$B \rightarrow D^* V$: How to make the most out of upcoming measurement

Istituto Nazionale di Fisica Nucleare

BELLE BELL

LHCh

Marcello Roton Anna Lupa

Beyond the flavour Anomalies 20

Ro Centro Congressi Sapier

Anril 9-11,2

LHCb and Belle,Belle2

- LHCb
- Spectrometer in the forward direction $(2 < \eta < 5)$
- Excellent vertexing, tracking and particle identification
- Most backgrounds come from other ${\it B}$ decays rather than underlying event
- Production of all types of b and c hadrons

Run1: 3 fb⁻¹ @ \sqrt{s} =7-8 TeV Run2: 6 fb⁻¹@ \sqrt{s} =13 TeV

- Belle/Belle2
- Constrained kinematics
- Easy to cross-feed tracks due to low CM momentum of B mesons
- Electrons ad good as muons
 - ~10⁹ Y(4S) per ab⁻¹

Outline

- $B \rightarrow D^* l\nu$ what we measure
- Case study: Belle recent measurements
- LHCb: some ongoing analyses
- Semitauonics

Opportunities with B \rightarrow **D*****I** ν decays

$$\frac{d^4(B^0 \to D^* \ell^+ \nu_\ell)}{dq^2 d\cos^2 \theta_\ell d\cos \theta_{D^*} d^{\chi}} \propto |V_{cb}|^2 \sum_i \mathcal{H}_i(q^2) f_i(\theta_\ell, \theta_{D^*}, \chi)$$

Electroweak coupling + Form factors Sensitive to new physics

- $\mathcal{H}_{i}(q^{2})$ depend on combinations of helicity amplitudes
 - Form factors determination
 - New Physics searches
- Angles provide observables sensitive to NP:
 - F-B asymmetry
 - Longitudinal polarization
 - • •
 - Complementary to LFU
- Transition form factor measurements
- LFU test

Angular coefficients

$d^4\Gamma(B \to D^* \mu \nu)$	$3m_B^3 m_{D^*}^2 G_{F_D^2}^2 = V_{+} ^2 A(w, \theta, \theta_{-}, y) ^2$	$ A(w, \theta, \theta_{\rm P}, \gamma) ^2 - \sum_{i=1}^{6} \mathcal{H}_i(w) k_i(\theta, \theta_{\rm P}, \gamma)$
$\frac{\mathrm{d}w\mathrm{d}\cos\theta_{\mu}\mathrm{d}\cos\theta_{D}\mathrm{d}\chi}{\mathrm{d}x} =$	$\frac{16(4\pi)^4}{16(4\pi)^4}\eta_{\rm EW} v_{cb} \mathcal{A}(w,\theta_{\mu},\theta_{D},\chi) $	$ \mathcal{A}(w, o_{\mu}, o_{D}, \chi) = \sum_{i} \mathcal{H}_{i}(w) \mathcal{H}_{i}(o_{\mu}, o_{D}, \chi)$

For massless leptons

i	$\mathcal{H}_{i}(w)$	$k_i(heta_\mu, heta_D,\chi)$		le
C C	$\mathcal{H}_{i}(\omega)$	$D^* \to D\gamma$	$D^* \to D\pi^0$	
1	H_{+}^{2}	$\frac{1}{2}(1+\cos^2\theta_D)(1-\cos\theta_\mu)^2$	$\sin^2 \theta_D (1 - \cos \theta_\mu)^2$	<i>ℓ μ</i>
2	H_{-}^{2}	$\frac{\tilde{1}}{2}(1+\cos^2\theta_D)(1+\cos\theta_\mu)^2$	$\sin^2 \theta_D (1 + \cos \theta_\mu)^2$	θ_{ℓ}
3	H_0^2	$2\sin^2\theta_D\sin^2\theta_\mu$	$4\cos^2\theta_D\sin^2\theta_\mu$	
4	H_+H	$\sin^2 \theta_D \sin^2 \theta_\mu \cos 2\chi$	$-2\sin^2\theta_D\sin^2\theta_\mu\cos 2\chi$	
5	H_+H_0	$\sin 2\theta_D \sin \theta_\mu (1 - \cos \theta_\mu) \cos \chi$	$-2\sin 2\theta_D\sin \theta_\mu (1-\cos \theta_\mu)\cos \chi$	
6	$H_{-}H_{0}$	$-\sin 2\theta_D \sin \theta_\mu (1 + \cos \theta_\mu) \cos \chi$	$2\sin 2\theta_D \sin \theta_\mu (1+\cos \theta_\mu) \cos \chi$	

