Beyond the Flavor Anomalies, Rome, April 9-11, 2025

Cabibbo anomaly

S. Simula and T. Tong

$$V_{\rm CKM} \equiv V_L^u V_L^{d\dagger} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \quad \text{describes quark flavor}$$

 $V_{us} = \sin\theta_c$ plays a pivotal role for hierarchy of the Wolfenstein parameterization

first-row unitarity: $|V_{u}|^{2} = |V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1$ in the SM

outline

- determinations of $|V_{us}|$ with the SM (SS)
- $|V_{ud}|$ and global fits within EFT (T. Tong)

Istituto Nazionale di Fisica Nucleare SEZIONE DI ROMA TRE

 $|V_{ub}| = 0.00382(24)$

can be neglected

weak mixings

most precise determinations of the Cabibbo angle

=> leptonic
$$K_{\ell 2}/\pi_{\ell 2}$$
 decays: $\frac{|V_{us}|}{|V_{ud}|}$ using LQCD determinations of $\frac{f_K}{f_{\pi}}$ (axial weak current in SM)

=> semileptonic $K_{\ell 3}$ decays: $|V_{us}|$ using LQCD determinations of $f_+(q^2 = 0)$ (vector weak current in SM)

results from these two sources have been consolidated by lattice QCD+QED simulations in recent years

other processes

=> hadronic τ -decays: $|V_{us}|$ from determinations of $R_{us} = \frac{\Gamma(\tau \mapsto X_{us}\nu_{\tau})}{\Gamma(\tau \mapsto e\overline{\nu}_e\nu_{\tau})}$ (V-A weak current in SM)

there are quite interesting **news** from recent lattice QCD simulations of R_{us} (and also R_{ud})

=> hyperon decays: $|V_{us}|$ from semileptonic hyperon decays with $\Delta S = 1$ (V-A weak current in SM)

 $|V_{\mu s}| = 0.2250(27)$ [Cabibbo et al. hep-ph/0307214]

extraction of $|V_{us}|/|V_{ud}|$ from leptonic K_{ℓ^2} and π_{ℓ^2} decays

$$\Gamma(PS^+ \to \ell^+ \nu_{\ell}) = \frac{G_F^2}{8\pi} |V_{q_1 q_2}|^2 m_{\ell}^2 \left(1 - \frac{m_{\ell}^2}{M_{PS^+}^2}\right)^2 M_{PS^+} S_{EW} f_{PS}^2 \left(1 + \delta_{SU(2)}^{PS^+} + \delta_{EM}^{PS^+}\right)^2$$

 S_{EW} = universal short-distance EW correction $\simeq 1.0232(3)$ $f_{PS} \equiv p^{\mu} \langle 0 | \overline{q}_2 A_{\mu} q_1 | PS(p^{\mu}) \rangle / M_{PS}^2$ = meson decay constant in isoQCD ($m_u = m_d$ and $\alpha_{EM} = 0$)

 $\delta_{SU2}^{PS^+}$ = strong SU(2)-breaking corrections (due to $m_u \neq m_d$) see FLAG-6 (2411.04268) for the prescription defining the isoQCD physical point $\delta_{EM}^{PS^+}$ = EM corrections depending on the hadronic structure of the decaying meson ($\alpha_{\overline{KM}} \neq 0$)

FLAG and PDG reviews make use of ChPT estimates [see Cirigliano and Neufeld 1102.0563]

$$\frac{\delta_{SU(2)}^{K^+} - \delta_{SU(2)}^{\pi^+}}{\delta_{SU(2)}^{K^+} - \delta_{SU(2)}^{\pi^+}} = -0.0043 (12) \qquad \delta_{EM}^{K^+} - \delta_{EM}^{\pi^+} = -0.0069 (17)$$

$$\delta_{SU(2)}^{K^+} - \delta_{SU(2)}^{\pi^+} = -0.0112 (21)$$
ChPT

in 2018/2019 the first QCD+QED determination of the isospin-breaking corrections on the lattice by the RM123+Soton collaboration using ETMC gauge configurations [see arXiv:1711.06537 and arXiv:1904.08731]

$$\delta_{SU(2)}^{K^+} - \delta_{SU(2)}^{\pi^+} = -0.0064 \,(7) \qquad \delta_{EM}^{K^+} - \delta_{EM}^{\pi^+} = -0.0062 \,(12)$$

$$\delta_{SU(2)}^{K^+} - \delta_{SU(2)}^{\pi^+} = -0.0126 \,(14)$$
lattice QCD+QED_L

reassuring agreement ...

