

δK+,0ℓ
EM

2

tablished [2] that only the axial �W -box contribution is
sensitive to hadronic scales; see Fig. 1 for the �W dia-
grams. The relevant hadronic tensor TV A

µ⌫
is defined as

TV A

µ⌫
=
1

2 �
d4xeiqx�Hf(p)�T �J

em

µ
(x)JW,A

⌫
(0)� �Hi(p)�,

(1)
for a semileptonic decay process Hi → Hfe⌫̄e. Above,
Hi�f are given by neutron and proton for the neutron
beta decay, and by ⇡− and ⇡0 for the pion semileptonic
decay, respectively. Furthermore, Jem

µ
=

2
3 ū�µu−

1
3 d̄�µd−

1
3 s̄�µs is the electromagnetic quark current, and JW,A

⌫
=

ū�⌫�5d is the axial part of the weak charged current.

Figure 1. The �W -box diagrams for the semileptonic decay
process Hi →Hfe⌫̄e.

The spin-independent part of TV A

µ⌫
has only one term,

TV A

µ⌫
= i✏µ⌫↵�q

↵p�T3 + . . . , where T3 is a scalar function.
For the neutron beta decay, the spin-dependent contri-
butions, denoted by the ellipses here, are absorbed into
the definition of the nucleon axial charge gA, which can
be measured directly from experiments. According to
current algebra [2], it is this spin-independent term that
gives rise to the hadron structure-dependent contribution
and dominates the uncertainty in the theoretical predic-
tion. Using T3 as input, the axial �W -box correction to
the tree-level amplitude is given as [3]

�
V A

�W
�
H
=

1

FH+
↵e

⇡ �
∞

0
dQ2 m2

W

m2
W
+Q2

×�

�
Q2

−�Q2

dQ0

⇡

(Q2
−Q2

0)
3
2

(Q2)2
T3(Q0,Q

2
). (2)

Here Q2
= −q2 > 0 is the spacelike four-momentum

square. The normalization factor FH+ arises from the lo-
cal matrix element �Hf(p

′
)�JW,V

µ
�Hi(p)� = (p + p

′
)µF

H+ ,

with FH+ = 1 for the neutron and
√
2 for the pion decay.

Methodology – In the framework of lattice QCD, the
hadronic tensor TV A

µ⌫
in Euclidean spacetime is given by

TV A

µ⌫
=
1

2 �
dt e−iQ0t

� d3xe−i �Q⋅�xHV A

µ⌫
(t, �x) (3)

with HV A

µ⌫
(t, �x) defined as

H
V A

µ⌫
(t, �x) ≡ �Hf(P )�T �J

em

µ
(t, �x)JW,A

⌫
(0)� �Hi(P )�. (4)

Here the Euclidean momenta P and Q are chosen as

P = (imH ,�0), Q = (Q0, �Q) (5)

with mH the hadron mass.
By multiplying ✏µ⌫↵�Q↵P� to TV A

µ⌫
, we can extract the

function T3(Q0,Q
2
) through

T3(Q0,Q
2
) = −

I

2m2
H
� �Q�2

, I = ✏µ⌫↵�Q↵P�T
V A

µ⌫
. (6)

Here I can be written in terms of HV A

µ⌫
as

I =
i

2
✏µ⌫↵0Q↵mH � dt e−iQ0t

� d3�xe−i �Q⋅�xHV A

µ⌫

=
mH

2 �
dt e−iQ0t

� d3�xe−i �Q⋅�x✏µ⌫↵0 @H
V A

µ⌫

@x↵

. (7)

We can average over the spatial directions for �Q and have

I =
mH

2 �
dt e−iQ0t

� d3�x j0 �� �Q���x�� ✏µ⌫↵0
@HV A

µ⌫

@x↵

=
mH

2 �
dt e−iQ0t

� d3�x
� �Q�

��x�
j1 �� �Q���x�� ✏µ⌫↵0x↵H

V A

µ⌫
,

(8)

where jn(x) are the spherical Bessel functions. A key
ingredient in this approach is that once the Lorentz scalar
function ✏µ⌫↵0x↵H

V A

µ⌫
is prepared, e.g. from a lattice

QCD calculation, one can determine T3(Q0,Q
2
) directly.

Putting Eqs. (8) and (6) into Eq. (2) and changing

the variables as � �Q� =
�

Q2 cos ✓ and Q0 =
�

Q2 sin ✓, we
obtain the master formula

�
V A

�W
�
H
=
3↵e

2⇡ �
dQ2

Q2

m2
W

m2
W
+Q2

MH(Q
2
) (9)

with

MH(Q
2
) = −

1

6

1

FH+

�

Q2

mH

� d4x!(t, �x)✏µ⌫↵0x↵H
V A

µ⌫
(t, �x),

!(t, �x) = �

⇡
2

−⇡
2

cos3 ✓ d✓

⇡

j1 �
�

Q2��x� cos ✓�

��x�
cos �
�

Q2t sin ✓� .

(10)

For small Q2, lattice QCD can determine the function
MH(Q

2
) with lattice discretization errors under control.

For largeQ2, we utilize the operator product expansion

1

2 �
d4xe−iQxT �Jem

µ
(x)JW,A

⌫
(0)�

=
i

2Q2
�Ca(Q

2
)�µ⌫Q↵ −Cb(Q

2
)�µ↵Q⌫

−Cc(Q
2
)�⌫↵Qµ�J

W,A

↵
(0)

+
1

6Q2
Cd(Q

2
)✏µ⌫↵�Q↵J

W,V

�
(0) +�. (11)

There are only four possible local operators at leading
twist. (For the pion decay, the hadronic matrix ele-
ments for the first three operators vanish.) Multiplying

 boxγW

Feng et al. 2003.09798 (pion) 

Ma et al. 2102.12048 (kaon) 

Yoo et al. 2305.03198 (pion, kaon)

LQCD:

2.389 (17) ⋅ 10−3

2.437 (44) ⋅ 10−3

[γW]K
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f+(0)

FNAL/MILC 18 [39] 2+1+1 A F F F 0.9696(15)(12)
ETM 16 [38] 2+1+1 A � F � 0.9709(45)(9)
FNAL/MILC 13E [341] 2+1+1 A F F F 0.9704(24)(22)

PACS 22 [342] 2+1 A � ⌅ F 0.9615(10)(+47
�6 )

PACS 19 [343] 2+1 A � ⌅ F 0.9603(16)(+50
�48)

JLQCD 17 [336] 2+1 A � ⌅ � 0.9636(36)(+57
�35)

RBC/UKQCD 15A [41] 2+1 A F � � 0.9685(34)(14)
RBC/UKQCD 13 [344] 2+1 A F � � 0.9670(20)(+18

�46)
FNAL/MILC 12I [40] 2+1 A � � F 0.9667(23)(33)
JLQCD 12 [345] 2+1 C � ⌅ F 0.959(6)(5)
JLQCD 11 [346] 2+1 C � ⌅ F 0.964(6)

RBC/UKQCD 10 [347] 2+1 A � ⌅ F 0.9599(34)(+31
�47)(14)

RBC/UKQCD 07 [348] 2+1 A � ⌅ F 0.9644(33)(34)(14)

Table 16: Colour codes for the data on f+(0). In this and previous editions [4, 5], old results
with two red tags have been dropped.

Since the majority of results that qualify for inclusion into the FLAG average include
the strong isospin-breaking correction, we provide in Fig. 9 the overview of the world data
of fK±/f⇡± . For all the results of Tab. 17 provided only in the isospin-symmetric limit
we apply individually an isospin correction that will be described later on (see Eqs. (74) –
(75)).

The plots in Figs. 8 and 9 illustrate our compilation of data for f+(0) and fK±/f⇡± .
The lattice data for the latter quantity is largely consistent even when comparing sim-
ulations with di↵erent Nf . In the case of f+(0), a slight tendency to get higher values
when increasing Nf seems to be visible, while it does not exceed one standard devia-
tion. We now proceed to form the corresponding averages, separately for the data with
Nf = 2 + 1 + 1 and Nf = 2 + 1 dynamical flavours, and in the following we will refer to
these averages as the “direct” determinations.