- The q^2 dependence parametrized using CLN or BGL. The differential rate can also be expressed in terms of combination of 12 angular terms $I_i(q^2)$ (or J_i) that include both SM and NP effects

• [JHEP 12 (2020) 144]

$$\frac{d^2\Gamma}{dq^2 d\cos\theta_{\rm l} \mathrm{d}\cos\theta_{\rm d} \mathrm{d}\chi} \propto \sum_i I_i(q^2) k_i(\theta_\ell, \theta_D, \chi)$$

• The q² dependence is determined by the form factors. Various parametrizations available: CLN (obsolete), BGL, BCL, BLPR

B-Factories analyses (recent)

B Tagged analysis:

Belle Phys.Rev.D 108 (2023) 1, 012002 Belle Phys.Rev.Lett 133 (2024) 13, 131801 Belle II Phys.Rev.D 108 (2023) 9, 9

Low efficiency Calibration of absolute efficiency is hard Events/5-MeV

Clean sample + kinematic constraints \rightarrow Suited for precise angular analysis

BaBar Phys.Rev.Lett 123 (2019) 091801 (first unbinned analysis)

B untagged analyses

Belle Phys. Rev. D 100 (2019) 052007 Belle II Phys.Rev.D 108 (2023) 092013

High efficiency compensate for low resolution of approximated kinematics

$$cos\theta_{BY} = \frac{2E_B^* E_Y^* - m_B^2 - m_Y^2}{2|p_B^*||p_Y^*|}$$

Beyond Flavour Anomalies

103

Differential analysis (*a*) **Belle**

- Belle: 711 fb⁻¹ @ Y(4s) with hadronic tag-side reconstruction •
- Same dataset and selection for two different analysis
- Measure the marginal distributions of the 4D differential decay rate
- Measure the angular coefficients J(w) in bins of w

Background subtraction in independent • variable to reduce model dependency

First time Belle consider neutral slow pions

- larger kinematic coverage
- but more mis-identified pions and worse resolution

- Marginalized distributions + full covariance matrix
- Data well described by BGL and CLN parametrizations

D $\frac{\chi}{\theta_{V}}$ D^{*} π, γ

Phys.Rev.D 108 (2023) 1, 012002

• Measurement of the 12 angular coefficients in 4 bin of *w* Phys.Rev

Phys.Rev.Lett 133 (2024) 13, 131801

Informations available in HepData

BELLE

BELLE

Shape measurements

Beyond Flavour Anomalies

Anna Lupato, Marcello Rotondo

Branching fractions $B \rightarrow D^* \mu \nu$

Significant systematics common to the various measurements

- Slow pion efficiency
- Background from $B \rightarrow D^{**}$
- f₀₀/f+-

Simultaneous analysis of $B \rightarrow D$ and $B \rightarrow D^*$ Ongoing analysis @ BelleII: no soft pion and independent from f_{00}

Differential distribution for $B_s \rightarrow D_s^* \mu \nu$ decays

інср

- B-hadron momentum magnitude not known
- B-direction precisely determined by PV and Decay Vertex
 - Kinematic determined with a 2-fold ambiguity
 - Corrected mass to extract signal yield

$$M_{ ext{corr}} = \sqrt{m_{D_s^*\mu}^2 + |p_{miss}^{\perp}|^2} + |p_{miss}^{\perp}|^2$$

