Recent developments in c ightarrow sl u

Carolina Da Silva Bolognani¹, Camille Normand²

¹Maastricht University, ²University of Bristol

9th April 2025 Beyond the Flavour Anomalies

Table of Contents

- 2 Global analysis
- (3) Measurement of the branching fraction of $D_s
 ightarrow \ell^\pm
 u$
- 4 Decay properties of $D \to K \ell \nu$

Table of Contents

1 Introduction

2 Global analysis

3) Measurement of the branching fraction of $D_s o \ell^\pm
u$

4 Decay properties of $D o K \ell
u$

• Experimentally determine CKM elements

$$V_{\mathcal{CKM}}\equiv egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- Study of $c
 ightarrow s \ell
 u$ transitions $\Rightarrow V_{cs}$
- Test of unitarity

Second row:
$$|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1$$

Second column:
$$|V_{us}|^2 + |V_{cs}|^2 + |V_{ts}|^2 = 1$$

(Semi)leptonic decays

All hadronic information factorises from leptonic: $\mathcal{B} \propto |V_{cs}|^2$ |Had. mat. el.|²

Decay constant

Form factors

The current $|V_{cs}|$ by PDG

- Leptonic: HFLAV 2021 average of branching ratios of $D_s \rightarrow \{\mu, \tau\}\nu^*$ combined with PDG 2024 averages for mass, lifetime, decay constant
 - Average: $|V_{cs}|_{PDG, D_s \to \ell^+ \nu} = 0.984 \pm 0.012$
- Semileptonic: HFLAV 2021 average of $f_+^{D \to K}(0)|V_{cs}|$ of $D^{+,0} \to K\{e, \mu\}\nu^*$ combined with FLAG 2021 average of ETM and (old) HPQCD form factor calculations*
 - No shape distribution information
 - Average: $|V_{cs}|_{PDG, D \to K\ell^+\nu} = 0.972 \pm 0.007$
- No electroweak corrections in Wilson coefficients
- Combined into $|V_{cs}|_{PDG} = 0.975 \pm 0.006$

*: since updated

Table of Contents

② Global analysis

3) Measurement of the branching fraction of $D_s o \ell^\pm
u$

4 Decay properties of $D o K \ell \nu$

Framework

Bolognani, Reboud, van Dyk, Vos JHEP 09 (2024) 099

• SM description of $c \rightarrow s \ell \nu$ including Sirlin factor:

$$\mathcal{H}^{sc\nu\ell} = -\frac{4G_F}{\sqrt{2}} V_{cs}^* C_{V,L}^{\ell}(\mu_c) \mathcal{O}_{V,L}^{\ell}$$
$$\mathcal{O}_{V,L}^{\ell} = [\bar{s}\gamma^{\mu} P_L c] [\bar{\nu}\gamma_{\mu} P_L \ell]$$
$$\mathcal{C}_{V,L}^{\ell}(\mu_c) = 1 + \frac{\alpha_e}{\pi} \ln\left(\frac{M_Z}{\mu_c}\right) \simeq 1.01$$

- Bayesian model comparison between different fit models
- All models share hadronic nuisance parameters and experimental likelihood

Models: <u>SM</u>, <u>CKM</u>, <u>WET</u>

Eur.Phys.J.C 82 (2022) 6, 569

Experimental data

Bolognani, Reboud, van Dyk, Vos JHEP 09 (2024) 099

$$D^{0} \rightarrow K^{-}\mu^{+}\nu_{\mu}$$

$$D^{0} \rightarrow K^{-}e^{+}\nu_{e}$$

$$D^{+} \rightarrow K^{0}_{S}e^{+}\nu_{e}$$

$$D^{+} \rightarrow K^{0}_{S}\mu^{+}\nu_{\mu}$$

$$\begin{array}{c} \Lambda_c^+ \rightarrow \Lambda^0 \mu^+ \nu_\mu \\ \\ \Lambda_c^+ \rightarrow \Lambda^0 e^+ \nu_e \end{array}$$

$$\begin{split} D^0 &\to K^- \mu^+ \nu_\mu \\ D^0 &\to K^- e^+ \nu_e \\ D^+ &\to K^0_{\mathcal{S}} e^+ \nu_e \end{split}$$