5.3.1 Results for f+(0)

For f+(0) there are currently two computational strategies: FNAL/MILC uses the Ward
identity to relate the K ! ⇡ form factor at zero momentum transfer to the matrix
element h⇡|S|Ki of the flavour-changing scalar current S = s̄u. Peculiarities of the stag-
gered fermion discretization used by FNAL/MILC (see Ref. [40]) makes this the favoured
choice. The other collaborations are instead computing the vector current matrix element
h⇡|s̄�µu|Ki. Apart from FNAL/MILC 13E, RBC/UKQCD 15A, FNAL/MILC 18, PACS
19 and 22, all simulations in Tab. 16 involve unphysically heavy quarks and, therefore, the
lattice data needs to be extrapolated to the physical pion and kaon masses corresponding
to the K0 ! ⇡� channel. We note also that the recent computations of f+(0) make use of
the partially-twisted boundary conditions to determine the form-factor results directly at

68

Figure 8: Comparison of lattice results (squares) for f+(0) with various model estimates
based on �PT [330, 332–335] (blue circles). The black squares and grey bands indicate our
averages in Eqs. (72) and (73). The significance of the colours is explained in Sec. 2.

the relevant kinematical point q2 = 0 [349, 350], avoiding in this way any uncertainty due
to the momentum dependence of the vector and/or scalar form factors. The ETM collabo-
ration uses partially-twisted boundary conditions to compare the momentum dependence
of the scalar and vector form factors with the one of the experimental data [38, 351],
while keeping at the same time the advantage of the high-precision determination of the
scalar form factor at the kinematical end-point q2

max
= (MK � M⇡)2 [352, 353] for the

interpolation at q2 = 0.
According to the colour codes reported in Tab. 16 and to the FLAG rules of Sec. 2.2,

the results FNAL/MILC 12I and RBC/UKQCD 15A with Nf = 2 + 1, and the results
ETM 16 and FNAL/MILC 18 with Nf = 2 + 1 + 1 dynamical flavours of fermions,
respectively, can enter the FLAG averages. Therefore, there is no new entry to form the
averages in Eqs. (72) and (73) in this edition.

AtNf = 2+1+1 the result from the FNAL/MILC collaboration, f+(0) = 0.9704(24)(22)
(FNAL/MILC 13E), is based on the use of the Highly Improved Staggered Quark (HISQ)
action (for both valence and sea quarks), which has been tailored to reduce staggered
taste-breaking e↵ects, and includes simulations with three lattice spacings and physical
light-quark masses. These features lead to uncertainties due to the chiral extrapolation
and the discretization artifacts that are well below the statistical error. The remain-
ing largest systematic uncertainty comes from finite-size e↵ects, which have been inves-
tigated in Ref. [354] using one-loop �PT (with and without taste-violating e↵ects). In
Ref. [39], the FNAL/MILC collaboration presented a more precise determination of f+(0),
f+(0) = 0.9696(15)(11) (FNAL/MILC 18). In this update, their analysis is extended to
two smaller lattice spacings a = 0.06 and 0.042 fm. The physical light-quark mass is sim-
ulated at four lattice spacings. They also added a simulation at a small volume to study
the finite-size e↵ects. The improvement of the precision with respect to FNAL/MILC
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f+(0) = 0.9698 (18) Nf = 2 + 1 + 1 ( ≃ 0.19%)
f+(0) = 0.9677 (27) Nf = 2 + 1 ( ≃ 0.28%)

ETMC, FNAL/MILC

FNAL/MILC, RBC/UKQCD

|Vus | = 0.22328 (58) Nf = 2 + 1 + 1 ( ≃ 0.26%)
|Vus | = 0.22377 (75) Nf = 2 + 1 ( ≃ 0.34%)

open issue 
isospin-breaking corrections, both  and , not yet available from lattice QCD+QEDδK+,0π

SU2 δK+,0ℓ
EM

Γ(K+,0 → π0,−ℓ+νℓ)
exps

|Vus | f+(0) = 0.21654 (41) ( ≃ 0.19%) [see Moulson 1704.04104]  
adopted by FLAG-6 (2411.04268) 

0.21634 (38) Seng et al. 2203.05217
six modes, several exps.  

KTeV, KLOE, ISTRA+, NA48/2, …



isospin-breaking corrections in Kℓ3 decays

leptonic decays: 

Γ(ΔEγ) = lim
V→∞ [Γ0(V ) − Γpt

0 (V )] + lim
μγ→0 [Γpt

0 (μγ) + Γ1(μγ, ΔEγ)]
virtual photon regulated 
by the lattice volume V

virtual and real photons 
regulated by a small mass μγ

 = virtual photon rate  ⟹  infrared divergent  
 = real photon emission up to   ⟹  infrared divergent 

 = infrared safe [Block&Nordsiek ’37]

Γ0

Γ1(ΔEγ) ΔEγ

Γ(ΔEγ) = Γ0 + Γ1(ΔEγ)

on a lattice ⟹

RM123+Soton 1502.00257

pt = point-like & perturbative calculable

* infrared divergence universal ⟹ structure independent (soft photons) *

 decays: Kℓ3
d2Γ(ΔEγ)
dq2dsπℓ

= lim
V→∞ [ d2Γ0(V )

dq2dsπℓ
−

d2Γpt
0 (V )

dq2dsπℓ ] + lim
μγ→0 [

d2Γpt
0 (μγ)

dq2dsπℓ
+

d2Γ1(μγ, ΔEγ)
dq2dsπℓ ]

 and q2 = (pK − pπ)2 sπℓ = (pπ + pℓ)2 see Sachrajda@Lat ’19 [1910.07342]

K̄0

ν̄ℓ

ℓ−

π+

γ

tK tH tπℓ

t1

t2

presence of unphysical terms growing 
exponentially in Euclidean time

Eint
πℓ < Eext

πℓ

their number depends on  and on BCssπℓ

finite-volume corrections of order  in QEDL 
depend on  and their derivatives 

𝒪(1/L)
f+,0(q2) df+,0(q2)/dq2

*

*

an interesting approach is QED∞ + QCD with IVR  
see Christ et al. 2304.08026 and Christ@Lattice ’23 [2402.08915]

*



determination of  from semileptonic |Vus | / |Vud | Kℓ3/πe3

Seng et al. 2107.14798
* semileptonic  decays are a (theoretically clean) way to determine πe3 (π− → π0eνe) |Vud |

however, present experiments on  lead to , ten times less precise than 
 from superallowed nuclear beta decays

Br(πe3) |Vud |πe3
= 0.9739 (27)

|Vud | next generation of pion rare decays (PIONEER, …)

* taking  from semileptonic  decays and  from semileptonic  decays one gets|Vus | Kℓ3 |Vud | πe3

|Vus |Kℓ3

|Vud |πe3

= 0.22928 (84) ( ≃ 0.36%)
|Vus |
|Vud | Kℓ2/πℓ2

= 0.23126 (50) ( ≃ 0.22%)against

*  difference *≃ 2.0σ “axial” ratio“vector” ratio

impact of precise measurements of Br(Kμ3)/Br(Kμ2)

Cirigliano et al. 2208.11707

present experimental value:  Br(Kμ3)/Br(Kμ2) = 0.05294 (51) ( ≃ 0.96%)

bringing the precision down to  (for instance NA62) may help clarifying 
the experimental situation between the semileptonic and leptonic kaon sectors

≃ 0.2 %



hadronic -lepton decays and τ |Vus |

• Yet another puzzle: lower value of  

• Inclusive                    result in HFLAV plot obtained 
using truncated OPE 

• Exclusive channels give results larger than  
but smaller than that obtained imposing CKM unitarity

|Vus |τ−incl.

|Vus |τ−incl.