- another recent lattice result: $\delta^{K^+} \delta^{\pi^+} = -0.0086 (39)$ from RBC/UKQCD 2211.12865 (power-law FVEs)
- an interesting approach is $QED_{\infty} + QCD$ with IVR [see Christ et al. 2304.08026] (exponentially small FVEs)

it is customary to include strong SU(2)-breaking corrections as
$$\frac{f_{K^+}}{f_{\pi^+}} = \frac{f_K}{f_{\pi}} \sqrt{1 + \delta_{SU(2)}^{K^+} - \delta_{SU(2)}^{\pi^+}}$$

$$\frac{\Gamma(K_{\mu 2})}{\Gamma(\pi_{\mu 2})}\Big|_{exp.} \to \frac{|V_{us}|}{|V_{ud}|} \frac{f_{K^+}}{f_{\pi^+}} = 0.27599\,(41) \quad (\simeq 0.15\%) \qquad \begin{array}{l} \text{[see Moulson 1704.04104]} \\ \text{adopted by FLAG-6 (2411.04268)} \end{array}$$

using δ_{EM} from lattice QCD+QED: $\frac{|V_{us}|}{|V_{ud}|} \frac{f_{K^+}}{f_{\pi^+}} = 0.27683 (29)_{exp} (20)_{th} [35] (\simeq 0.13\%)$

FLAG-6 (24	² tion ^{status} ^{crta} ² tion ^{status} ^{crta} ² DOl ^{4t} ion ¹ Ulune ^{crta} ² DOl ^{4t} ion ¹ Ulune ^{crta} ² DOl ^{4t} ion												
Collaboration	Ref.	N_{f}	puplic	Chiral Chiral	CORE	finite	f_K/f_π	$f_{K^{\pm}}/f_{\pi^{\pm}}$	three methods to include strong				
ETM 21 CalLat 20 FNAL/MILC 17 ETM 14E FNAL/MILC 14A ETM 13F HPQCD 13A MILC 13A MILC 11 ETM 10E	$\begin{matrix} [45] \\ [44] \\ [20] \\ [43] \\ [21] \\ [356] \\ [42] \\ [357] \\ [358] \\ [359] \end{matrix}$	$2+1+1 \\ 2+1+$	A A A A C A A C C C	***0*0**00	*****0*00	***0*0**00	$\begin{array}{c} 1.1995(44)(7)\\ 1.1964(32)(30)\\ 1.1980(12)(^{+5}_{-15})\\ 1.188(11)(11)\\ 1.193(13)(10)\\ 1.1948(15)(18)\\ 1.224(13)_{\rm stat}\\ \end{array}$	$\begin{array}{c} 1.1957(44)(7)\\ 1.1942(32)(31)\\ 1.1950(15)(\substack{+6\\-18})\\ 1.184(12)(11)\\ 1.1956(10)(\substack{+26\\-18})\\ 1.183(14)(10)\\ 1.1916(15)(16)\\ 1.1947(26)(37)\\ 1.1872(42)^{\dagger}_{\rm stat.} \end{array}$	 SU(2)-breaking corrections extrapolation to m_u or m_d insertion of the scalar density (RM123 method) estimate using ChPT 				
CLQCD 23 QCDSF/UKQCD 16 BMW 16 RBC/UKQCD 14B RBC/UKQCD 12 Laiho 11 MILC 10	$ \begin{bmatrix} 10 \\ [50] \\ [49, 360] \\ [12] \\ [229] \\ [54] \\ [47] \end{bmatrix} $	$2+1 \\ 2+1 $	A A A A C C	* • * * • • •	**** 0 **	* • * * • *	$\begin{array}{c} 1.192(10)(13)\\ 1.182(10)(26)\\ 1.1945(45)\\ 1.199(12)(14) \end{array}$	$\begin{array}{c} 1.1907(76)(17)\\ 1.190(10)(13)\\ 1.178(10)(26)\\ \end{array}$ $\begin{array}{c} 1.202(11)(9)(2)(5)^{\dagger\dagger}\\ 1.197(2)(^{+3}_{-7})\end{array}$					
JLQCD/TWQCD 10 RBC/UKQCD 10A BMW 10 MILC 09A MILC 09 Aubin 08 RBC/UKQCD 08 HPOCD/UKQCD 07	$\begin{matrix} [361] \\ [119] \\ [48] \\ [19] \\ [196] \\ [362] \\ [236] \\ [46] \end{matrix}$	2+1 2+1	C A A C A C A A A	0 0 ★ 0 0 0 0 0	■	*****0*0	$1.230(19) \\ 1.204(7)(25) \\ 1.192(7)(6) \\ 1.205(18)(62) \\ 1.189(2)(7) \\$	$\begin{array}{c} 1.198(2)(\substack{+6\\-8})\\ 1.197(3)(\substack{+6\\-13})\\ 1.191(16)(17)\end{array}$	$\delta_{SU(2)}^{extrapolation} = -0.0054 (14) \text{ HPQCD}$ $\delta_{SU(2)}^{extrapolation} = -0.0052 (9) \text{ FNAL/MILC}$ $\delta_{SU(2)}^{insertion} = -0.0064 (7) \text{ ETMC}$				
MILC 04	[40]	2+1 2+1	A	0	0	0	1.109(2)(1)	1.210(4)(13)	$\delta_{SU(2)}^{ChPT} = -0.0043 \ (12)$				

