Non-Local Form Factors from Lattice QCD

Chris Sachrajda
University of Southampton

Beyond the Flavour Anomalies 2025
Rome, 9th-11th April 2025

University of

Southampton




1. Introduction

* At this workshop, it is not necessary for me to underline that processes mediated by FCNC, which are rare in the
SM, are a fruitful area for exploring the limits of the SM and in searching for signatures of New Physics.

* In order to compute the full amplitudes for decays suchas B - K77~ and B, — y£ "¢~ using lattice QCD, in
addition to controlling the usual lattice systematic uncertainties (e.g. continuum, finite-volume, heavy-quark mass

extrapolations), we must handle the new difficulties present in the Minkowski — Euclidean space continuation.

* The new difficulties arise because the amplitudes are complex.

* New methods, based on the spectral density approach, have and are being developed to tackle this
problem.

* The methods can be applied, in particular (but not only) to the “charming penguin” contributions.



Introduction (cont.)

* Much of the presentation will be based on:

* “B, — u*u~y decay rates at large g* from lattice QCD”,
R.Frezzotti, G.Gagliardi, V.Lubicz, G.Martinelli, CTS, F.Sanfilippo, S.Simula and N.Tantalo, arXiv:2402.03262

* “Theoretical framework for lattice QCD computations of B - K7~ and B, — y£ "¢~ decay rates,
including contributions from “Charming Penguins”,
R.Frezzotti, G.Gagliardi, V.Lubicz, G.Martinelli, CTS, F.Sanfilippo, S.Simula and L.Silvestrini (in preparation)

which in turn are based on papers including:

* HLT - “Extraction of spectral densities from lattice correlators”,
M.Hansen, A.Lupo and N.Tantalo, arXiv:1003.06476

* SFR - “Spectral function determination of complex electroweak amplitudes with lattice QCD”,
R.Frezzotti, G.Gagliardi, V.Lubicz, F.Sanfilippo, S.Simula and N.Tantalo, arXiv:2402.03262
SFR = Spectral Function Reconstruction.

| warmly thank my collaborators from whom I learned much of the material presented in this talk.

3



Outline

1. Introduction.

2. Motivation for introducing the spectral density approach.
3.The B, = yutu~ decay rate at large g~.

4. Towards the evaluation of the charming penguin contributions.
5. Other contributions requiring spectral density methods.

6. Renormalisation

7. Conclusions.

3. Giuseppe Gagliardi report on the status of the exploratory numerical calculations.



The Effective b — s Hamiltonian

HP2 = 20/2GpV,V [2 C,Of + 26: C0; - Z;‘ i co:
1=3 =7 -

i=1,2

¢ _ (= . ¢ _ (% : 1
Oy = (57" Ppc) (Cj}/,uPLbi) O, =@y Pro) (C 7MPLb) (PL’R — 5 (1 F ;/5))

O;_¢ are QCD Penguins with small Wilson Coefficients

m m
0, = b (56M F,, Ppb) 0, = EsMp (56" G, Pgb) F, and. G,, are the QED and
e 4na,, QCD Field Strength Tensors
Oy = (Sy* Prb) (fiy, ) Oy9 = Gy" Pb) (iy, v u)
The amplitude is given by: = (v, ) (P = (p) | = Z25° | BAP) Yocp+qep
a,. & f _
= — e— Vi, VE G;f Z C Hl.”” Ly, + Cm(H Ly, 2 LX”py> The H** and L are hadronic and
\/zﬂ i—1 - leptonic tensors respectively




2. Motivation for introducing the spectral density

* For illustration, consider the contribution from the operators OI(C) and 02(6) inthe B - K£Z ¢~ decay.

(01(62) implies either of the two current-current operators.)

() = i [ dteeit® < K(@oITL () OS30IBO) >=i [ et < K@olTit . §) 0h0)IB(0) >

— OO

* For t < 0, the states propagating between 7 and 0, have B = 1 and three momentum — ¢ . They therefore have
energies > my and this contribution is real. (Diagram (a))

* Fort > 0 on the other hand, the states propagating between 0 and # have B = 0 (and S = 1) and three momentum
0 and therefore can have energies < my and therefore a complex contribution. (Diagram (b))

6



Motivation for introducing the spectral density (cont)

* Fort > 0, the correlation function is given by

L Ty . . c - dFE
Cly(t.0) = [ e < K(~0)| 78 (.7) OHO)IB(T) > =

—1( B — EK -
27T6 ( )tp(b)(EQ)

where

Pl (B, q) = < K(—q)|J4,(0) (2m)*®)(P) (27)6(H — E) 01%)(0)|B(0) >

« Good news: i) the spectral density p(’;?) is independent of ¢ and is the same in Minkowski and Euclidean space;

ii) the expression for the correlation function in Euclidean space is the same as above with e 75207 — o =(E=Ep)1

iii) the correlation function can be computed in Euclidean space.