Inclusive hadronic  decaysτ
Alternative determinations of  can be obtained from inclusive hadronic  decays|Vus | τ
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 0.0011±0.2272 

 [OPE-1]νs X→  τ

 0.0010± 0.0018 ±0.2184 

 [OPE-2]νs X→  τ

 0.0022±0.2219 

 [latt-disp]νs X→  τ

 0.0018±0.2240 

 [latt-incl]νs X→  τ

 0.0007± 0.0018 ±0.2189 

νπ → τ / ν K→  τ

 0.0010± 0.0016 ±0.2229 

ν K→  τ

 0.0008± 0.0016 ±0.2224 

  exclusive averageτ

 0.0008± 0.0015 ±0.2225 

  averageτ

 0.0005± 0.0013 ±0.2208 

HFLAV

2023

Figure 66: |Vus| determinations. The values of |Vus|K`3, |Vus|K`2 and the expected |Vus| from
the CKM matrix unitarity are taked from Ref. [1591]. The other reported |Vus| values are
documented in the text. When two uncertainties are reported, the first one accounts for the
uncertainties of the HFLAV-Tau fit results, and the second one accounts for the uncertainties
of the theory and the other inputs that are used for the |Vus| determinations.

unitarity, and an illustration of the measurement method:

|Vus|uni = 0.2272 ± 0.0011 0.0� [
p

1 � |Vud|
2 � |Vub|

2 (CKM unitarity)] , (253)
|Vus|K`3 = 0.2233 ± 0.0005 3.2� [BK`3 [1591]] , (254)
|Vus|K`2 = 0.2250 ± 0.0005 1.7� [BK`2 [1591]] , (255)
|Vus|⌧ -OPE-1 = 0.2184 ± 0.0021 3.6� [B(⌧�

! X�
s

⌫⌧ )] , (256)
|Vus|⌧ -latt-incl = 0.2189 ± 0.0019 3.7� [B(⌧�

! X�
s

⌫⌧ )] , (257)
|Vus|⌧K/⇡ = 0.2229 ± 0.0019 2.0� [B(⌧�

! K�⌫⌧ )/B(⌧�
! ⇡�⌫⌧ )] , (258)

|Vus|⌧K = 0.2224 ± 0.0017 2.3� [B(⌧�
! K�⌫⌧ )] . (259)

Averaging the two |Vus| determinations that rely on exclusive ⌧ branching fractions (Eqs. 258,
259), we obtain:

|Vus|⌧ excl = 0.2225 ± 0.0017 2.3� [average of ⌧ exclusive measurements] . (260)

Averaging the ⌧ inclusive and exclusive |Vus| determinations (Eqs. 256, 257, 258, 259), we
obtain:

|Vus|⌧ = 0.2208 ± 0.0014 3.6� [average of 4 |Vus| ⌧ measurements] . (261)
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summary of from  decays [HFLAV 2411.18639]|Vus | τ

inclusive  decays τ → Xsν

|Vus | =
Rus

Rud / |Vud |2 − δRSU(3)

 evaluated via OPEδRSU(3)

 from experimentsRus(d) =
Γ(τ ↦ Xus(d)ντ)
Γ(τ ↦ eνeντ)

exclusive  decays  
require  from LQCD and long-distance RCs 

[see Arroyo-Ureña et al. 2107.04603]

τ → K(π)ν
fK(π)±

OPE-1 [Gamiz et al. hep-ph/0612154] 

OPE-2 [Maltman et al. 1510.06954 and 2019] 
latt-disp [RBC/UKQCD 1803.07226] 

latt-incl [ETMC 2403.05404]

no long-distance SU(2)-breaking corrections

VMD model for SD FFs



* Fermi effective theory, optical theorem, Lorentz invariance

Rus ≡
Γ(τ → Xusντ)
Γ(τ → eνeντ)

= 6πSEW |Vus |2 ∫
1

0
ds (1 − s)2 [ρL(s)+(1 + 2s) ρT(s)]

ρμν
us (q) = (2π)4⟨0 |Jμ

us(0) δ4(𝒫 − q) [Jν
us(0)]† |0⟩ = qμqνρL(q2) + (gμνq2 − qμqν) ρT(q2)

* L and T components of the spectral density for the weak (us) hadronic current 

s = q2 /m2
τ

SEW = 1.0201 (3)

* through lattice QCD simulations we can access Euclidean correlators 

Cμν
us (t, ⃗q) = ∫ d ⃗x e−i ⃗q⋅ ⃗x ⟨0 |T {Jμ

us(−it, ⃗x )[Jν
us(0)]†} |0⟩

t > 0
1

2π ∫
∞

0
dE e−Et ρμν

us (E, ⃗q)

CL(t) = C00
us (t, 0⃗) =

1
2π ∫

∞

0
dE e−EtE2ρL(E2)

CT(t) =
1
3

Cii
us(t, 0⃗) =

1
2π ∫

∞

0
dE e−EtE2ρT(E2)

* inversion is ill-conditioned for kernels with non-smooth functions ⟹ smearing [Gambino et al. 2005.13730] 

RL(T )
us = lim

σ→0
RL(T )

us (σ) = 12πSEW
|Vus |2

m3
τ ∫

∞

0
dE KL(T ) ( E

mτ ) 1

1 + e− E
mτσ

E2 ρL(T )(E2)

= lim
σ→0

12πSEW
|Vus |2

m3
τ

lim
V→∞, a→0

N

∑
n=1

gL(T )
n (σ) CL(T )(na)

KL(x) =
1
x

(1 − x2)2

KT(x) = KL(x) (1 + 2x2)

 evaluated using the Hansen-Lupo-Tantalo (HLT) method 1903.06476KL(T ) ( E
mτ ) 1

1 + e− E
mτσ

→
N

∑
n=1

gL(T )
n (σ) e−naE

minimization of an appropriate functional of syst. and stat. errors



* it can be shown that  RL(T )
ud(s)(σ) = RL(T )

ud(s) + 𝒪(σ4)
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ETMC 2403.05404

extrapolation to  under well controlσ → 0

ETMC 2308.03125

non-strange hadronic final states [ETMC 2308.03125]

Finally, another interesting quantity to provide is the
difference between the vector and axial contribution,
normalized over the total ratio RðτÞ

ud , namely

ΔðτÞ
V−A ≡ Rðτ;VÞ

ud − Rðτ;AÞ
ud

RðτÞ
ud

: ð56Þ

This quantity, which is independent from jVudj, vanishes to
any given order of the perturbative expansion (if we neglect
light-quark mass effects), and is thus very sensitive to
nonperturbative physics contributions. The ALEPH and
OPAL collaborations quote the value

ΔðτÞ
V−AðALEPHÞ ¼ 0.026ð7Þ; ΔðτÞ

V−AðOPALÞ ¼ 0.013ð7Þ;
ð57Þ

which can be compared with our determination

ΔðτÞ
V−A ¼ 0.042ð5Þ: ð58Þ

Due to the large cancellation in ΔðτÞ
V−A between the vector

and axial contribution, the resulting uncertainties for
this quantity are, at present, quite sizable: they are of order
Oð10%Þ in the case of our theoretical prediction, and of
order Oð25–30%Þ and Oð50%Þ for the ALEPH and OPAL
results, respectively. The difference between our prediction
and the experimental values in Eq. (57) is at the level of
1.9σ and 3.5σ, if we compare with the ALEPH and OPAL
results, respectively. However, for this quantity, which is

obtained after a strong cancellation between the vector and
axial contribution, the relative impact of the missing isospin
breaking corrections might be stronger, and for this reason,
at present, we cannot claim any discrepancy between the
theoretical prediction and the experimental value of ΔðτÞ

V−A.
In the future, it will be interesting to see whether this
difference increases or vanishes once isospin breaking
corrections are included, and both experimental and theo-
retical uncertainties reduced.

IV. CONCLUSIONS

In this paper we have presented, for the first time, a first-
principles and fully nonperturbative lattice QCD determi-
nation of the inclusive decay rate of the τ lepton. The
method relies on the HLT method of Ref. [9], which allows
one to evaluate the energy integral of spectral density
weighted by smooth analytic kernel functions. In this first
numerical study, we have evaluated the (semi-)inclusive
decay rate τ → Xudντ, where Xud is a generic hadronic state
with ūd flavor quantum numbers, in isospin-symmetric
QCD, i.e., by neglecting strong and electromagnetic
isospin-breaking corrections. The method we propose
does not rely on OPE or perturbative approximations
and proceeds by regularizing the expression for the ratio
RðτÞ
ud of decay rates in Eqs. (21) and (24), which involves an

integral over the spectral form factors ρTðsÞ and ρLðsÞ, by
introducing a nonzero smearing parameter σ. The resulting
regularized ratio RðτÞ

ud ðσÞ [see Eq. (32)] can be then targeted
by the HLT method, and the limit of vanishing σ, which