Published the unfolded and efficiency corrected w spectrum

Ongoing: determination of the J angular coefficients in 6 bins of $q^{\rm 2}$

New Physics searches using $B \rightarrow D^* \mu \nu$ decays

- Measure directly Wilson Coefficients: flexible to use NP model or be model independent
 - Extract directly Wilson Coefficients and FF ٠ parameters from fit to data. First sensitive estimated B. Mitreska [CERN-THESIS-2022-105]

Wilson coefficients $\mathcal{C}_i = \mathcal{C}_i^{SM} + \mathcal{C}_i^{NP}$

$$\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} V_{cb} \sum_i \overset{\downarrow}{C_i} \mathcal{O}_i$$

 $(D(2420)^{\circ} \rightarrow DX) \mu \nu$ $(D(2460)^{\circ} \rightarrow DX) u$

 $B \rightarrow D (2536)^{+} \mu \nu$ B.→ Ds2 (2573)* µ

 χ [rad]

- Ongoing measurement to provide differential
- High precision q² spectrum (and angular shapes)

New Physics search strategies:

obtain dynamically the templates

•

Fit in 5D (includes M_{corr} to account for model

dependence in the signal yields extraction)

Model the New Physics effects in the fitting

template using the HAMMER tool [Eur. Phys. J.

C 80, 883 (2020)] to reweight MC event and

Folding-in the experimental resolution and

Shape analysis: no attempt to measure $|V_{cb}|$

Beyond Flavour Anomalies

acceptance

spectra unfolded

Anna Lupato, Marcello Rotondo

Longitudinal D^{*} polarization: beyond the LFU

- Measured by Belle: $0.60 \pm 0.08 \pm 0.04$ [arXiv:1903.03102]
- The differential decays rate of $D^* \to \ D^0 \, \pi$ can be expressed as

$$\frac{\mathrm{d}^2 \Gamma}{\mathrm{d}q^2 \mathrm{d}\cos\theta_D} = a_{\theta_D}(q^2) + c_{\theta_D}(q^2)\cos^2\theta_D$$

• $F_{L^{D^*}}$ can be calculated as

$$F_L^{D^*} = \frac{a_{\theta_D}(q^2) + c_{\theta_D}(q^2)}{3a_{\theta_D}(q^2) + c_{\theta_D}(q^2)}$$

where

• a_{θ} and c_{θ} are linear combinations of the angular coefficients

$$a_{ heta_D}(q^2) = N^{unpol} \cdot \mathcal{PDF}_{unpol}|_{\cos \theta_D = 0}, \qquad c_{ heta_D}(q^2) = \frac{3}{2}N^{pol}\Delta_{bin}$$

Longitudinal D* polarization: template fit

- $F_L^{D^*}$ determined in two q² regions: q² >7GeV²/c⁴, q² <7GeV²/c⁴
- $F_{\rm L}{}^{\rm D*}$ is extracted from $a_{\theta}\, and\,\, c_{\theta}\, determined$ by splitting the simulated signal template in
 - $N_{unpolarized} \propto a_{\theta}$
 - $N_{\text{polarized}} \propto c_{\theta}$
- 4D template fit:
 - τ lifetime
 - **q**²
 - cos θ_D
 - Anti-D_s BDT output
- Background treatment similar to R(D*) [PRD 108 012018]
- Simultaneous fit to Run1 and Run2
- Dominant sources of systematic uncertainties:
 - limited size of simulations samples;
 - form factors parametrization;
 - double charm background modelling;

[arXiv:2311.05224]

[arXiv:2311.05224]

 Possibility to describe the fully differential decay rate thanks to LHCb capability of resolving the three angles