- extrapolation to m_u or m_d
- insertion of the scalar density (RM123 method)

only results with A and no red tags enter the FLAG averages

open issues

experiment: present database dominated by a single experiment (KLOE)

theory: removal of the electroquenched approximation (null electric charges for sea quarks)

extraction of $|V_{us}|$ from leptonic $K_{\ell 3}$ decays

$$\Gamma(K^{+,0} \to \pi^{0,-} \ell^+ \nu_{\ell}) = \frac{G_F^2 M_{PS^+}^5}{192\pi^3} C_{K^{+,0}}^2 S_{EW} |V_{us} f_+^{K^0 \pi^-}(0)|^2 I_{K\ell}^{(0)} \left(1 + \delta_{EM}^{K^{+,0} \ell} + \delta_{SU(2)}^{K^{+,0} \pi}\right)$$

$$C_{K^{+,0}} = \text{Clebsch-Gordan coefficient} (C_{K^+} = 1/\sqrt{2} , C_{K^0} = 1)$$

 $f_{+}(0) \equiv f_{+}^{K^{0}\pi^{-}}(0) =$ vector form factor at zero momentum transfer

 $I_{K\ell}^{(0)}$ = phase-space integral sensitive to the momentum dependence of vector (and scalar) form factor $\delta_{EM}^{K^{+,0}\ell}$, $\delta_{SU2}^{K^{+,0}\pi}$ = strong SU(2)-breaking and long-distance EM corrections

$$\delta_{SU(2)}^{K^+\pi^0} \propto_{ChPT} Q^{-2} = \frac{m_d^2 - m_u^2}{m_s^2 - m_{ud}^2}$$

$$\delta_{SU(2)}^{K^+\pi^0} \propto_{ChPT} Q^{-2} = \frac{m_d^2 - m_u^2}{m_s^2 - m_{ud}^2}$$

$$\delta_{SU(2)}^{K^+\pi^0} = (2.61 \pm 0.17) \% \quad Q \text{ from } LQCD \quad \text{Cirigliano et al. 2208.11707}$$

nice consistency between the channels $K^+ \to \pi^0$ and $K^0 \to \pi^-$

Γ(<i>K</i>	$T^{+,0} \to \pi^0$	$\mathcal{O}, -\mathcal{C}^+ \nu_i$	$(e) \Big _{exps}$	5	· V _u	$ f_+ $	(0) = 0.2165	4 (4	1)	(4	≃ 0.19 %)) [see adopted	Moulson 1704.04104] by FLAG-6 (2411.04268)
six m KTeV, KLO	iodes, seve DE, ISTRA	rai exps. +, NA48	8/2,					0.21	634 (38) <mark>Se</mark>	ng et al. 220	3.05217	
						.67			FLAG 2	2024		$f_{+}(0)$	
			ŭ ^{cati} o,	al erry	tinuur,	Carting Dolar	the errors	$N_f = 2 + 1 + 1$					FLAG average for N _f =2+1+1 FNAL/MILC 18 ETM 16 FNAL/MILC 13E
Collaboration	Ref.	N_{f}	Inq	Chi	-or -	L.	$f_{+}(0)$				┝┲┙ ⋺╌┥		FLAG average for $N_f = 2 + 1$ PACS 22
FNAL/MILC 18 ETM 16 FNAL/MILC 13E	[39] [38] [341]	2+1+1 2+1+1 2+1+1	A A A	* 0 *	* * *	★ ○ ★	$\begin{array}{c} 0.9696(15)(12) \\ 0.9709(45)(9) \\ 0.9704(24)(22) \end{array}$	$N_f = 2 + 1$			┡╾╪ ╺ <mark>╴┣╴╋</mark> ╌╸ ┝╶╋ <mark>╋</mark> ╌╸ ┝┽╋═┽╸		PACS 19 JLQCD 17 RBC/UKQCD 15A RBC/UKQCD 13 FNAL/MILC 12I
PACS 22 PACS 19 JLQCD 17 RBC/UKQCD 154	[342] [343] [336] A [41]	$2+1 \\ 2+1 \\ 2+1 \\ 2+1 \\ 2+1$	A A A	0 0 ★		* * 0	$\begin{array}{c} 0.9615(10)(\substack{+47\\-6})\\ 0.9603(16)(\substack{+50\\-48})\\ 0.9636(36)(\substack{+50\\-35})\\ 0.9685(34)(14)\end{array}$	5					JLQCD 12 JLQCD 11 RBC/UKQCD 10 RBC/UKQCD 07
RBC/UKQCD 13 FNAL/MILC 12I	[344] [40]	$2+1 \\ 2+1$	A A	* 0	0 0	○ ★	$\begin{array}{c} 0.9670(20)(^{+18}_{-46}) \\ 0.9667(23)(33) \end{array}$	 ₹		-			FLAG average for N _f =2
JLQCD 12 JLQCD 11 RBC/UKQCD 10 RBC/UKQCD 07	[345] [346] [347] [348]	2+1 2+1 2+1 2+1 2+1	C C A A	0 0 0	1	** **	$\begin{array}{c} 0.959(6)(5)\\ 0.964(6)\\ 0.9599(34)(^{+31}_{-47})(14)\\ 0.9644(33)(34)(14)\end{array}$	non-lattice					Kastner 08 Cirigliano 05 Jamin 04 Bijnens 03 Leutwyler 84
									0.	95	0.97	0.99	1.01
	$f_{+}(0) =$	0.9698	8 (18)		$N_f =$	= 2 +	1+1 ($\simeq 0.$	19%) E	TMC, FN	AL/MILC	
	$f_{+}(0) =$	0.967′	7 (27)		$N_f =$	= 2 +	1 ($\simeq 0.$	28%) •	NAL/MII	LC, RBC/UI	KQCD
$V_{us} = 0.22328(58)$ $N_f = 2 + 1 + 1$ ($\simeq 0.26\%$)													
	$ V_{us} = 0.22377(75)$ $N_f = 2 + 1$ ($\simeq 0.34\%$)												
							open is	sue	9				