FIG. 7. Comparison between the lattice results obtained in this work and the experimental measurements by the ALEPH [33] and
OPAL [34] collaborations. We show, from left to right, the vector contribution Rðτ;VÞ

ud , the axial contribution Rðτ;AÞ
ud , and the total RðτÞ

ud . In
the rightmost panel, the data point in magenta corresponds to the HFLAVaverage [2] of the experimental results. For this comparison,

we divided the experimental results for Rðτ;VÞ
ud , Rðτ;AÞ

ud , and RðτÞ
ud by jVudj2 using the value [1] jVudj ¼ 0.97373ð31Þ.
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Rud

|Vud |2 LQCD
= 3.650 (28)

|Vud | = 0.9752 (37)th (10)exp

RV
ud − RA

ud

Rud LQCD
= 0.042 (5) 0.026 (7)    ALEPH [hep-ex/0506072] 

0.013 (7)    OPAL  [hep-ex/9808019]

Rud
HFLAV

= 3.471 (7)

compatible with superallowed, 
but not competitive

(~0.2 %)

(~0.8 %)



strange hadronic final states [ETMC 2403.05404]

Rus

|Vus |2 isoQCD
= 3.407 (22)

|Vus | = 0.2189 (7)th (18)exp

0.21 0.22 0.23 0.24 0.25 0.26

From unitarity

|Vus|

⌧ ! Xus ⌫⌧ [This work]
⌧ � OPE � 1, Refs. [6-7]
⌧ � OPE � 2, Refs. [8-9]
⌧�latt-disp, Ref. [10]
⌧ ! K ⌫⌧ , Ref. [5]
Hyperons, Ref. [4]
K`3, Ref. [3]
K/⇡`2, Ref. [3]
0+ ! 0+ �-decays, Ref. [14]
n ! p e ⌫, Ref. [4]
⌧ ! Xud ⌫⌧ , Ref. [2]
⇡`3, Ref. [4]

Rus
HFLAV

= 0.1632 (27)

V/A decomposition and strange/non-strange ratios

|Vud |2

|Vus |2

RV
us

RV
ud isoQCD

= 0.967 (10)

|Vud |2

|Vus |2

RA
us

RA
ud isoQCD

= 0.900 (16)

RV
us − RA

us

Rus isoQCD
= 0.079 (8)

prel
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ary

2.2  from  
3.3  from 

σ Kℓ3

σ Kℓ2 /πℓ2

|Vus |
|Vud |

= 0.2244 (11)th (19)exp

3.3  from σ Kℓ2 /πℓ2

using both (us) and (ud) channels

thanks to G. Gagliardi

(~1.7 %)

(~0.7 %)

vector channel

axial channel



open issues 

- isospin-breaking corrections  not yet available from lattice QCD+QED    (expected at the percent level)δRus

- the 3.3  difference with  from  would require a fractional shift σ |Vus | Kℓ2 /πℓ2 δRus = − 0.058 (18)

- the evaluation of   from first-principles is mandatoryδRus

- better precision for the experimental result of  (presently 1.7 %)Rus

work in progress by a collaboration among people from CERN, Cyprus Institute, Helmholtz 

Institut (Mainz), Humboldt Universität (Berlin), Universities of RM-ToV and RM3, …

Rus = R(iso)
us [1 + δRus]

a bit of advertising: a first-principle lattice QCD calculation of the inclusive semileptonic decay 

of the Ds-meson [A. De Santis et al. (ETMC) 2504.06063 and 2504.06064]
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FIG. 3. Top: contributions to the di↵erential decay rate of
the dominant c̄s and c̄d channels (multiplied by the squared
moduli of the corresponding CKM elements), shown together
with a cubic-spline interpolation to the simulated momenta.
Middle/Bottom: error budgets for the c̄s and c̄d channels, re-
spectively. Red and blue points represent the total (�tot) and
statistical (�stat) errors, while the green, purple, yellow, and
black points represent the error associated with the infinite-
volume (�L), continuum-limit (�a), � 7! 0 (��) extrapola-
tion, and with the HLT-reconstruction (�HLT), respectively.
The dominant source of error is statistical.
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FIG. 4. Comparison between the experimental results from
Refs. [32–34, 44] and our theoretical prediction (red points),
for the decay rate (left-panel) and for the first (middle-panel)
and second (right-panel) lepton moment.

sults by the CLEO and BES-III collaborations are:

MCLEO

1
= 0.456(11) GeV, (11)

MBES�III

1
= 0.439(9) GeV, (12)

Maverage

1
= 0.446(7) GeV, (13)

for M1, and

MCLEO

2
= 0.239(12) GeV2, (14)

MBES�III

2
= 0.222(5) GeV2, (15)

Maverage

2
= 0.2245(46) GeV2, (16)

for M2. We have obtained these results by repeating also
in the case of the BES-III data the analysis performed in
Ref. [44] in the case of the CLEO results. Like for the
decay rate, the agreement of our theoretical predictions
of Eq. (7) with the experimental results is excellent, as
the middle- and right-panel of Figure 4 show.

A complementary analysis that can be carried out is to
convert the comparison between lattice and experiments
into a determination of the CKM matrix elements. In
principle, the relations in Eq. (7) about M1 and M2, af-
ter setting the left-hand side respectively to Maverage

1
or

Maverage

2
, can be solved for the ratio |Vcd|2/|Vcs|2. How-

ever, since for both l = 1, 2 the �Ml,c̄s/�c̄s contribution
alone (which is CKM-independent) already agrees with
the experimental result Maverage

l within uncertainties
(see Table I), there is essentially no remaining “room” for
extracting |Vcd|2/|Vcs|2 at better than the 100%-level of
precision. In other words, the measured moments are en-
tirely saturated, within errors, by the CKM-independent
part of the theoretical predictions. This also implies
that, currently, the comparison between lattice and ex-
periments for these two observables remains essentially
una↵ected by moderate variations in the CKM param-
eters. Therefore, since this is the very first time that
lattice QCD confronts experiments on these quantities,
the observed agreement is remarkable.

accuracy relevant for 

phenomenological studies

extension to the b-sector

with the HLT method
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Minkowski amplitude given in Eq. (1) as follows:

A`a

c
( Æ?c , ÆG, G0) = hc( Æ?c) |�`EM(ÆG, G0)

π
3

3
? |c( Æ?)ihc( Æ?) |

�
�
a

W(0) | (Æ0)i" . (2)

=
π

3
3
?4

�8 (G0+8CB ) (⇢ Æ?�⇢c ) hc( Æ?c) |�`EM(ÆG,�8CB) |c( Æ?)ihc( Æ?) |�aW(0) | Æ0i" (3)

=
π

3
3
?4

�8 (G0+8CB ) (⇢ Æ?�⇢c )
π

3
3
H

(2c)3 4
8 ( Æ?� Æ?c ) · ( ÆG�ÆH) (4)

⌘
`d

⌘
af hc( Æ?c) |�dEM(ÆH, CB)�fW (0) | Æ0i⇢ ,

where ⇢ Æ? =
p
Æ? 2 + "2

c
and for simplicity we use ⇢c = ⇢ Æ?c . The subscripts " and ⇢ identify

QCD amplitudes that are computed in Minkowski and Euclidean space, respectively. The tensor
⌘
UV is a diagonal matrix with either 1 or 8 on the diagonal as needed to convert the Euclidean

conventions for the current components in the Euclidean-space amplitude on the second line of
Eq. (4) into the Minkowski-space conventions used in the Minkowski-space amplitude A`a

c
which

appears on the left-hand side of Eq. (2).
Equation (3) follows from Eq. (2) by simply inserting +8CB into the argument of the exponent and

a canceling shift of�8CB in the argument of �EM. Equation (4) is obtained from Eq. (3) by recognizing
the Minkowski-space amplitude with an imaginary time argument as actually a Euclidean amplitude
and replacing the explicit insertion of a single-pion intermediate state carrying momentum Æ? by a
Fourier transform which projects onto the same state. Of course, we must require that the time CB is
sufficiently large that only single-pion intermediate states can contribute.