* Less good news: The inverse problem of determining the spectral density from the Laplace transform is delicate.
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Motivation for introducing the spectral density (cont.)

B=0,5=1
B(ﬁ) —(O-=-====- I —— K(pk)
04 (0) T, T)
* The hadronic factor in the amplitude from time ordering (b) is: (b)
[ [T [dE . *dE Pyt q)
H,LL ( )_’L/ dt GZQOt C,u ( —’) :7// dt e ’L(E' E e — qO)tIO ( )_ . (b) ]
(b)\4 0 (b) ) 9 (b) 21_1}1(1) Ty s p—

(E* < myis the threshold energy)

* The HLT method is based on the expansion of the “smearing kernel” in terms of exponentials at finite ¢ :

, J.Barata and K.Fredenhagen, (1990)

= Z gn(mBa G)e—anE so that
E—mp—1€
N . N
. > dE (m e~ abxm COK (an, q)
(@) = —— g abm B¢ b),Eucl \ @7 4
) (9) _213%219”(7”3’6)/* TR0 Z: o

+ In principle at least, the g, (mp, €) can be determined and the C,, ,j(an, ¢’) can be computed so that H (b)(q) can

be obtained. Significant practical issues remain.
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3. The B, - u™u~y Decay Rate at Large g°

R.Frezzotti, G.Gagliardi, V.Lubicz, G.Martinelli, CTS, F.Sanfilippo, S.Simula, N.Tantalo, arXiv:2402.03262

* We use this interesting FCNC process to illustrate the elements which we are able to compute without the spectral
density approach and to highlight those which require HLT/SFR.

* Preview: The decay rate is dominated by the local form factor Fy, but the error estimated from the charming
penguin contributions is significant.

2F
X, = — E, is the energy of the real photon in rest frame of the B, meson.
mBS
4m/f
q2=m§(1—x},), ngySI
. ml%S

« LHCb: B(B, = 1" 1™) | /2 o4 9 Gey < 20X 1077, arXiv:2108.09283/4



From the May/June 2024 issue of the Cern Courier

el B & N W

LHCD targets rare radiative decay

Rareradiative b-hadron decaysare pow-
erful probes of the Standard Model (SM)
sensitive to small deviations caused by
potential new physics in virtual loops.
One such processisthedecayof Bi—n‘y
v. The dimuon decay of the B meson is
<nown to be extremely rare and has been
measured with unprecedented precision
oy LHCb and CMS. While performing
nis measurement, LHCb also studied
“he B{—u'u"y decay, partially recon-

Yy ™ (|

dackground component of the B — u'p-
process and set the first upper limit on
itsbranching fraction t0 2.0x107% at 95%
CL (red arrow in figure 1). However, this
search was limited to the high-dimuon-
mass region, whereas several theoreti-
cal extensions of the SM could manifest

x5 109 —— LHCb diruct (5.4 o)
A —=— LHCY indirect (9 =1,
l> LHCb BB sir\glo";)o:;c :
) 10-7 £ multipole
g ER SCET
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= eorrrs N
& o] ]
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O
= -10 —
< 10 = J
+d
o v
o
Z 10-12+ I |
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- 2 5.4
m2(u ) [Gev?/c?)

Fig. 1. 95% confidence limits on differential branching fractions

forBi—nu'nyinintervals of dimuon mass squared (g°).

The shaded boxes illustrate SM predictions for the process,

according todifferent calculations.

QIO a2anag

themselves in lower regions of the
dimuon-mass spectrum. Reconstruct-
ing the photon is therefore essential to
explore the spectrum thoroughly and
probe a wide range of physics scenarios.

The LHCb collaboration now reports
the first search for the B — u"u"y decay
with a reconstructed photon, exploring
the full dimuon mass spectrum. Photon
reconstruction poses additional experi-
mental challenges, such asdegrading the
mass resolution of the B candidate and
introducing additional background con-
tributions. To cope with this ambitious
search, machine-learning algorithms
and new variables have been specifically
designed with the aim of discriminating
the signal among background processes
with similar signatures. The analysis >



Reminder of the Effective b — s Hamiltonian

HP2 = 20/2GpV,V [2 C,Of + 26: C0; - i;‘ i co:
1=3 =7 -

i=1,2

¢ _ (= - ¢ _ (% - 1
Oy = ;7" Pyc;) (C;y, PLb) O, =@y Prc) (Cy,PLb) (PL,R = 5 (1 F ;/5))