Updated measurements here
New! not included in PDG value

Shape distribution:

Hadronic matrix elements for $c ightarrow s \ell u$ transitions

Bolognani, Reboud, van Dyk, Vos JHEP 09 (2024) 099

- Mostly calculated using LQCD
- Most competitive calculations: $f_{D_s}, f_{D_s^*}, FF(D \to K), FF(\Lambda_c^+ \to \Lambda^0)$
- Dispersive bounds: ensure unitarity, correlate most hadronic parameters through perturbatively calculated quantities χ related to hadronic representation
- BGL-like parametrisation of FF

$$\chi_A^{(J=0)}\Big|_{1\text{pt}} = \frac{M_{D_s}^2 f_{D_s}^2}{(M_{D_s}^2 - Q^2)^2}$$
$$f(q^2) = \frac{1}{\phi_f(z)B(z)} \sum_{k=0}^K a_k^{(f)} p_k^{(f)}(z) \Big|_{z=z(q^2)}, \sum_f \sum_{k=0}^K |a_k^{(f)}|^2 < 1$$

Further discussion on FF approach: Gubernari, (Reboud), van Dyk, Virto 2021 & 2022; Blake et al. 2022; Flynn et al. 2023

Incompatibility between LQCD calculations

Bolognani, Reboud, van Dyk, Vos JHEP 09 (2024) 099 HPQCD+FNAL/MILC: p-value = 4%, +ETM: p-value<0.1%

• ETM does not reproduce experimental results well

• Two scenarios: nominal (HPQCD+FNAL/MILC) and scale factor (all)

Compatibility of current $|V_{cs}|$ with data

Bolognani, Reboud, van Dyk, Vos JHEP 09 (2024) 099

- Results for nominal scenario
- Fixed value of $|V_{cs}| = 0.975$ from PDG
- Theory only: calculating the predictions for the branching ratios using the central values of the theoretical determinations
- SM model: fit to the experimental data allowing the theory determinations to vary within their uncertainties

Extraction of $|V_{cs}|$

Bolognani, Reboud, van Dyk, Vos JHEP 09 (2024) 099

 2.7σ away from PDG

scaled: $|V_{cs}| = 0.963 \pm 0.005$

 1.5σ away from PDG

Unitarity

$2^{ m nd} \ { m row}: \sum V_{cD} ^2$	$2^{ m nd} \; { m column}: \;\; \sum \;\; V_{Us} ^2$
$D{=}d,s,b$	$U{=}u{,}c{,}t$

	PDG	nominal	scale factor
$ V_{cs} $ 2^{nd} row	0.975 ± 0.006 $1.00 \pm 0.014 \ (0.08 \sigma)$	0.957 ± 0.003 $0.966 \pm 0.008 \ (4.3 \sigma)$	0.963 ± 0.005 $0.978 \pm 0.012 \ (1.9 \sigma)$
2^{nd} column	$1.00\pm 0.012~(0.22\sigma)$	$0.968 \pm 0.006~(5.2\sigma)$	$0.979 \pm 0.010~(2.0\sigma)$

Available space for BSM physics

Bolognani, Reboud, van Dyk, Vos JHEP 09 (2024) 099

Camille Normand & Carolina Bolognani

Conclusions of analysis

- Dispersive bounds connecting hadronic parameters
- Tensions between D → K f.f. determinations
- Extraction of $|V_{cs}| = 0.957 \pm 0.003$ deviating by 2.7σ from PDG due to Sirlin factor + f.f. factor input
- Preference for CKM model w.r.t. WET model is barely worth mentioning ⇒ cannot distinguish