Equation (4) provides the IVR result which we need. The Minkowski-space single-pion
contribution to the QCD matrix element for G0 > 0 is expressed as the Fourier transform of a
Euclidean amplitude that can be directly evaluated in a finite-volume lattice QCD calculation. This
result can be inserted into the Feynman amplitude represented by Fig. 1 to give the contribution
of this single-pion intermediate state to the E&M correction to the  ! c✓a✓ decay in which the
photon is exchanged between the charged lepton and a quark:

A �

 ✓3( Æ?c , Æ?✓) =
π
3

4
:

π
3

4
G \ (G0)4�8 ( ÆG · Æ:�G0:0 )A`a

c
( Æ?c , ÆG, G0)

· 1
:

2 � 8n
D̄✓ ( Æ?✓)W`

�
W · (?✓ + :) + <✓

�
Wa (1 � W5)E

a
( Æ? ā)

(?✓ + :)2 + <2
✓
� 8n

. (5)

⌘
π
3

4
G ! ( Æ?✓ , G)"`aA

`a

c
( Æ?c , ÆG, G0). (6)

where Eq. (6) provides a definition for the analytic “leptonic” factor ! ( Æ?✓ , G)"`a which is defined in
Minkowski-space. We have labeled this single-pion contribution A �

 ✓3
These same quantities can be used to write an explicit formula for the remaining contribution to

this problematic diagram in which the photon is exchanged between the lepton and a quark, which
we label A � �

 ✓3. This is the contribution from which the single-pion amplitude has been subtracted,
allowing a Wick rotation to Euclidean space and subsequent lattice QCD evaluation:

A � �

 ✓3( Æ?c , Æ?✓) =
π
3

4
G ! ( Æ?✓ , G)⇢`a

h
hc( Æ?c) |�`EM(G)�aW(0) | (Æ0)i⇢ (7)

�⌘`d⌘afAdf

c
( Æ?c , ÆG,�8G0)

i
.
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Electromagnetic corrections to  ✓3 decay Norman H. Christ

labeled G creates an important problem that naively would make QED1 inapplicable to this process.
While there is exponential suppression associated with the propagation of the pion from the location
of the weak vertex to the location of the interpolating operator which absorbs the final pion, that
exponential suppression is present in the amplitude without regard to the location of the point on
the pion propagator where the photon is absorbed. As that photon-pion interaction point moves
away from the weak vertex the resulting amplitude is only mildly suppressed by the power-law
fall-off of the propagating photon. However, at such large times the pion-photon vertex can move
far from the weak vertex in space as well, with the resulting photon-pion interaction corrupted by
the power-law finite-volume-distortion of the pion propagator as it moves close to the boundary of
the finite, periodic QCD volume. Interpreted in this way, the spatial extent of the QCD volume
must be far larger than the time extent of the QCD volume if power-law-suppressed finite-volume
corrections are to be avoided — a potentially impractical requirement.

K0

`�

⌫`

⇡+

IVR

QCD volume

~p⇡

~p`

(~k, k0)

x0

x

Figure 1: A Feynman diagram showing the problematic photon-exchange topology in which the photon is
exchanged between the lepton and a quark. The momentum routing shown corresponds to that used in Eq. (5).
The vertical dotted line cuts through the three particle which complicate the Euclidean-space treatment of
this process when the sum of their energies is near or below the mass of the kaon.

This is the problem solved by infinite-volume reconstruction (IVR) [6]. As is demonstrated
below, the IVR technique explicitly limits the time extent of the QCD volume over which the
pion-photon vertex is integrated. The upper limit on the time is conventionally labeled CB. This
restriction of the time integration is indicated by the arrow labeled IVR in Fig. 1. If the time G0 of
this interaction point is also required to be sufficiently far from the weak vertex that only the pion
propagation shown in the figure is possible, then a simple spatial Fourier transformation performed
on the position dependence of that interaction point will extract all the information needed for the
numerical integration of that interaction point over an infinite space-time volume with G0 > CB to be
accurately performed, thereby reconstructing the needed infinite-volume amplitude.

2. Electromagnetic corrections to  /c ! ✓a✓ and  ! c✓a✓

After this introduction to the methods that we propose to use for the lattice QCD calculation of
the E&M corrections to  ! c✓a✓ decay, we now briefly discuss the status of the E&M corrections

3

single pion contribution at large x0

the Minkowski-space single-pion contribution is expressed as the Fourier transform of a Euclidean 
amplitude calculable with lattice QCD

- pion-photon scattering in the continuum and infinite volume 
- exponentially decreasing FSEs (not power-like)



current fit Kµ3/Kµ2 BR at 0.5% Kµ3/Kµ2 BR at 0.2%
central +2� �2� central +2� �2�

�2/dof 25.5/11 25.5/12 31.8/12 32.1/12 25.5/12 35.6/12 35.9/12
p-value [%] 0.78 1.28 0.15 0.13 1.28 0.04 0.03

BR(µ⌫) [%] 63.58(11) 63.58(09) 63.44(10) 63.72(11) 63.58(08) 63.36(10) 63.80(11)
S (µ⌫) 1.1 1.1 1.3 1.4 1.2 1.6 1.7
BR(⇡⇡0) [%] 20.64(7) 20.64(6) 20.73(7) 20.55(8) 20.64(6) 20.78(7) 20.50(10)
S (⇡⇡0) 1.1 1.2 1.3 1.5 1.2 1.5 2.0
BR(⇡⇡⇡) [%] 5.56(4)
S (⇡⇡⇡) 1.0
BR(Ke3) [%] 5.088(27) 5.088(24) 5.113(25) 5.061(31) 5.088(23) 5.128(24) 5.046(32)
S (Ke3) 1.2 1.2 1.2 1.6 1.3 1.3 1.8
BR(Kµ3) [%] 3.366(30) 3.366(13) 3.394(16) 3.336(27) 3.366(7) 3.411(13) 3.320(18)
S (Kµ3) 1.9 1.2 1.5 2.6 1.1 2.2 3.1
BR(⇡⇡0⇡0) [%] 1.764(25)
S (⇡⇡0⇡0) 1.0
⌧± [ns] 12.384(15) 12.384(15) 12.382(15) 12.385(15) 12.384(15) 12.381(15) 12.386(15)
S (⌧±) 1.2

Vus
Vud

����
K`2/⇡`2

0.23108(51) 0.23108(50) 0.23085(51) 0.23133(51) 0.23108(49) 0.23071(51) 0.23147(52)

VK`3
us 0.22330(53) 0.22337(51) 0.22360(52) 0.22309(54) 0.22342(49) 0.22386(52) 0.22287(52)

FK
F⇡

Vus
Vud

����
K`2/⇡`2

0.27679(34) 0.27679(31) 0.27651(35) 0.27709(34) 0.27679(30) 0.27634(33) 0.27726(35)

f+(0)VK`3
us 0.21656(35) 0.21662(31) 0.21685(33) 0.21636(35) 0.21667(28) 0.21710(32) 0.21614(34)

�(1)
CKM

�0.00176(56) �0.00173(55) �0.00162(56) �0.00185(56) �0.00171(55) �0.00151(56) �0.00195(56)
�3.1� �3.1� �2.9� �3.3� �3.1� �2.7� �3.5�

�(2)
CKM

�0.00098(58) �0.00098(58) �0.00108(58) �0.00087(58) �0.00098(58) �0.00114(58) �0.00081(58)
�1.7� �1.7� �1.9� �1.5� �1.7� �2.0� �1.4�

�(3)
CKM

�0.0164(63) �0.0157(60) �0.0118(62) �0.0202(63) �0.0153(59) �0.0083(62) �0.0233(62)
�2.6� �2.6� �1.9� �3.2� �2.6� �1.4� �3.8�

Table 1: Fit results for the current global fit as well as variants including a new measurement of the Kµ3/Kµ2 branching fraction, with uncertainty of 0.5% and 0.2%,
respectively, and central value either as expected from the current fit, BR(Kµ3)/BR(Kµ2) = 0.05294(51), or shifted by ±2� of the current fit error. In each channel,
the scale factors are given to quantify the tension as originating therefrom [3]. Note that the branching ratios for ⇡⇡⇡ and ⇡⇡0⇡0 are virtually una↵ected by the new
measurement due to very few correlated ratios with the (semi-) leptonic channels in the data base (in cases in which no significant changes occur, only a single
entry is given that applies to all columns). The values of Vus and Vus/Vud are extracted using the same input as described in the main text, adding in quadrature all
uncertainties given in Eq. (7). �(1,2,3)

CKM are defined in Eq. (8), and �(1,2)
CKM are evaluated using V�ud from Eq. (5).

both from Ref. [30] (the value of Q is consistent with Q =
22.1(7) from ⌘ ! 3⇡ [103] and Q = 22.4(3) from the Cot-
tingham approach [104]), and the form-factor normalization
f+(0) = 0.9698(17) [30, 105, 106].1 This global fit then de-
fines the current baseline result given in Eq. (7) and the first
column of Table 1. The resulting constraints in the Vud–Vus
plane are shown in Fig. 1, illustrating the tensions among the
two kaon bands and the Vud determinations from superallowed
� and neutron decays (commonly denoted by V�ud, see Eq. (5)).
To quantify the tensions with CKM unitarity, there are thus sev-

1We use the N f = 2 + 1 + 1 average from Ref. [30], which is dominated by
Ref. [106]. This value is in agreement with the N f = 2 + 1 average f+(0) =
0.9677(27) [30, 107, 108], and also marginally with Ref. [109] due to the large
asymmetric error.

eral possible variants

�(1)
CKM =

���V�ud

���2 +
���VK`3

us

���2 � 1,

�(2)
CKM =

���V�ud

���2 +
���VK`2/⇡`2, �

us
���2 � 1,

�(3)
CKM =

���VK`2/⇡`2,K`3
ud

���2 +
���VK`3

us

���2 � 1, (8)

which di↵er in their BSM interpretation; see Sec. 3. The nu-
merical results are also included in Table 1.