isospin-breaking corrections, both $\delta_{SU2}^{K^{+,0}\pi}$ and $\delta_{EM}^{K^{+,0}\ell}$, not yet available from lattice QCD+QED

isospin-breaking corrections in K_l decays

leptonic decays: Γ_0 = virtual photon rate \implies infrared divergent RM123+Soton 1502.00257 $\Gamma_1(\Delta E_{\gamma}) =$ real photon emission up to $\Delta E_{\gamma} \implies$ infrared divergent $\Gamma(\Delta E_{\gamma}) = \Gamma_0 + \Gamma_1(\Delta E_{\gamma}) = \text{infrared safe [Block&Nordsiek '37]}$ * infrared divergence universal \Rightarrow structure independent (soft photons) * on a lattice $\implies \Gamma(\Delta E_{\gamma}) = \lim_{V \to \infty} \left[\Gamma_0(V) - \Gamma_0^{pt}(V) \right] + \lim_{\mu_{\gamma} \to 0} \left[\Gamma_0^{pt}(\mu_{\gamma}) + \Gamma_1(\mu_{\gamma}, \Delta E_{\gamma}) \right]$ virtual photon regulated
by the lattice volume Vvirtual and real photons
regulated by a small mass μ_{γ} pt = point-like & perturbative calculable $K_{\ell^3} \text{ decays:} \qquad \frac{d^2 \Gamma(\Delta E_{\gamma})}{dq^2 ds_{\pi\ell}} = \lim_{V \to \infty} \left| \frac{d^2 \Gamma_0(V)}{dq^2 ds_{\pi\ell}} - \frac{d^2 \Gamma_0^{pt}(V)}{dq^2 ds_{\pi\ell}} \right| + \lim_{\mu_{\gamma} \to 0} \left| \frac{d^2 \Gamma_0^{pt}(\mu_{\gamma})}{dq^2 ds_{\pi\ell}} + \frac{d^2 \Gamma_1(\mu_{\gamma}, \Delta E_{\gamma})}{dq^2 ds_{\pi\ell}} \right|$ $q^2 = (p_K - p_\pi)^2$ and $s_{\pi\ell} = (p_\pi + p_\ell)^2$ see Sachrajda@Lat '19 [1910.07342] $\bar{\nu}_{\ell}$ * presence of unphysical terms growing $E_{\pi\ell}^{int} < E_{\pi\ell}^{ext}$ exponentially in Euclidean time their number depends on $s_{\pi\ell}$ and on BCs * finite-volume corrections of order $\mathcal{O}(1/L)$ in QED_L depend on $f_{+,0}(q^2)$ and their derivatives $df_{+,0}(q^2)/dq^2$ t_1 * an interesting approach is $QED_{\infty} + QCD$ with IVR t_K t_H $t_{\pi\ell}$ see Christ et al. 2304.08026 and Christ@Lattice '23 [2402.08915]

 \bar{K}^0

determination of $|V_{us}|/|V_{ud}|$ from semileptonic $K_{\ell 3}/\pi_{e3}$

```
Seng et al. 2107.14798
```

* semileptonic π_{e3} ($\pi^- \rightarrow \pi^0 e \overline{\nu}_e$) decays are a (theoretically clean) way to determine $|V_{ud}|$

however, present experiments on $Br(\pi_{e3})$ lead to $|V_{ud}|_{\pi_{e3}} = 0.9739$ (27), ten times less precise than $|V_{ud}|$ from superallowed nuclear beta decays \longrightarrow next generation of pion rare decays (**PIONEER**, ...)