Scenario	Fit model M	χ^2	d.o.f.	p value $[%]$	$\ln P(D,M)$
nominal	SM	60.9	51	16.1	240.3 ± 0.3
	CKM	51.7	50	40.9	251.7 ± 0.3
	WET	48.4	42	23.1	250.3 ± 0.3
scale factor	SM	67.4	51	6.2	232.8 ± 0.3
	CKM	48.2	50	54.5	249.1 ± 0.3
	WET	46.6	42	29.0	248.7 ± 0.3

Bolognani, Reboud, van Dyk, Vos JHEP 09 (2024) 099

15 / 31

Table of Contents

2 Global analysis

(3) Measurement of the branching fraction of $D_s
ightarrow \ell^\pm
u$

4 Decay properties of $D o K \ell \nu$

Data sets

- BESIII: hermetic detector dedicated to τ and charm physics located at BEPCII (Beijing).
- Centre-of-mass energy ranging from 2 to 4.7 GeV.

Figure: Credits: Alberto Bortone

Data sets and "double-tag" method

- Based on 7.33 fb⁻¹ of e^+e^- collisions recorded at $E_{cm} \in [4.128, 4.226]$ GeV.
- At this $E_{\rm cm}$, $D_{\rm s}^{\pm}$ mesons are produced through $e^+e^- \rightarrow D_{\rm s}^+D_{\rm s}^{*-}$.
- Double tag method used to cancel the luminosity and the $e^+e^- \rightarrow D_s^+ D_s^{*-}$ cross-section dependence:
 - ▶ Reconstruct D_s^- through several *tag* modes, e.g. $K\pi\pi$, $KK\pi\pi^{0}$ ¹: N_{ST} , single tag.
 - Among these candidates, reconstruct $D_s^{*-} \rightarrow D_s^- \gamma/\pi^0$ and the decay of interest $D_{\rm s}^+ \rightarrow \mu^+ \nu$: $N_{\rm DT}$, double tag.
 - Branching fraction computed as

$$N_{\rm DT} = N_{\rm ST} \times \epsilon_{\gamma/\pi^0 \mu\nu} \times \mathcal{B}(D_s^- \to \mu\nu) \tag{1}$$

where

$$\epsilon_{\gamma/\pi^0\mu\nu} \equiv \sum_{\rm tag modes} (N_{\rm ST}^i/N_{\rm ST}) \times (\epsilon_{\rm DT}^i/\epsilon_{\rm ST}^i)$$
(2)

Lag

¹Complete list of 16 modes in the back-ups

Camille Normand & Carolina Bolognani

 $c \rightarrow s l \nu$

Analysis steps (That I will skip)

- Selections of the single tag modes $\epsilon_{\rm ST} \in [9,52]\%$
- Determination of the number of single tag events with a fit to the (mode-dependent) invariant mass of the final state particles $N_{ST}^i \in [5k, 42k]$
- Selections of the double tag candidates $\epsilon_{\gamma/\pi^0\mu\nu}\in$ [50, 66]%
- Estimation of systematic uncertainties

Extraction of $N_{\rm DT}$

• Fit to the missing mass defined as

$$M_{\rm miss}^2 = (E_{cm} - E_{tag} - E_{\gamma/\pi^0} - E_{\mu})^2 / c^4 - (-\vec{p}_{tag} - \vec{p}_{\gamma/\pi^0} - \vec{p}_{\mu})^2 / c^2$$
(3)

- Two types of signal events are modelled separately.
 - Matched: the γ/π^0 is properly reconstructed. Peaking in the missing mass.
 - Unmatched: it is not.
 Not peaking, but still contains signal candidates.
- Two dominant background components
 - non-D_s⁻ background (wrongly single-tagged D_s⁻) extracted from inclusive MC samples.
 - \blacktriangleright real- D_s^- background dominated by $D_s^- \to \tau \nu, \tau \to \pi \nu$

20/31

Branching fraction measurement

• Signal is modeled from MC with a (free) Gaussian to account for data-MC discrepancies.