With the results shown in Table 1, the impact of a new
Kµ3/Kµ2 measurement becomes apparent: first, the biggest
scale factor in the current fit arises in the Kµ3 channel, while
the Kµ2 data base is dominated by a single experiment [35]. To
date, no direct measurements of the ratio exist apart from the
very early ones in Refs. [60, 110, 111], which, however, are not
precise enough to be included in the fit, in such a way that the

3
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Table 1: Fit results for the current global fit as well as variants including a new measurement of the Kµ3/Kµ2 branching fraction, with uncertainty of 0.5% and 0.2%,
respectively, and central value either as expected from the current fit, BR(Kµ3)/BR(Kµ2) = 0.05294(51), or shifted by ±2� of the current fit error. In each channel,
the scale factors are given to quantify the tension as originating therefrom [3]. Note that the branching ratios for ⇡⇡⇡ and ⇡⇡0⇡0 are virtually una↵ected by the new
measurement due to very few correlated ratios with the (semi-) leptonic channels in the data base (in cases in which no significant changes occur, only a single
entry is given that applies to all columns). The values of Vus and Vus/Vud are extracted using the same input as described in the main text, adding in quadrature all
uncertainties given in Eq. (7). �(1,2,3)

CKM are defined in Eq. (8), and �(1,2)
CKM are evaluated using V�ud from Eq. (5).

both from Ref. [30] (the value of Q is consistent with Q =
22.1(7) from ⌘ ! 3⇡ [103] and Q = 22.4(3) from the Cot-
tingham approach [104]), and the form-factor normalization
f+(0) = 0.9698(17) [30, 105, 106].1 This global fit then de-
fines the current baseline result given in Eq. (7) and the first
column of Table 1. The resulting constraints in the Vud–Vus
plane are shown in Fig. 1, illustrating the tensions among the
two kaon bands and the Vud determinations from superallowed
� and neutron decays (commonly denoted by V�ud, see Eq. (5)).
To quantify the tensions with CKM unitarity, there are thus sev-

1We use the N f = 2 + 1 + 1 average from Ref. [30], which is dominated by
Ref. [106]. This value is in agreement with the N f = 2 + 1 average f+(0) =
0.9677(27) [30, 107, 108], and also marginally with Ref. [109] due to the large
asymmetric error.

eral possible variants

�(1)
CKM =

���V�ud

���2 +
���VK`3

us

���2 � 1,

�(2)
CKM =

���V�ud

���2 +
���VK`2/⇡`2, �

us
���2 � 1,

�(3)
CKM =

���VK`2/⇡`2,K`3
ud

���2 +
���VK`3

us

���2 � 1, (8)

which di↵er in their BSM interpretation; see Sec. 3. The nu-
merical results are also included in Table 1.

With the results shown in Table 1, the impact of a new
Kµ3/Kµ2 measurement becomes apparent: first, the biggest
scale factor in the current fit arises in the Kµ3 channel, while
the Kµ2 data base is dominated by a single experiment [35]. To
date, no direct measurements of the ratio exist apart from the
very early ones in Refs. [60, 110, 111], which, however, are not
precise enough to be included in the fit, in such a way that the

3
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The smeared-ratio from a Backus-Gilbert-like approach

We however still need a regularization mechanism to tame the oscillations of the gI

coe�cients (that would blow up our uncertainties).

The Hansen-Lupo-Tantalo (HLT) method provides the coe�cients gI(‡) minimizing a
functional W

–
I

[g] which balances syst. and stat. errors of reconstructed R
(·,I)

ud (‡)

W
–
I

[g] =
A

–
I

[g]
A

–
I

[0]
+ ⁄BI[g] ,

ˆWn[g]
ˆg

---
g=gI

= 0

A–
I [g] =

⁄ rmax/a

Emin

dE eaE–

---K‡
I

1
E

m·

2
≠

Nÿ

n=1

gne≠naE

---
2

≈= (syst.)2
error due to reconstruction

BI[g] Ã

Nÿ

n1,n2=1

gn1 gn2 Cov (CI(an1), CI(an2)) ≈= (stat.)2
error of reconstructed R(·,I)

ud
(‡)

• ⁄ is trade-o� parameter =∆ tuned for optimal balance of syst. and stat.
errors. {–, Emin, rmax} algorithmic params. to tune for optimal performance.
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Stability analysis [Bulava et al, JHEP07 (2022)] (‡ = 0.02)

For each contribution and ‡, perform a scan in ⁄ to find the region where stat. errors dominate
over systematics due to incorrect reconstruction of kernel functions.

• Goodness of reconstruction measured by dI[g⁄
I ] ©
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Exponential penalty exp(–aE) for errors at large E drastically improves stability. 14
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Data-driven estimate of FSEs (‡ = 0.02)

FSEs estimated from observed spread on B64/B96 and C80/C112 ensembles.

2.4

2.5

2.6

2.7

2.8

0.01 0.1

R
(⌧
,T
)

u
s

(�
)/
|V

u
s|2

dT [g
�
T ]

C80, OS
C112, OS

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.01 0.1

R
(⌧
,L
)

u
s

(�
)/
|V

u
s|2

dL[g
�
L]

B64, tm
B96, tm

• FSEs typically very tiny...larger than 2‡stat in only 1% of the cases.

• We associate to our results at L ≥ 5.5 fm a systematic error due to FSEs
estimated as

�FSE

I
(‡) = max

r={tm,OS}

I
�r

I
(‡) erf

A
1

Ô
2‡�r

I(‡)

BJ

�r

I
(‡) =

---R(·,I),r
us (‡, C80) ≠ R

(·,I),r
us (‡, C112)

---, ‡�r
I

(‡) is relative uncertainty of �r

I
(‡)
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Relation between spectral density and Euclidean correlator

C
–— (t, q) =

⁄
d

3
x e

≠iq·x È0| T

!
J

–
ud(≠it, x) J

—
ud(0)†

"
|0Í

Let’s find the relation between C
–—(t, q) and the spectral density fl

–,—(E, q):

C
–—(t, q) t>0=

⁄
d

3
xe

≠iqxÈ0|J–
ud(0)e≠Ht+iPx

J
—
ud(0)†|0Í

= È0|J–
ud(0)e≠Ht(2fi)3

”
3(P ≠ q)J—

ud(0)†|0Í

=
⁄

Œ

≠Œ

dE

2fi
e

≠Et È0|J–
ud(0)(2fi)4

”(H ≠ E) ”
3(P ≠ q)¸ ˚˙ ˝

”4(P≠qE) , qE=(E,q)

J
—
ud(0)†|0Í

where we just used the relation e
≠Ht =

s
Œ

≠Œ

dE
2fi e

≠Et 2fi ”(H ≠ E)

Recalling the definition of the spectral density one has

C
–—(t, q) t>0=

⁄
Œ

0

dE

2fi
e

≠Et
fl

–—
ud (E, q)
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inclusive -lepton decays and τ |Vus |
[RBC/UKQCD 1803.07226]

weight function     (  space-like poles )ωN(s) = ΠN
k=1

1
s + Q2

k
Q2

k ≲ 1 GeV2

new sum rule:

and three-family CKM unitarity expectations. The lattice
error is comparable to the experimental one, and the total
error is less than that of the inclusive FB FESR τ decay
determination.
New inclusive determination.—The conventional inclu-

sive FB τ decay determination is based on the FESR
relation [12,13]