* taking $|V_{us}|$ from semileptonic $K_{\ell 3}$ decays and $|V_{ud}|$ from semileptonic π_{e3} decays one gets

 $\frac{|V_{us}|_{K_{\ell^3}}}{|V_{ud}|_{\pi_{\ell^3}}} = 0.22928 \ (84) \quad (\simeq 0.36\%) \qquad \text{against} \qquad \frac{|V_{us}|}{|V_{ud}|} \Big|_{K_{\ell^2}/\pi_{\ell^2}} = 0.23126 \ (50) \quad (\simeq 0.22\%)$ "vector" ratio $* \simeq 2.0\sigma \text{ difference } * \qquad \text{``axial" ratio}$

impact of precise measurements of $Br(K_{\mu3})/Br(K_{\mu2})$

Cirigliano et al. 2208.11707

present experimental value: $Br(K_{\mu 3})/Br(K_{\mu 2}) = 0.05294$ (51) ($\simeq 0.96\%$)

bringing the precision down to $\simeq 0.2\%$ (for instance NA62) may help clarifying the experimental situation between the semileptonic and leptonic kaon sectors

OPE-2 [Maltman et al. 1510.06954 and 2019] latt-disp [RBC/UKQCD 1803.07226] latt-incl [ETMC 2403.05404]

no long-distance SU(2)-breaking corrections

exclusive $\tau \to K(\pi)\nu$ decays require $f_{K(\pi)^{\pm}}$ from LQCD and long-distance RCs [see Arroyo-Ureña et al. 2107.04603]

VMD model for SD FFs

* Fermi effective theory, optical theorem, Lorentz invariance

$$R_{us} \equiv \frac{\Gamma(\tau \to X_{us}\nu_{\tau})}{\Gamma(\tau \to e\overline{\nu}_{e}\nu_{\tau})} = 6\pi S_{EW} |V_{us}|^2 \int_0^1 ds \, (1-s)^2 \left[\rho_L(s) + (1+2s)\rho_T(s)\right] \qquad s = q^2/m_{\tau}^2$$

$$S_{EW} = 1.0201 \, (3)$$

* L and T components of the spectral density for the weak (us) hadronic current

$$\rho_{us}^{\mu\nu}(q) = (2\pi)^4 \langle 0 | J_{us}^{\mu}(0) \,\delta^4(\mathcal{P} - q) \, [J_{us}^{\nu}(0)]^\dagger | 0 \rangle = q^{\mu} q^{\nu} \rho_L(q^2) + \left(g^{\mu\nu} q^2 - q^{\mu} q^{\nu} \right) \rho_T(q^2)$$

* through lattice QCD simulations we can access Euclidean correlators

* inversion is ill-conditioned for kernels with non-smooth functions \Rightarrow smearing [Gambino et al. 2005.13730]

 $K_{L(T)}\left(\frac{E}{m_{\tau}}\right)\frac{1}{1+e^{-\frac{E}{m_{\tau}\sigma}}} \rightarrow \sum_{n=1}^{N} g_{n}^{L(T)}(\sigma) e^{-naE} \text{ evaluated using the Hansen-Lupo-Tantalo (HLT) method 1903.06476}$

minimization of an appropriate functional of syst. and stat. errors

strange hadronic final states [ETMC 2403.05404]

V/A decomposition and strange/non-strange ratios

$$\frac{R_{us}^{V} - R_{us}^{A}}{R_{us}}\Big|_{isoQCD} = 0.079 \,(8)$$

$$preliminary$$

$$\frac{|V_{ud}|^{2}}{|V_{us}|^{2}} \frac{R_{us}^{V}}{R_{ud}^{V}}\Big|_{isoQCD} = 0.967 \,(10) \quad \text{vector channel}$$

$$\frac{|V_{ud}|^{2}}{|V_{us}|^{2}} \frac{R_{us}^{A}}{R_{ud}^{A}}\Big|_{isoQCD} = 0.900 \,(16) \quad \text{axial channel}$$

thanks to G. Gagliardi

open issues

- better precision for the **experimental result** of R_{us} (presently 1.7 %)

- isospin-breaking corrections δR_{us} not yet available from lattice QCD+QED (expected at the percent level)

$$R_{us} = R_{us}^{(iso)} \left[1 + \delta R_{us} \right]$$

- the 3.3 σ difference with $|V_{us}|$ from $K_{\ell 2}/\pi_{\ell 2}$ would require a fractional shift $\delta R_{us} = -0.058(18)$

- the evaluation of δR_{us} from first-principles is mandatory

work in progress by a collaboration among people from CERN, Cyprus Institute, Helmholtz Institut (Mainz), Humboldt Universität (Berlin), Universities of RM-ToV and RM3, ...

a bit of advertising: a first-principle lattice QCD calculation of the inclusive semileptonic decay of the Ds-meson [A. De Santis et al. (ETMC) 2504.06063 and 2504.06064] with the HLT method

accuracy relevant for phenomenological studies

backup slides

QED_∞ + QCD with IVR [Christ et al. 2304.08026 and Christ@Lattice '23 2402.08915]

the Minkowski-space single-pion contribution is expressed as the Fourier transform of a Euclidean amplitude calculable with lattice QCD