- However, broad resolutions demand very large sample to extract the underlying physics
- Measure the 12 angular coefficients integrated in q^2 following a novel approach [JHEP 11(2019) 133]
 - Ongoing feasibility study with $B \to D^* \; \mu \nu$

- Paramount to provide enough information (HepData) so the data can be re-used and re-interpreted
 - Different form factor inputs (LQCD/LCSR), different assumptions, series truncation...
- Various existing measurements already provide informations for re-interpretation
 - Healthy to analyze the same data using different approaches
 - Other analysis are ongoing from both LHCb and Belle II
- Crucial to perform ancillary measurements
 - $B \rightarrow D^{**}$, both BF and Form Factors
 - Multi-pion production, other decay modes non considered?
 - $B \rightarrow DDX$: background to LHCb measurements, large uncertainty
- DO not forget about other B-hadrons accessible at LHC

Backup

Differential analysis

• Belle: 711 fb⁻¹ @ Y(4s) with hadronic taα-side reconstruction

 $\begin{aligned} \frac{\mathrm{d}\Gamma(\bar{B} \to D^*\ell\bar{\nu}_\ell)}{\mathrm{d}w\,\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_\mathrm{V}\,\mathrm{d}\chi} &= \frac{2G_\mathrm{F}^2\eta_\mathrm{EW}^2|V_\mathrm{cb}|^2m_B^4m_{\mathrm{D}^*}}{2\pi^4} \times \left(J_{1s}\sin^2\theta_\mathrm{V} + J_{1c}\cos^2\theta_\mathrm{V} + (J_{2s}\sin^2\theta_\mathrm{V} + J_{2c}\cos^2\theta_\mathrm{V})\cos2\theta_\ell + J_3\sin^2\theta_\mathrm{V}\sin^2\theta_\ell\cos2\chi + (J_{2s}\sin^2\theta_\mathrm{V} + J_{2c}\cos^2\theta_\mathrm{V})\cos2\theta_\ell + J_5\sin2\theta_\mathrm{V}\sin^2\theta_\ell\cos\chi + (J_{6s}\sin^2\theta_\mathrm{V} + J_{6c}\cos^2\theta_\mathrm{V})\cos\theta_\ell + J_7\sin2\theta_\mathrm{V}\sin\theta_\ell\sin\chi + J_8\sin2\theta_\mathrm{V}\sin2\theta_\ell\sin2\theta_\ell\sin\chi + J_9\sin^2\theta_\mathrm{V}\sin^2\theta_\ell\sin2\chi\right). \end{aligned}$

- Measurement of the angular coefficients in 4 bin of *w*
- Signal yields in bin of angles, w, decay modes determined by

• Background subtraction in independent variable to reduce model dependency

[arXiv:2310.20286]

LFU observables of $B \rightarrow D^* \mu \nu$

[arXiv:2311.05224]

- To test LFU between electrons and muons
- $\Delta A_{\rm FB} = A^{\mu}_{\rm FB} A^{e}_{\rm FB}$
- No significant deviation observed

Observable	χ^2 / ndf	p-value
$\Delta A_{ m FB}$	1.7 / 4	0.79
$\Delta F_{ m L}(D^*)$	2.3 / 4	0.67
$\Delta \hat{J}_{1s}$	5.3 / 4	0.26
$\Delta \hat{J}_{1c}$	4.2 / 4	0.38
$\Delta \hat{J}_{2s}$	4.6 / 4	0.33
$\Delta \hat{J}_{2c}$	5.0 / 4	0.28
$\Delta \hat{J}_3$	7.4 / 4	0.12
$\Delta \hat{J}_4$	2.5 / 4	0.64
$\Delta \hat{J}_5$	4.8 / 4	0.31
$\Delta \hat{J}_{6s}$	2.1 / 4	0.72
$\Delta \hat{J}_{6c}$	1.1 / 4	0.89
$\Delta \hat{J}_7$	1.6 / 4	0.81
$\Delta \hat{J}_8$	3.3 / 4	0.51
$\Delta \hat{J}_9$	4.6 / 4	0.33
$\Delta \hat{J}_i$	41 / 48	0.76