Z
s0

0
ωðsÞΔρðsÞds ¼ −

1

2πi

I

jsj¼s0
ωðsÞΔΠð−sÞds; ð1Þ

connecting, for any s0 and analytic ωðsÞ, the relevant
FB combination, ΔΠð−sÞ ¼ Πusð−sÞ − Πudð−sÞ, of spin
J ¼ 0, 1 HVPs and associated spectral function
ΔρðsÞ ¼ ð1=πÞImΔΠð−sÞ. Experimental data are used
on the LHS and, for large enough s0, the OPE on the
RHS. In the SM, the differential distribution, dRV=A;ij=ds,
associated with the flavor ij ¼ ud, us vector (V) or
axial vector (A) current-induced decay ratio RV=A;ij ¼
Γ½τ− → ντhadronsV=A;ij%=Γ½τ− → e−ν̄eντ%, is related to the

J ¼ 0, 1 spectral functions ρðJÞij;V=AðsÞ, by [14]

dRij;V=A

ds
¼

12π2jVijj2SEW
m2

τ

×
h
ωτðsÞρ

ð0þ1Þ
ij;V=AðsÞ − ωLðyτÞρ

ð0Þ
ij;V=AðsÞ

i
; ð2Þ

where yτ ¼ s=m2
τ , ωτðyÞ ¼ ð1 − yÞ2ð1þ 2yÞ, ωLðyÞ ¼

2yð1 − yÞ2, and SEW is a known short-distance electroweak
correction [15,16]. Experimental dRij;V=A=ds distributions
thus determine, up to factors of jVijj2, combinations of

the ρðJÞij;V=A.
The low jVusj noted above results from a conventional

implementation [17] of Eq. (1) which employs fixed
s0 ¼ m2

τ and ω ¼ ωτ and assumptions for experimentally
unknown D ¼ 6 and 8 condensates. With s0 ¼ m2

τ and
ω ¼ ωτ, inclusive nonstrange and strange BFs determine
the ud and us spectral integrals. Testing D ¼ 6 and 8
assumptions by varying s0 and/or ω, however, yields jVusj
with significant unphysical s0- and ω dependence, motivat-
ing an alternate implementation employing variable s0 and
ω which allows a simultaneous fit of jVusj and the D > 4
condensates. Significantly larger (now stable) jVusj are
found, the conventional implementation results jVusj ¼
0.2186ð21Þ [7] and 0.2207(27) [8], shifting up to 0.2208
(23) and 0.2231(27) [9], respectively, with the new imple-
mentation. us spectral integral uncertainties dominate the
error, with current ∼25% residual mode contribution errors
precluding a competitive determination [9].
Motivated by this limitation, we switch to generalized

dispersion relations involving the experimental us
V þ A inclusive distribution and weights, ωNðsÞ≡QN

k¼1 ðsþQ2
kÞ−1, 0 < Q2

k < Q2
kþ1, having poles at

s ¼ −Q2
k. From Eq. (2), dRus;VþA=ds directly determines

jV2
usjρ̃usðsÞ, with

ρ̃usðsÞ≡
!
1þ 2

s
m2

τ

"
ρð1Þus;VþAðsÞ þ ρð0Þus;VþAðsÞ: ð3Þ

For N ≥ 3, the associated HVP combination

Π̃us ≡
!
1 − 2

Q2

m2
τ

"
Πð1Þ

us;VþAðQ2Þ þ Πð0Þ
us;VþAðQ2Þ ð4Þ

satisfies the convergent dispersion relation
Z

∞

0
ρ̃usðsÞωNðsÞds ¼

XN

k¼1

Res
s¼−Q2

k

½Π̃usð−sÞωNðsÞ%

¼
XN

k¼1

Π̃us;VþAðQ2
kÞQ

j≠kðQ2
j −Q2

kÞ
≡ F̃ωN

: ð5Þ

With Π̃usðQ2
kÞ measured on the lattice, dRus;VþA=ds used

to fix s < m2
τ spectral integral contributions, and s > m2

τ
contributions approximated using perturbative quantum
chromodynamics (pQCD), one has

jVusj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R̃us;wN
=
!
F̃ωN

−
Z

∞

m2
τ

ρ̃pQCDus ðsÞωNðsÞds
"s

; ð6Þ

where R̃wN
≡ðm2

τ=12π2SEWÞ
Rm2

τ
0 ½1=ð1−yτÞ2%½dRus;VþAðsÞ=

ds%ωNðsÞds.
Choosing uniform pole spacing Δ, ωN can be charac-

terized by Δ, N, and the pole-interval midpoint,
C ¼ ðQ2

1 þQ2
NÞ=2. With large enough N, and allQ2

k below
∼1 GeV2, spectral integral contributions from s > m2

τ and
the higher-s, larger-error part of the experimental distribu-
tion can be strongly suppressed. Increasing N lowers the
error of the LHS in Eq. (5) but increases the relative RHS
error. With results insensitive to modest changes of Δ, we
fix Δ ¼ 0.2=ðN − 1Þ GeV2, ensuring ωN with the same C
but different N have poles spanning the same Q2 range.
C and N are varied to minimize the error on jVusj.
We employ the following us spectral input: Kμ2 or

τ → Kντ [7] for K pole contributions, unit-normalized
Belle or BABAR distributions for Kπ [18,19], K−πþπ−

[20], K̄0π−π0 [21] and K̄ K̄ K [22,23], the most recent
Heavy Flavor Averaging Group (HFLAV) BFs [7], and
1999 ALEPH results [10], modified for current BFs, for the
residual mode distribution. Multiplication of a unit-nor-
malized distribution by the ratio of corresponding exclusive
mode to electron BFs converts that distribution to the
corresponding contribution to dRus;VþAðsÞ=ds. The dis-
persively constrained Kπ BFs of Ref. [8] (ACLP) provide
an alternate Kπ normalization. In what follows, we illus-
trate the lattice approach using the HFLAV Kπ normali-
zation. Alternate results using the ACLP normalization are
given in Ref. [24].
Lattice calculation method.—We compute the two-point

functions of the flavor us V and A currents, JμV=Aðx⃗; tÞ ¼
JμV=AðxÞ, μ ¼ x, y, z, t, via
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 =  HVP calculated in the latticeΠ̃us;V+A(Q2
k )

and three-family CKM unitarity expectations. The lattice
error is comparable to the experimental one, and the total
error is less than that of the inclusive FB FESR τ decay
determination.
New inclusive determination.—The conventional inclu-

sive FB τ decay determination is based on the FESR
relation [12,13]
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connecting, for any s0 and analytic ωðsÞ, the relevant
FB combination, ΔΠð−sÞ ¼ Πusð−sÞ − Πudð−sÞ, of spin
J ¼ 0, 1 HVPs and associated spectral function
ΔρðsÞ ¼ ð1=πÞImΔΠð−sÞ. Experimental data are used
on the LHS and, for large enough s0, the OPE on the
RHS. In the SM, the differential distribution, dRV=A;ij=ds,
associated with the flavor ij ¼ ud, us vector (V) or
axial vector (A) current-induced decay ratio RV=A;ij ¼
Γ½τ− → ντhadronsV=A;ij%=Γ½τ− → e−ν̄eντ%, is related to the

J ¼ 0, 1 spectral functions ρðJÞij;V=AðsÞ, by [14]
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where yτ ¼ s=m2
τ , ωτðyÞ ¼ ð1 − yÞ2ð1þ 2yÞ, ωLðyÞ ¼

2yð1 − yÞ2, and SEW is a known short-distance electroweak
correction [15,16]. Experimental dRij;V=A=ds distributions
thus determine, up to factors of jVijj2, combinations of

the ρðJÞij;V=A.
The low jVusj noted above results from a conventional

implementation [17] of Eq. (1) which employs fixed
s0 ¼ m2

τ and ω ¼ ωτ and assumptions for experimentally
unknown D ¼ 6 and 8 condensates. With s0 ¼ m2