- pion-photon scattering in the continuum and infinite volume
- exponentially decreasing FSEs (not power-like)

impact of precise measurements of $Br(K_{\mu3})/Br(K_{\mu2})$

	current fit	K	$L_{\mu3}/K_{\mu2}$ BR at 0.5	$K_{\mu3}/K_{\mu2}$ BR at 0.2%			
		central	$+2\sigma$	-2σ	central	$+2\sigma$	-2σ
χ^2/dof	25.5/11	25.5/12	31.8/12	32.1/12	25.5/12	35.6/12	35.9/12
<i>p</i> -value [%]	0.78	1.28	0.15	0.13	1.28	0.04	0.03
BR(μν) [%]	63.58(11)	63.58(09)	63.44(10)	63.72(11)	63.58(08)	63.36(10)	63.80(11)
$S(\mu\nu)$	1.1	1.1	1.3	1.4	1.2	1.6	1.7
BR($\pi\pi^{0}$) [%]	20.64(7)	20.64(6)	20.73(7)	20.55(8)	20.64(6)	20.78(7)	20.50(10)
$S(\pi\pi^0)$	1.1	1.2	1.3	1.5	1.2	1.5	2.0
BR(<i>πππ</i>) [%]				5.56(4)			
$S(\pi\pi\pi)$				1.0			
$BR(K_{e3})$ [%]	5.088(27)	5.088(24)	5.113(25)	5.061(31)	5.088(23)	5.128(24)	5.046(32)
$S(K_{e3})$	1.2	1.2	1.2	1.6	1.3	1.3	1.8
$BR(K_{\mu 3})$ [%]	3.366(30)	3.366(13)	3.394(16)	3.336(27)	3.366(7)	3.411(13)	3.320(18)
$S(K_{\mu 3})$	1.9	1.2	1.5	2.6	1.1	2.2	3.1
BR $(\pi\pi^{0}\pi^{0})$ [%]				1.764(25)			
$S(\pi\pi^0\pi^0)$				1.0			
$ au_{\pm}$ [ns]	12.384(15)	12.384(15)	12.382(15)	12.385(15)	12.384(15)	12.381(15)	12.386(15)
$S\left(au_{\pm} ight)$				1.2			
$\frac{V_{us}}{V_{ud}}$	0.23108(51)	0.23108(50)	0.23085(51)	0.23133(51)	0.23108(49)	0.23071(51)	0.23147(52)
$V_{us}^{K_{\ell 3}}$	0.22330(53)	0.22337(51)	0.22360(52)	0.22309(54)	0.22342(49)	0.22386(52)	0.22287(52)
$\frac{F_K}{F_\pi} \frac{V_{us}}{V_{ud}} \bigg _{K_{e2}/\pi_{e2}}$	0.27679(34)	0.27679(31)	0.27651(35)	0.27709(34)	0.27679(30)	0.27634(33)	0.27726(35)
$f_{+}(0)V_{us}^{K_{\ell 3}}$	0.21656(35)	0.21662(31)	0.21685(33)	0.21636(35)	0.21667(28)	0.21710(32)	0.21614(34)
$\Delta_{\rm CKM}^{(1)}$	-0.00176(56)	-0.00173(55)	-0.00162(56)	-0.00185(56)	-0.00171(55)	-0.00151(56)	-0.00195(56)
	-3.1σ	-3.1σ	-2.9σ	-3.3σ	-3.1σ	-2.7σ	-3.5σ
· (2)	-0.00098(58)	-0.00098(58)	-0.00108(58)	-0.00087(58)	-0.00098(58)	-0.00114(58)	-0.00081(58)
^{⊥1} CKM	-1.7σ	-1.7σ	-1.9σ	-1.5σ	-1.7σ	-2.0σ	-1.4σ
A (3)	-0.0164(63)	-0.0157(60)	-0.0118(62)	-0.0202(63)	-0.0153(59)	-0.0083(62)	-0.0233(62)
Δ _{CKM}	-2.6σ	-2.6σ	-1.9σ	-3.2σ	-2.6σ	-1.4σ	-3.8σ

Cirigliano et al. 2208.11707

$$\begin{split} \Delta_{\text{CKM}}^{(1)} &= \left| V_{ud}^{\beta} \right|^2 + \left| V_{us}^{K_{\ell 3}} \right|^2 - 1, \\ \Delta_{\text{CKM}}^{(2)} &= \left| V_{ud}^{\beta} \right|^2 + \left| V_{us}^{K_{\ell 2}/\pi_{\ell 2},\beta} \right|^2 - 1, \\ \Delta_{\text{CKM}}^{(3)} &= \left| V_{ud}^{K_{\ell 2}/\pi_{\ell 2},K_{\ell 3}} \right|^2 + \left| V_{us}^{K_{\ell 3}} \right|^2 - 1, \end{split}$$

Table 1: Fit results for the current global fit as well as variants including a new measurement of the $K_{\mu3}/K_{\mu2}$ branching fraction, with uncertainty of 0.5% and 0.2%, respectively, and central value either as expected from the current fit, BR($K_{\mu3}$)/BR($K_{\mu2}$) = 0.05294(51), or shifted by $\pm 2\sigma$ of the current fit error. In each channel, the scale factors are given to quantify the tension as originating therefrom [3]. Note that the branching ratios for $\pi\pi\pi$ and $\pi\pi^0\pi^0$ are virtually unaffected by the new measurement due to very few correlated ratios with the (semi-) leptonic channels in the data base (in cases in which no significant changes occur, only a single entry is given that applies to all columns). The values of V_{us} and V_{us}/V_{ud} are extracted using the same input as described in the main text, adding in quadrature all uncertainties given in Eq. (7). $\Delta_{CKM}^{(12,3)}$ are defined in Eq. (8), and $\Delta_{CKM}^{(12)}$ are evaluated using V_{ud}^{β} from Eq. (5).