• $N_{\rm DT} = 2514.5 \pm 51.6$ events gives

 $\mathcal{B}(D_s^{\pm} o \mu^{\pm}
u) = (0.5294 \pm 0.0108)\%$

• The partial decay width is given by

$$\Gamma_{D_s^{\pm} \to \mu\nu} = \frac{G_F^2}{8\pi} |V_{cs}|^2 f_{D_s^{\pm}}^2 m_{\mu}^2 m_{D_s^{\pm}} \left(1 - \frac{m_{\mu}^2}{m_{D_s^{\pm}}^2}\right)^2$$

• With G_F , m_{μ} , $m_{D_s^{\pm}}$ and the D_s^{\pm} lifetime from the PDG,

 $f_{D_s^\pm} imes |V_{cs}| = 241.8 \pm 2.5 \mathrm{(stat)} \pm 2.2 \mathrm{(syst)} \,\mathrm{MeV}$

Table of Contents

Introduction

2 Global analysis

3) Measurement of the branching fraction of $D_s o \ell^\pm
u$

4 Decay properties of $D \to K \ell \nu$

• Based on 7.93 fb⁻¹ of e^+e^- collisions recorded at $E_{\rm cm} = 3.773$ GeV.

• The dominant production mechanism of charged or neutral D mesons is

$$e^+e^-
ightarrow \psi(3770)
ightarrow Dar{D}$$

• The double tag method is applied here again.

Signal yields extraction

 $\bullet\,$ Simultaneous fit in all four channels to the distribution of ${\it U}_{\rm miss}$ defined as

$$U_{\rm miss} = E_{\rm miss} - \vec{p}_{
m miss}$$

• The main background components come from mis-ID'd hadronic or semileptonic decays of *D* mesons.

25/31

• Branching fraction results are (in %)

Channel	This work	Bolognani et al.
$D^0 o K^- e u$	$3.521 \pm 0.009 \pm 0.016$	3.525 ± 0.023
$D^0 o K^- \mu u_\mu$	$3.419 \pm 0.011 \pm 0.016$	$\textbf{3.41} \pm \textbf{0.04}$
$D^+ o ar{K}^0 e u_e$	$8.864 \pm 0.039 \pm 0.082$	8.72 ± 0.09
$D^+ o ar{K}^0 \mu u_\mu$	$8.665 \pm 0.046 \pm 0.084$	$8.72 \pm 0.07 \pm 0.18$

• This shows that the tension presented before with the "theory only" prediction persists with this new measurement.

Bolognani, Reboud, van Dyk, Vos JHEP 09 (2024) 099

• The $U_{\rm miss}$ fit is reproduced in bins of the di-lepton invariant mass to extract partial decay rates $\Delta\Gamma^{\rm meas.}$ to extract $N_{\rm DT}^i$, and compute the efficiency and bin-migration corrected signal yields $N_{\rm prod}^i$

$q^2(\text{GeV}^2/c^4)$	$N_{ m DT}^i$	$N_{ m prod}^i$	$\Delta\Gamma(\mathrm{ns}^{-1})$
(0.00, 0.10)	21356 ± 160	29580 ± 236	9.100 ± 0.073
(0.10, 0.20)	19982 ± 154	28248 ± 247	8.690 ± 0.076
(0.20, 0.30)	18675 ± 149	26707 ± 249	8.216 ± 0.076
	:		
(1.40, 1.50)	3499 ± 63	5627 ± 118	1.731 ± 0.036
(1.50, 1.60)	2521 ± 53	4356 ± 105	1.340 ± 0.032
(1.60, 1.70)	1418 ± 41	2621 ± 86	0.806 ± 0.026
(1.70, 1.88)	554 ± 26	1378 ± 72	0.424 ± 0.022

Form factors parameterisation

• The form factors are extracted through a least- χ^2 fit, taking into account the statistical and systematic covariances between the various q^2 bins,

$$\chi^2 = \sum_{i,j}^{N_{\rm bins}} \Delta \Gamma_j C_{ij} \Delta \Gamma_i$$

with $\Delta\Gamma_i = \Delta\Gamma^{\text{meas.}} - \Delta\Gamma^{\text{pred.}}$ the difference between measured and predicted partial decay rates, and $\Delta\Gamma^{\text{pred.}}$ depends on the form factors.