τ and
ω ¼ ωτ, inclusive nonstrange and strange BFs determine
the ud and us spectral integrals. Testing D ¼ 6 and 8
assumptions by varying s0 and/or ω, however, yields jVusj
with significant unphysical s0- and ω dependence, motivat-
ing an alternate implementation employing variable s0 and
ω which allows a simultaneous fit of jVusj and the D > 4
condensates. Significantly larger (now stable) jVusj are
found, the conventional implementation results jVusj ¼
0.2186ð21Þ [7] and 0.2207(27) [8], shifting up to 0.2208
(23) and 0.2231(27) [9], respectively, with the new imple-
mentation. us spectral integral uncertainties dominate the
error, with current ∼25% residual mode contribution errors
precluding a competitive determination [9].
Motivated by this limitation, we switch to generalized

dispersion relations involving the experimental us
V þ A inclusive distribution and weights, ωNðsÞ≡QN

k¼1 ðsþQ2
kÞ−1, 0 < Q2

k < Q2
kþ1, having poles at
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For N ≥ 3, the associated HVP combination
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us;VþAðQ2Þ þ Πð0Þ
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satisfies the convergent dispersion relation
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XN

k¼1

Res
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XN
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kÞQ

j≠kðQ2
j −Q2

kÞ
≡ F̃ωN

: ð5Þ

With Π̃usðQ2
kÞ measured on the lattice, dRus;VþA=ds used

to fix s < m2
τ spectral integral contributions, and s > m2

τ
contributions approximated using perturbative quantum
chromodynamics (pQCD), one has

jVusj ¼
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τ
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where R̃wN
≡ðm2

τ=12π2SEWÞ
Rm2

τ
0 ½1=ð1−yτÞ2%½dRus;VþAðsÞ=

ds%ωNðsÞds.
Choosing uniform pole spacing Δ, ωN can be charac-

terized by Δ, N, and the pole-interval midpoint,
C ¼ ðQ2

1 þQ2
NÞ=2. With large enough N, and allQ2

k below
∼1 GeV2, spectral integral contributions from s > m2

τ and
the higher-s, larger-error part of the experimental distribu-
tion can be strongly suppressed. Increasing N lowers the
error of the LHS in Eq. (5) but increases the relative RHS
error. With results insensitive to modest changes of Δ, we
fix Δ ¼ 0.2=ðN − 1Þ GeV2, ensuring ωN with the same C
but different N have poles spanning the same Q2 range.
C and N are varied to minimize the error on jVusj.
We employ the following us spectral input: Kμ2 or

τ → Kντ [7] for K pole contributions, unit-normalized
Belle or BABAR distributions for Kπ [18,19], K−πþπ−

[20], K̄0π−π0 [21] and K̄ K̄ K [22,23], the most recent
Heavy Flavor Averaging Group (HFLAV) BFs [7], and
1999 ALEPH results [10], modified for current BFs, for the
residual mode distribution. Multiplication of a unit-nor-
malized distribution by the ratio of corresponding exclusive
mode to electron BFs converts that distribution to the
corresponding contribution to dRus;VþAðsÞ=ds. The dis-
persively constrained Kπ BFs of Ref. [8] (ACLP) provide
an alternate Kπ normalization. In what follows, we illus-
trate the lattice approach using the HFLAV Kπ normali-
zation. Alternate results using the ACLP normalization are
given in Ref. [24].
Lattice calculation method.—We compute the two-point

functions of the flavor us V and A currents, JμV=Aðx⃗; tÞ ¼
JμV=AðxÞ, μ ¼ x, y, z, t, via
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pQCD spectral density

integrated data with 
the weight function

weight function tailored to minimize the high-s region

decay constant results [32], are numerically negligible for
the ωN we employ. An “exclusive” Að0Þ analysis relating
F̃Að0Þ
wN

to the K-pole contribution R̃K
wN

¼ γKωNðm2
KÞ is,

therefore, possible, with γK ¼ 2jVusj2f2K obtained from
either Kμ2 or Γ½τ → Kντ%. Because the simulations under-
lying F̃Að0Þ

wN
are isospin symmetric, we correct γK for

leading-order electromagnetic (EM) and strong isospin-
breaking (IB) effects [4,8]. With PDG τ lifetime [6]
and HFLAV τ → Kντ BF [7] input, γK½τK% ¼
0.0012061ð167Þexpð13ÞIB GeV2. γK½τK% is employed in
our main, fully τ-based analysis. The more precise result
γK½Kμ2% ¼ 0.0012347ð29Þexpð22ÞIB [6] from Γ½Kμ2% can
also be used if SM dominance is assumed. Exclusive
analysis jVusj results are independent of C for C <
1 GeV2 (confirming tiny continuum Að0Þ contributions)
and agree with the results, jVusj ¼ 0.2233ð15Þexpð12Þth and
0.2260ð3Þexpð12Þth, obtained using jVusj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γK=ð2f2KÞ

p
,

the isospin-symmetric lattice result FK ≡ ffiffiffi
2

p
fK ¼

0.15551ð83Þ GeV [27] and γK ¼ γK½τK% and γK½Kμ2%,
respectively. See Ref. [24] for further details.
For the fully inclusive analysis, statistical and systematic

uncertainties are reduced by employing 2f2KωNðm2
KÞ, with

measured fK , for the K pole Að0Þ channel contribution. The
residual, continuum Að0Þ contributions are compatible with
zero within errors, as anticipated above. IB corrections,
beyond those applied to γK, are numerically relevant only
for Kπ. We account for (i) π0-ηmixing, (ii) EM effects, and
(iii) IB in the phase space factor, with π0-η mixing
numerically dominant, evaluating these corrections, and
their uncertainties, from the results presented in Ref. [8]. A
2% uncertainty, estimated using results from a study of
duality violations in the SUð3ÞF-related flavor ud channels
[33], is assigned to pQCD contributions. Because our
analysis is optimized for ωN strongly suppressing
higher-multiplicity and s > m2

τ contributions, such an
uncertainty plays a negligible role in our final error.
Several systematic uncertainties enter the lattice compu-

tation. With an assumed continuum extrapolation linear in
a2 but only two lattice spacings, Oða4Þ discretization

uncertainties must be estimated. For the ωN we employ,
the two ensembles yield F̃ωN

differing by less than
(typically significantly less than) 10%, compatible with
∼Ca2 or smaller Oða2Þ errors. Anticipating a further ∼Ca2
reduction of Oða4Þ relative to Oða2Þ corrections, we
estimate residual Oða4Þ continuum extrapolation uncer-
tainties to be ∼0.1Ca2f, with a−1f ¼ 2.36 GeV [27] the
smaller of the two lattice spacings. We also take into
account the lattice scale setting uncertainty. The dominant
FV effect is expected to come from Kπ loop contributions
in the Vð1Þ channel, which we estimate using a lattice
regularized version of finite-volume chiral perturbation
theory (ChPT). It is known, from Ref. [34], that one-loop
ChPT for HVPs involving the light u, d quarks yields a
good semiquantitative representation of observed FV
effects [35]; we thus expect it to also work well for the
flavor us case considered here, where FV effects involving
the heavier s quark should be suppressed relative to those in
the purely light u, d quark sector. The result of our one-loop
ChPT estimate is a 1% FV correction. We thus assign a 1%
FV uncertainty to our Vð1Þ channel contributions [37].
Regarding the impact of the slight u, d, s sea-quark mass
mistunings on the PQ results, the shift from slightly
mistuned unitary to PQ shifted-valence-mass results for
F̃ðωNÞ corresponds to shifts in jVusj of < 0.4% for both
ensembles. With masses and decay constants typically
much less sensitive to sea-quark mass shifts than to the
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FIG. 3. Lattice jVusj error contributions for N ¼ 4.
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lattice fK is shown for comparison.

TABLE I. Sample relative spectral integral contributions.

Contribution Value [%]

½N;CðGeV2Þ% [3, 0.3] [3, 1] [4, 0.7] [5, 0.9]

K 65.5 30.9 61.7 66.9
Kπ 21.4 28.6 26.4 25.2
K−πþπ− 2.4 5.6 2.8 2.1
K̄0π−π0 3.1 7.3 3.6 2.7
Residual 2.7 6.8 2.9 2.1
pQCD 4.9 20.8 2.7 1.1
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|Vus | = 0.2240 (18)

consistent with  from  |Vus | = 0.2224 (18) τ → Kντ
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Now we can consider the rate in full QCD+QED

with  being inclusive in hadrons + photons:Xus

separately infrared finite 

computable to all orders in αem
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� = �lep + �fact + �non-fact

‣ current-current correlators already computed in other projects 

‣ non-perturbative QCD+QED renormalization of  same as in HW P → ℓν

Building on previous works:

Isospin breaking effects
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RM123 approach
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preliminary data look promising!

inclusive hadronic -lepton decaysτ

courtesy by M. Di Carlo talk @ LatticeNET 2025 (Benasque)