The smeared-ratio from a Backus-Gilbert-like approach

We however still need a regularization mechanism to tame the oscillations of the g_{I} coefficients (that would blow up our uncertainties).

The Hansen-Lupo-Tantalo (HLT) method provides the coefficients $g_{I}(\sigma)$ minimizing a functional $W_{I}^{\alpha}[g]$ which balances syst. and stat. errors of reconstructed $R_{ud}^{(\tau,I)}(\sigma)$

$$W_{\mathrm{I}}^{\alpha}[\boldsymbol{g}] = \frac{A_{\mathrm{I}}^{\alpha}[\boldsymbol{g}]}{A_{\mathrm{I}}^{\alpha}[\boldsymbol{0}]} + \lambda B_{\mathrm{I}}[\boldsymbol{g}] , \qquad \frac{\partial W_{n}[\boldsymbol{g}]}{\partial \boldsymbol{g}} \Big|_{\boldsymbol{g}=\boldsymbol{g}_{\mathrm{I}}} = 0$$

$$A_{\rm I}^{\alpha}[\boldsymbol{g}] = \int_{E_{\rm min}}^{r_{\rm max}/a} \mathrm{d}E \ e^{aE\alpha} \left| K_{\rm I}^{\sigma}\left(\frac{E}{m_{\tau}}\right) - \sum_{n=1}^{N} g_n e^{-naE} \right|^2 \iff (\text{syst.})^2 \text{ error due to reconstruction}$$

$$B_{\mathrm{I}}[\boldsymbol{g}] \propto \sum_{n_1, n_2=1}^{N} g_{n_1} g_{n_2} \operatorname{Cov} \left(C_{\mathrm{I}}(an_1), C_{\mathrm{I}}(an_2) \right) \iff (\operatorname{stat.})^2 \text{ error of reconstructed } R_{ud}^{(\tau, \mathrm{I})}(\sigma)$$

• λ is trade-off parameter \implies tuned for optimal balance of syst. and stat. errors. $\{\alpha, E_{\min}, r_{\max}\}$ algorithmic params. to tune for optimal performance.

11

courtesy by G. Gagliardi talk @ Lattice '24 (Liverpool)

Stability analysis [Bulava et al, JHEP07 (2022)] ($\sigma = 0.02$)

For each contribution and σ , perform a scan in λ to find the region where stat. errors dominate over systematics due to incorrect reconstruction of kernel functions.

• Goodness of reconstruction measured by $d_{\rm I}[\boldsymbol{g}_{\rm I}^{\boldsymbol{\lambda}}] \equiv \sqrt{A_{\rm I}^0[\boldsymbol{g}_{\rm I}^{\boldsymbol{\lambda}}]/A_{\rm I}^0[\boldsymbol{0}]}$

Comparison between exact and reconstructed kernel at optimal λ .

Exponential penalty $exp(\alpha aE)$ for errors at large E drastically improves stability.

courtesy by G. Gagliardi talk @ Lattice '24 (Liverpool)

Data-driven estimate of FSEs ($\sigma = 0.02$)

FSEs estimated from observed spread on B64/B96 and C80/C112 ensembles.

- FSEs typically very tiny...larger than $2\sigma_{stat}$ in only 1% of the cases.
- We associate to our results at $L\sim 5.5~{\rm fm}$ a systematic error due to FSEs estimated as

$$\Sigma_{\rm I}^{\rm FSE}(\sigma) = \max_{\rm r=\{tm,OS\}} \left\{ \Delta_{\rm I}^{\rm r}(\sigma) \operatorname{erf}\left(\frac{1}{\sqrt{2}\sigma_{\Delta_{\rm I}^{\rm r}(\sigma)}}\right) \right\}$$

$$\Delta_{\mathrm{I}}^{\mathrm{r}}(\sigma) = \left| R_{us}^{(\tau,\mathrm{I}),\mathrm{r}}(\sigma,\mathrm{C80}) - R_{us}^{(\tau,\mathrm{I}),\mathrm{r}}(\sigma,\mathrm{C112}) \right|, \quad \sigma_{\Delta_{I}^{r}(\sigma)} \text{ is relative uncertainty of } \Delta_{\mathrm{I}}^{\mathrm{r}}(\sigma)$$
15

courtesy by G. Gagliardi talk @ Lattice '24 (Liverpool)