LFU $B \rightarrow D^* \mu \nu$

Results

 $\mathscr{B}(\bar{B}^0 \to D^{*+}\ell^- \bar{\nu}_{\ell}) : (4.922 \pm 0.023(stat) \pm 0.220(syst)) \%$ Compatible with the current WA: $(4.97 \pm 0.12) \%$

 $|V_{cb}|_{BGL} = (40.57 \pm 0.31(stat) \pm 0.95(syst) \pm 0.58(th)) \cdot 10^{-3}$ Compatible with the exclusive (inclusive) WA: 1.5σ (1.3 σ)

 $|V_{cb}|_{CLN} = (40.13 \pm 0.27(stat) \pm 0.93(syst) \pm 0.58(th)) \cdot 10^{-3}$ Compatible with the exclusive (inclusive) WA: 1.1 σ (1.6 σ) Use FNAL/MILC lattice QCD data at zero recoil (w = 1) for normalisation. BGL truncated using nested hypothesis test: BGL(1,2,2).

LFU test by comparing separated results for electrons and muons:

$$\begin{split} R_{e/\mu} &= 0.998 \pm 0.009(stat) \pm 0.020(syst) \\ \Delta A_{FB} &= (-17 \pm 16(stat) \pm 16(syst)) \cdot 10^{-3} \\ \Delta F_L &= (0.006 \pm 0.007(stat) \pm 0.005(syst)) \cdot 10^{-3} \end{split}$$

Dominant systematic sources:

1) slow-pion reconstruction efficiency \rightarrow 1.5% on $|V_{cb}|$

$$2) f_{+0} = \frac{\mathscr{B}(\Upsilon(4S) \to B^+B^-)}{\mathscr{B}(\Upsilon(4S) \to B^0\bar{B}^0)} \to 1.3\% \text{ on } |V_{cb}|$$

Beyond Flavour Anomalies Anna Lupato, Marcello Rotondo

No deviations observed from the SM.

• Cntr

CPV in mixing

$$a_{\rm sl} \equiv \frac{\Gamma(\overline{B} \to f) - \Gamma(B \to \overline{f})}{\Gamma(\overline{B} \to f) + \Gamma(B \to \overline{f})} \approx \frac{\Delta\Gamma}{\Delta m} \tan\phi_{12}$$

New physics sensitive in the loop.

Explore the flavour-specific decays $B^0 \to D^{(*)-}\mu^+ X$ and $B_s^0 \to D^{(*)-}\mu^+ X$ i.e. μ charge identifies **B** flavour at decay.

Explore asymmetry in untagged decays i.e. no need to determine the **B** flavour at production.

[M. Grabalso thesis]

• Results integrated over run1 and run2

 $F_L^{D^*}(q^2 < 7 \text{GeV}^2/\text{c}^4) = 0.51 \pm 0.07(\text{stat}) \pm 0.03(\text{syst})$ $F_L^{D^*}(q^2 > 7 \text{GeV}^2/\text{c}^4) = 0.35 \pm 0.08(\text{stat}) \pm 0.02(\text{syst})$ $F_L^{D^*}(\text{whole } q^2 \text{ range}) = 0.43 \pm 0.06(\text{stat}) \pm 0.03(\text{syst})$

- All results are found compatible with the SM within 1σ
- Compatible with previous Belle result
 [arXiv:1903.03102]

 $F_L^{D^*} = 0.60 \pm 0.08(\text{stat}) \pm 0.04(\text{syst})$

- Compatible with SM prediction
- Plan to increase the number of bins of the fit
- Plan is to update the $F_L^{D^*}$ value in parallel with the $R(D^*)$ measurement in hadronic τ channel.