• Form-factor parametrised with a two (one) parameter z-expansion for f_+ (f_0)

$$\begin{array}{lcl} f^{K}_{+}(q^{2}) & = & \displaystyle \frac{1}{P(q^{2})\Phi(q^{2})} \frac{f^{K}_{+}(0)P(0)\Phi(0)}{1+r_{1}(t_{0})z(0,t_{0})} \times (1+r_{1}(t_{0})[z(q^{2},t_{0})]) \\ f^{K}_{0}(q^{2}) & = & \displaystyle \frac{1}{P(q^{2})\Phi(q^{2})} f^{K}_{0}(0)P(0)\Phi(0) \end{array}$$

Form factors parameterisation

• With $f_+^K(0) = f_0^K(0)$, there are **two free parameters:**

$$r_1(t_0)$$
 and $V_{cs} \times f_+^K(0)$

• Results from the combined fits are

Simultaneous to all $D ightarrow K \ell u$
$0.7171 \pm 0.0011 \pm 0.0013$
$-2.28 \pm 0.04 \pm 0.02$
0.44
60.9/70

• Good fit quality from the two parameters *z*-expansion.

Comparison with LQCD

• Comparison with LQCD results from the FermiLab/MILC collaborations²

- Fairly good agreement !
- All information to reproduce the least- χ^2 fits (and to do your own !) are available in the paper.

Camille Normand & Carolina Bolognani

²Fermilab Lattice, MILC collaboration, Phys. Rev. D 107 (2023) 094516, [hep-lat/2212.12648].

Experimental conclusion - Discussion

- Single-measurement determination of $V_{cs} \times f_{D_s}$ is reaching the 2% level precision.
- Increased statistics allow for fully experimental determination of the form factors in various $c \rightarrow s l \nu$ channels.
 - How to provide results in a way that would be the most useful to theorists/long-term reinterpretation ?
 - Possibly an unbinned measurement ? In what form ?
- Concerning excited strange meson states, BESIII can also provide some interesting studies measuring the contributions from S- and P-waves in e.g. D → K*ℓν.
 - How could these results interplay with theoretical predictions/provide inputs for theoretical predictions (i.e. data-driven determination) ?
 - Again, how to provide results in a way that would be the most useful to theorists/long-term reinterpretation ?
 - What's your favourite channel ?
 - Shapes for parameterising S- and P-waves ?

