Closing Theory Talk

Marzia Bordone

Beyond the Flavour Anomalies 2025 11.04.2025

Outline:

- 1. The problem of flavour
- 2. Open problems in hadronic physics
- 3. A glance into BSM physics

Despite the SM successes, there are open problems:

Despite the SM successes, there are open problems:

The (two) flavour problems

- 1. The SM flavour problem: The measured Yukawa pattern doesn't seem accidental
 - \Rightarrow Is there any deeper reason for that?

- 2. The NP flavour problem: If we regard the SM as an EFT valid below a certain energy cutoff Λ , why don't we see any deviations in flavour changing processes?
 - \Rightarrow Which is the flavour structure of BSM physics?

The SM flavour problem

$$\mathcal{L}_{\text{Yukawa}} \supset Y_u^{ij} \bar{Q}_L^i H u_R^j$$

The SM flavour problem

$$\mathcal{L}_{\text{Yukawa}} \supset Y_u^{ij} \bar{Q}_L^i H u_R^j$$

Exact $U(2)^n$ limit

The SM flavour problem

 $\mathcal{L}_{\text{Yukawa}} \supset Y_u^{ij} \bar{Q}_L^i H u_R^j$

An approximate $U(2)^n$ is acting on the light families!

The NP flavour problem

• In the SM: accidental $U(3)^5 \rightarrow \text{approx } U(2)^n$

The NP flavour problem

- In the SM: accidental $U(3)^5 \rightarrow \text{approx } U(2)^n$
- What happens when we switch on NP?

The NP flavour problem

no breaking of the $U(2)^n$ flavour symmetry at low energies

Partonic vs Hadronic

Fundamental challenge to match partonic and hadronic descriptions

What's the problem for BSM?

What's the problem for BSM?

What's the problem for BSM?

How to satisfy all the constraints at the same time?

Open problems in hadronic physics

What are the open themes in hadronic physics?

- 1. Calculation of local form factors for semileptonic and rare decays
- Extraction of CKM elements Andreas and Ludovico, Paolo, Silvano, Marcello, Carolina and Camille Search for LELIV Mark and Quim, Alex and Marco 2. Non-local effects in $b \rightarrow s\ell\ell$ Nico and Simon, Arianna, Chris and Giuseppe 3. Non-leptonic decays b decays Matthew and Stefan, Marta CP violation, D mixing Stefan and Tommaso, Roberto • Extracting e.g. f_s/f_d

Exclusive V_{cb} from $B \rightarrow D^*$

Thanks to C. Schwanda for the averages!

Exclusive V_{cb} close to zero-recoil

B factories:
$$|V_{cb}| = 40.07 \pm 0.86$$

LEP: $|V_{cb}| = 42.37 \pm 1.09$

Exclusive V_{cb} close to zero-recoil

B factories: $|V_{cb}| = 40.07 \pm 0.86$ LEP: $|V_{cb}| = 42.37 \pm 1.09$ B factories: $|V_{cb}| = 41.24 \pm 1.15$ LEP: $|V_{cb}| = 43.60 \pm 1.35$

A few words on exclusive V_{ub}

- There are tensions in the lattice determinations of f₀
- *f*₊ and *f*₀ are correlated through the kinematic constraint

$$f_+(q^2 = 0) = f_0(q^2 = 0)$$

• Even for light leptons, this has an impact on phenomenology and potentially for V_{ub} extraction

Consistency checks in $B_s \rightarrow K$ REC/UKQCD '23

- On the lattice, we don't access directly f_+ and f_0 but f_{\parallel} and f_{\perp}
- The form factor will look like

$$f_X = \frac{\Lambda}{E_K + \Delta_X} [\chi(M_\pi^2) + k(E_K) + d((a\Lambda)^2)]$$

 The pole positions ∆_X are well defined for f₊ and f₀ Does it make a difference to perform the chiral continuum extrapolation in f_{+,0} or f_{⊥,||}?