Relation between spectral density and Euclidean correlator

$$C^{\alpha\beta}\left(\mathbf{t},\mathbf{q}\right) = \int d^{3}x \, e^{-i\mathbf{q}\cdot\mathbf{x}} \left\langle 0 \right| \, T\left(J^{\alpha}_{ud}(-i\mathbf{t},\mathbf{x}) \, J^{\beta}_{ud}(0)^{\dagger}\right) \, \left|0\right\rangle$$

Let's find the relation between $C^{\alpha\beta}(t, q)$ and the spectral density $\rho^{\alpha,\beta}(E, q)$:

$$C^{\alpha\beta}(t,q) \stackrel{t\geq 0}{=} \int d^3x e^{-iqx} \langle 0|J^{\alpha}_{ud}(0)e^{-\mathcal{H}t+i\mathcal{P}x}J^{\beta}_{ud}(0)^{\dagger}|0\rangle$$
$$= \langle 0|J^{\alpha}_{ud}(0)e^{-\mathcal{H}t}(2\pi)^3\delta^3(\mathcal{P}-q)J^{\beta}_{ud}(0)^{\dagger}|0\rangle$$
$$= \int_{-\infty}^{\infty} \frac{dE}{2\pi} e^{-Et} \langle 0|J^{\alpha}_{ud}(0)(2\pi)^4 \underbrace{\delta(\mathcal{H}-E)\delta^3(\mathcal{P}-q)}_{\delta^4(\mathcal{P}-q_E), q_E=(E,q)} J^{\beta}_{ud}(0)^{\dagger}|0\rangle$$

where we just used the relation $e^{-\mathcal{H}t} = \int_{-\infty}^{\infty} \frac{\mathrm{d}E}{2\pi} e^{-Et} 2\pi \,\delta(\mathcal{H}-E)$

Recalling the definition of the spectral density one has

$$C^{\alpha\beta}(t,\boldsymbol{q}) \stackrel{t>0}{=} \int_0^\infty \frac{\mathrm{d}E}{2\pi} e^{-Et} \rho_{ud}^{\alpha\beta}(E,\boldsymbol{q})$$

courtesy by G. Gagliardi talk @ Lattice '24 (Liverpool)

20

inclusive τ -lepton decays and $|V_{\mu s}|$

[RBC/UKQCD 1803.07226]

new sum rule:
$$\int_{0}^{\infty} \tilde{\rho}_{us}(s) \omega_{N}(s) ds = \sum_{k=1}^{N} \operatorname{Res}_{s=-Q_{k}^{2}} \left[\tilde{\Pi}_{us}(-s) \omega_{N}(s) \right]$$
$$= \sum_{k=1}^{N} \frac{\tilde{\Pi}_{us;V+A}(Q_{k}^{2})}{\prod_{j \neq k} (Q_{j}^{2} - Q_{k}^{2})} \equiv \tilde{F}_{\omega_{N}}$$
weight function $\omega_{N}(s) = \prod_{k=1}^{N} \frac{1}{s + Q_{k}^{2}}$ $(Q_{k}^{2} \text{ space-like poles } \leq 1 \text{ GeV}^{2})$

 $\tilde{\Pi}_{us;V+A}(Q_k^2) =$ HVP calculated in the lattice

$$|V_{us}| = \sqrt{\tilde{R}_{us;w_N}} / \left(\tilde{F}_{\omega_N} - \int_{m_\tau^2}^{\infty} \tilde{\rho}_{us}^{pQCD}(s)\omega_N(s)ds\right)$$
 pQCD spectral density

integrated data with the weight function

 $|V_{us}| = 0.2240(18)$

consistent with $|V_{us}| = 0.2224 (18)$ from $\tau \to K \nu_{\tau}$

TABLE I. Sample relative spectral integral contributions.

Contribution	Value [%]									
	$[N, C(GeV^2)]$	[3, 0.3]	[3, 1]	[4, 0.7]	[5, 0.9]					
K		65.5	30.9	61.7	66.9					
$K\pi$		21.4	28.6	26.4	25.2					
$K^{-}\pi^{+}\pi^{-}$		2.4	5.6	2.8	2.1					
$ar{K}^0\pi^-\pi^0$		3.1	7.3	3.6	2.7					
Residual		2.7	6.8	2.9	2.1					
pQCD		4.9	20.8	2.7	1.1					

inclusive hadronic τ -lepton decays

$$\Gamma(\tau \to X_{us}\nu_{\tau}) = \frac{\rho(m_{\tau})}{2m_{\tau}} \qquad \rho(\omega) = \langle \tau^{-} | H^{us}_{w} (2\pi)\delta(\mathbb{H} - \omega) H^{us}_{w} | \tau^{-} \rangle$$

with
$$X_{us}$$
 being inclusive in hadrons + photons:
RM123 approach

$$\Gamma = \Gamma_{
m lep} + \Gamma_{
m fact} + \Gamma_{
m non-fact}$$
 preliminary data look promising!

courtesy by M. Di Carlo talk @ LatticeNET 2025 (Benasque)