Theory inputs

Bolognani, Reboud, van Dyk, Vos JHEP 09 (2024) 099

$\Lambda_c \to \Lambda$ FFs theory

Bolognani, Reboud, van Dyk, Vos JHEP 09 (2024) 099

$$\begin{split} \langle \Lambda(k,s_{\Lambda}) | \bar{s} \, \tau^{\mu} \, c \, | \Lambda_{c}(p,s_{\Lambda}) \rangle &= \bar{u}_{\Lambda}(k,s_{\Lambda}) \Big[f_{\Lambda_{c}}^{\lambda_{L}} - m_{\Lambda} q^{2} \right) (m_{\Lambda_{c}} - m_{\Lambda}) \frac{q^{2}}{q^{2}} \\ &+ f_{\Lambda_{c}}^{\lambda_{L}-\Lambda}(q^{2}) \frac{m_{\Lambda_{c}} + m_{\Lambda}}{m_{+}} \left(p^{\mu} + k^{\mu} - (m_{\Lambda_{c}}^{2} - m_{\Lambda}^{2}) \frac{q^{\mu}}{q^{2}} \right) \\ &+ f_{\Lambda_{c}}^{\lambda_{L}-\Lambda}(q^{2}) \left(\tau^{\mu} - \frac{2m_{\Lambda}}{m_{+}} p^{\mu} - \frac{2m_{\Lambda}}{m_{+}} p^{\mu} \right) \Big] u_{\Lambda_{c}}(p,s_{\Lambda_{c}}) , \\ \langle \Lambda(k,s_{\Lambda}) | \bar{s} \, \tau^{\mu} \gamma_{5} \, c \, | \Lambda_{c}(p,s_{\Lambda_{c}}) \rangle &= -\bar{u}_{\Lambda}(k,s_{\Lambda}) \, \gamma_{5} \Big[f_{\Lambda_{c}}^{\lambda_{L}-\Lambda}(q^{2}) \left(m_{\Lambda_{c}} + m_{\Lambda}) \frac{q^{\mu}}{q^{2}} \\ &+ f_{\Lambda_{c}}^{\lambda_{L}-\Lambda}(q^{2}) \frac{m_{\Lambda}}{m_{-}} - \frac{m_{\Lambda}}{m_{+}} p^{\mu} + k^{\mu} - (m_{\Lambda_{c}}^{2} - m_{\Lambda}^{2}) \frac{q^{\mu}}{q^{2}} \Big] \\ &+ f_{\Lambda_{c}}^{\lambda_{L}-\Lambda}(q^{2}) \left(m_{\Lambda} + \frac{m_{\Lambda}}{m_{+}} p^{\mu} + k^{\mu} - (m_{\Lambda_{c}}^{2} - m_{\Lambda}^{2}) \frac{q^{\mu}}{q^{2}} \Big) \\ \langle \Lambda(k,s_{\Lambda}) | \bar{s} \, i \sigma^{\mu\nu} q_{\nu} \, b \, | \Lambda_{c}(p,s_{\Lambda_{c}}) \rangle &= -\bar{u}_{\Lambda}(k,s_{\Lambda}) \Big[f_{\Lambda_{c}}^{\lambda_{L}-\Lambda}(q^{2}) \frac{q}{s_{+}} \left(p^{\mu} + k^{\mu} - (m_{\Lambda_{c}}^{2} - m_{\Lambda}^{2}) \frac{q^{\mu}}{q^{2}} \right) \\ &+ f_{\Lambda_{c}}^{\lambda_{L}-\Lambda}(q^{2}) \left(m_{\Lambda_{c}} + m_{\Lambda}) \left(\tau^{\mu} - \frac{2m_{\Lambda}}{s_{-}} p^{\mu} - \frac{2m_{\Lambda_{c}}}{s_{+}} k^{\mu} \right) \Big] u_{\Lambda_{c}}(p,s_{\Lambda_{c}}) , \\ \langle \Lambda(k,s_{\Lambda}) | \, \bar{s} \, i \sigma^{\mu\nu} q_{\nu} \gamma_{5} \, c \, | \Lambda_{c}(p,s_{\Lambda_{c}}) \rangle &= -\bar{u}_{\Lambda}(k,s_{\Lambda}) \gamma_{5} \Big[f_{\Lambda_{c}}^{\lambda_{L}-\Lambda}(q^{2}) \frac{q^{\mu}}{s_{-}} \left(p^{\mu} + k^{\mu} - (m_{\Lambda_{c}}^{2} - m_{\Lambda}^{2}) \frac{q^{\mu}}{q^{2}} \right) \\ &+ f_{\Lambda_{c}}^{\lambda_{c}-\Lambda}(q^{2}) \langle m_{\Lambda_{c}} - m_{\Lambda} \rangle \left(\gamma^{\mu} - \frac{2m_{\Lambda}}{s_{+}} p^{\mu} - \frac{2m_{\Lambda_{c}}}{s_{+}} k^{\mu} \right) \Big] u_{\Lambda_{c}}(p,s_{\Lambda_{c}}) , \\ \langle \Lambda(k,s_{\Lambda}) | \, \bar{s} \, i \sigma^{\mu} q_{-} \gamma_{5} \, c \, | \Lambda_{c}(p,s_{\Lambda_{c}}) \rangle \rangle = -\bar{u}_{\Lambda}(k,s_{\Lambda}) \gamma_{5} \Big[f_{\Lambda_{c}}^{\lambda_{c}-\Lambda}(q^{2}) \frac{q^{2}}{s_{-}} \left(p^{\mu} + m^{\mu} - (m_{\Lambda_{c}}^{2} - m_{\Lambda}^{2}) \frac{q^{\mu}}{q^{2}} \right) \\ &+ f_{\Lambda_{c}}^{\lambda_{c}-\Lambda}(q^{2}) \left(m_{\Lambda_{c}} - m_{\Lambda} \right) \left(\gamma^{\mu} - \frac{2m_{\Lambda_{c}}}{s_{-}} p^{\mu} - \frac{2m_{\Lambda_{c}}}{s_{-}} k^{\mu} \right) \Big] \Big] u_{\Lambda_{c}}(p,s_{\Lambda_{c}}) , \end{split}$$