- All fine for f₊
- Sizeable deviations for f₀
- WIP to check this for $B \to \pi$ as well

Charm-loop effects in $b \rightarrow s\ell^+\ell^-$

 \sim

$$\begin{aligned} \mathcal{H}_{\mathsf{eff}} &= -4 \frac{G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[-\mathcal{C}_1 \mathcal{O}_1 - \mathcal{C}_2 \mathcal{O}_2 + \mathcal{C}_7 \mathcal{O}_7 + \mathcal{C}_9 \mathcal{O}_9 + \mathcal{C}_{10} \mathcal{O}_{10} \right] \\ \mathcal{O}_1 &= \left(\bar{s} \gamma^\mu P_L b \right) \left(\bar{c} \gamma_\mu c \right) \qquad \mathcal{O}_2 = \left(\bar{s} \gamma^\mu T^a P_L b \right) \left(\bar{c} \gamma_\mu T^a c \right) \\ \mathcal{O}_9 &= \left(\bar{s} \gamma^\mu P_L b \right) \left(\bar{\ell} \gamma_\mu \ell \right) \qquad \mathcal{O}_{10} = \left(\bar{s} \gamma^\mu P_L b \right) \left(\bar{\ell} \gamma_\mu \gamma_5 \ell \right) \\ \mathcal{O}_7 &= \left(\bar{s} \sigma^{\mu\nu} P_R b \right) F_{\mu\nu} \end{aligned}$$

How do we parametrise these long-distance effects?

$B \to K$ vs $B \to K^*$ at low and high q^2

[MB, G. Isidori, S. Mächler, A. Tinari, '24]

- The complementarity of low and high q^2 data is essential to test estimations of charm re-scattering
- In the long run, a statistically compelling comparison with the electron mode is needed

A glance into BSM physics

Status of high energy bounds

universal new physics

Flavour Non-Universal New Physics

Dvali, Shifman, '00 Panico, Pomarol, '16 <u>MB</u>, Cornella, Fuentes-Martin, Isidori '17 Allwicher, Isidori, Thomsen '20 Barbieri, Cornella, Isidori, '21 Davighi, Isidori '21

Basic idea:

- 1st and 2nd have small masses and small couplings to NP because they are generated by dynamics at a heavier scale
- 3rd generation is linked to dynamics at lower scales and has stronger couplings

Flavour deconstruction:

fermion families interact with different gauge groups and flavour hierarchies emerge as accidental symmetries

Flavour Non-Universal New Physics

What about BSM?

What about BSM?

Can we accommodate all these data together?

See also Wolfgang, Martin, Lukas and Sally, Alfredo e Laura

Correlations among all these modes is essential to prove NP scenarios

What do we expect in the SMEFT?

$$\mathcal{L}_{\text{EFT}} \supset \underbrace{\frac{C_{bc\tau\tau}}{\Lambda^2}}_{\text{From } U(2)^n \Rightarrow C_{bc\tau\tau} \sim V_{cb}\mathcal{O}(1)} (\bar{\nu}_{\tau}\gamma^{\mu}\tau_L)$$
From $R_{D^{(*)}} \Rightarrow \Lambda \sim \mathcal{O}(\text{TeV})$

Using $SU(2)_L$ invariance, we have

$$\begin{split} \mathcal{L}_{\mathrm{EFT}} \supset \frac{C_{ij\tau\tau}}{\Lambda^2} (\bar{d}^i_L \gamma_\nu d^j_L) (\bar{\nu}_\tau \gamma^\mu \nu_\tau) \\ & \\ B^+ \rightarrow K^+ \nu \bar{\nu} \\ & \\ \mathsf{From} \ U(2)^n \Rightarrow C_{bs\tau\tau} \sim V_{cb} \mathcal{O}(1) \\ & \\ \mathsf{From} \ U(2)^n \Rightarrow C_{sd\tau\tau} \sim 10^{-1} V_{cb} \mathcal{O}(1) \end{split}$$

[L. Allwicher, MB, G. Isidori, G. Piazza, A. Stanzione, '24]

- The $U(2)^n$ symmetry creates a natural link between all this observables
- The complementarity between low- and high-energy data is useful to probe the parameter space

[L. Allwicher, MB, G. Isidori, G. Piazza, A. Stanzione, '24]

- The $U(2)^n$ symmetry creates a natural link between all this observables
- The complementarity between low- and high-energy data is useful to probe the parameter space

Further data is essential!