Heavy Quark limit \Rightarrow expansion in α_s/π , Λ_{OCD}/m_c

Large Energy limit \Rightarrow expansion in α_s/π , Λ_{had}/m_c , $\Lambda_{had}/E_{\Lambda}$

$$\begin{split} & \frac{\xi}{m_{\Lambda_{\lambda}}} = f_{Y,1}(0) = f_{V,\perp}(0) = f_{V,0}(0) = f_{A,1}(0) = f_{A,\perp}(0) = f_{A,0}(0) \\ & = f_{T,\perp}(0) = f_{T,0}(0) = f_{T,0,\perp}(0) = f_{T,0,0}(0), \\ & \frac{\xi_1 - \xi_2}{m_{\Lambda_{\lambda}}} = f_{Y,\perp}(q_{\max}^2) = f_{Y,0}(q_{\max}^2) = f_{A,1}(q_{\max}^2) = f_{T,0}(q_{\max}^2) = f_{T,0}(q_{\max}^2), \\ & \frac{\xi_1 + \xi_2}{m_{\Lambda_{\lambda}}} = f_{A,\perp}(q_{\max}^2) = f_{A,0}(q_{\max}^2) = f_{T,0,1}(q_{\max}^2) = f_{T,0,1}(q_{\max}^2) = f_{T,0,0}(q_{\max}^2) \end{split}$$

 $\begin{array}{ll} f_{T,\perp}/f_{V,\perp} = 1 \pm 0.35\,, & f_{T,0}/f_{V,0} = 1 \pm 0.35\,, \\ \\ \textbf{lations} & f_{T5,\perp}/f_{A,\perp} = 1 \pm 0.35\,, & f_{T5,0}/f_{A,0} = 1 \pm 0.35\,, \end{array}$

Constraint through relations

Camille Normand & Carolina Bolognani

$\Lambda_c \rightarrow \Lambda$ FFs experimental

 Λ_c → Λ FFs BESIII: arXiv:2306.02624 LQCD: S. Meinel, Phys. Rev. Lett. 118, 082001 (2017).

$D_s \rightarrow \mu \nu \ { m STs}$

• 16 channels

$D_s ightarrow \mu u$ systematics

Uncertainties

Source	Uncertainty (%)
ST yield	0.44
μ tracking	0.24
μ PID	0.19
Transition γ/π^0 reconstruction	1.00
Least $ \Delta E $ selection	0.70
$E_{ m max}^{ m extrafl}$ and $N_{ m ncharged}^{ m extra}$ requirements	0.29
M_2 miss fit	0.72
Quoted BFs	0.34
Contribution from $D_s^+ o \gamma \mu \nu$	0.30
Total	1.61

$D \rightarrow K \ell \nu$ STs

• 12 channels

Camille Normand & Carolina Bolognani

 $c \rightarrow s l \nu$

10th April 2025 6/6