Things are moving also at high-energy

Still a long way to go, but prospects are promising

Experimental prospects

- Experimental facilities are delivering unprecedented datasets
- The experimental reach supported by new analysis techniques already superseded the expectations
- The theoretical developments are essential to keep understanding with higher precision flavour processes and assessing possible hints of new physics signals

Conclusions

- Flavour physics is a powerful test for new physics living at different energy scales
- We have a lot of puzzles to solve, but this is just a sign of the advancements in both theory and experiments
- A compelling option connecting flavour hierarchies and BSM is flavour deconstruction
- There are a few hints pointing to a strong link between new physics and the third generations, with possible new physics reach close to the current searches
- The excellent experimental prospects, combined with theory advancements, will shed light on the current picture

Appendix

On the V_{cb} puzzle (again)

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) \propto |\lambda_{ts}|^2 \quad \lambda_{ts} \equiv \lambda |V_{cb}| \left[(\bar{\rho} - 1) \left(1 - \frac{\lambda^2}{2} \right) + i\bar{\eta} \left(1 + \frac{\lambda^2}{2} \right) \right] + \mathcal{O}(\lambda^4)$$

On the V_{cb} puzzle (again)

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) \propto |\lambda_{ts}|^2 \quad \lambda_{ts} \equiv \lambda |V_{cb}| \left[(\bar{\rho} - 1) \left(1 - \frac{\lambda^2}{2} \right) + i\bar{\eta} \left(1 + \frac{\lambda^2}{2} \right) \right] + \mathcal{O}(\lambda^4)$$

On the V_{cb} puzzle (again)

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) \propto |\lambda_{ts}|^2 \quad \lambda_{ts} \equiv \lambda |V_{cb}| \left[(\bar{\rho} - 1) \left(1 - \frac{\lambda^2}{2} \right) + i\bar{\eta} \left(1 + \frac{\lambda^2}{2} \right) \right] + \mathcal{O}(\lambda^4)$$

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})^{\text{SM}} = (8.09 \pm 0.63) \times 10^{-11}$$
$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})^{\text{SM}} = (2.58 \pm 0.30) \times 10^{-11}$$

[L. Allwicher, MB, G. Isidori, G. Piazza, A. Stanzione, '24]

- The $U(2)^n$ symmetry creates a natural link between all this observables
- The complementarity between low- and high-energy data is useful to probe the parameter space

[L. Allwicher, MB, G. Isidori, G. Piazza, A. Stanzione, '24]

- The $U(2)^n$ symmetry creates a natural link between all this observables
- The complementarity between low- and high-energy data is useful to probe the parameter space

Further data is essential!

Which operators?

 $Q_{\ell q}^{\pm} = (\bar{q}_{L}^{3} \gamma^{\mu} q_{L}^{3}) (\bar{\ell}_{L}^{3} \gamma_{\mu} \ell_{L}^{3}) \pm (\bar{q}_{L}^{3} \gamma^{\mu} \sigma^{a} q_{L}^{3}) (\bar{\ell}_{L}^{3} \gamma_{\mu} \sigma^{a} \ell_{L}^{3}) \quad Q_{S} = (\bar{\ell}_{L}^{3} \tau_{R}) (\bar{b}_{R} q_{L}^{3})$

Which operators?

Which operators?

$$\begin{aligned} Q_{\ell q}^{\pm} &= (\bar{q}_L^3 \gamma^{\mu} q_L^3) (\bar{\ell}_L^3 \gamma_{\mu} \ell_L^3) \pm (\bar{q}_L^3 \gamma^{\mu} \sigma^a q_L^3) (\bar{\ell}_L^3 \gamma_{\mu} \sigma^a \ell_L^3) & Q_S = (\bar{\ell}_L^3 \tau_R) (\bar{b}_R q_L^3) \\ \uparrow & \uparrow & \uparrow \\ SU(2) \text{ singlet} & SU(2) \text{ triplet} & \text{scalar} \end{aligned}$$

• Only left-handed neutrinos

•
$$q_{3L} \equiv q_L^b + \hat{V} \cdot Q_L$$

 $q_L^b = \begin{pmatrix} V_{j3}^* u_L^j \\ b_L \end{pmatrix} \qquad Q_L^i = \begin{pmatrix} V_{ji}^* u_L^j \\ d_L^i \end{pmatrix} \qquad \hat{V}_q \equiv -\epsilon V_{ts} \begin{pmatrix} \kappa V_{td} / V_{ts} \\ 1 \end{pmatrix}$