O;_¢ are QCD Penguins with small Wilson Coefficients

m m
0, = b (56M F,, Ppb) 0, = EsMp (56" G, Pgb) F, and. G,, are the QED and
e 4na,, QCD Field Strength Tensors
Oy = (Sy* Prb) (fiy, ) Oy9 = Gy" Pb) (iy, v u)
The amplitude is given by: = (v, ) (P = (p) | = Z25° | BAP) Yocp+qep
. & f _
— —¢ Vi, VE G;f Z C Hl.”” Ly, + Cl()(H Ly, 2 LX”py> The H** and L are hadronic and
\/zﬂ i—1 - leptonic tensors respectively
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Contribution from “Semileptonic” Operators- Fy, and F,

HY -0 = Hsp. 0 = | 'y (O1T[57* PLbO) )] 1B(0)

F.(q” Fo(g?
= (g (k- ) — k) L) e g TV
2mpg

2mB

\) \)

* These form factors can be computed from Euclidean correlation functions (at accessible values of m,).

* We choose p = 0 and k = (0,0,k,) and use twisted boundary conditions for k..

i .
. With such a choice of kinematics: ETa (H‘l,z(p, k) — H‘z,l(p, k)) — Fy, (xy) and é (H jl(p, k) + sz(p, k)) — F A(xy) .
y

<
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The formfactors F7, and F,

* In a similar way the following contributions can be computed:

v 2mb 4 S D
Hp-0) = 2 | a0 1[50 Peb ©) I )] 1B(0))
q

my,Fra(q 2) my,Fry(q 2)

= —i(g" (k- q) — g"k") - e" K, 4,
q* ' q*

* Here, for now, we are isolating the contribution in which it is the virtual photon which is emitted from O .

i .
. With our choice of kinematics: oYa (H}‘z,(p, k) — H%‘l,(p, k)) — Fpy(x,) and i (H jl(p, k) + sz(p, k)) — Fpyx,) .

Z Y

* There is also the useful kinematical constraint that Fir (1) = Fr4(1).
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Numerical Resultsfor Fy, , F, , Fpy, Fra

* These four form-factors can be computed using “standard” methods at the available heavy quark masses.

* We use gauge field configurations generated by the European Twisted Mass Collaboration (ETMC), with
the Iwasaki gluon action and Ny = 2 + 1 + 1 flavours of Wilson-Clover light quarks at maximal twist (four

ensemble with 0.057 fm < a < 0.091 fm).

* We perform the calculations at § values of the heavy quark mass corresponding to

T 115.2.25
—=1,1.5,2,2.5 and 3,

M

and at 4 values ofxy = 0.1, 0.2, 0.3, 0.4.

* m.is determined from m, = 2.984(4) GeV.

* Much effort is then devoted to the m;, - m, and a — 0 limit, guided by the heavy-quark scaling laws and
models for possible resonant contributions.
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* The continuum extrapolation is
performed separately at each value of

my and x, .

* The illustration plots are for
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Extrapolation of the results tomy = 5.367 GeV

 Having performed the continuum extrapolation, we need to extrapolate the results to the physical value of mj .

* In the heavy-quark and large E, limits, scaling laws were derived up to O(1/ my ,1/E,):

M.Beneke and J.Rohrwild, arXiv:1110.3228; M. Beneke, C. Bobeth and Y.-M. Wang, arXiv:2008.12494
Py | g, | (R(Ey’”) 1 qpl 1 ) . Frvma | g, | (RT(E}”'M) l_xy - 14 1 )
- )

f H X},

A)

fH X},

A)

- ol my ) + = - E(x, myy) * |
(i) P myx, T g my, Ap(i0) U T g x, g, my

A)

* R(E,. 1), Ri(E,, 1) are radiative correction factors = 1 + O(«,); A5 is the first inverse moment of the B,-meson

LCDA, &(x,, mHS) are power corrections.
* Photon emission from the b-quark suppressed relative to the emission from the s-quark.
* Tensor form-factors are presented in the MS scheme at 4 = 5 GeV.

* However, useful though these scaling laws are, they apply at large £, (as well as large m,,), are there are significant
corrections at our lightest values of m;, and smaller values of E, . We therefore us an ansatz which includes the
above scaling laws at large E, as well as VDM behaviour.
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Extrapolation of the results tomy = 5.367 GeV
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Comparison with Previous Determinations of the Form Factors

This work === Ref. |3] ~—
Ref. 4] == Ref. |5

L
0.4 | | f | !
0.35 | 0.6 .
_ 03 : <o |
w02 I < :
0.15 - ' 0.3+ !
0.1 ! ! : :
005+ - 015 ;
1.4 ‘ | ‘ | o 121 :
1.2 - ' 11 '

L 08}

s 82 £ 06|

04l ! | 04

02| : : 09!

0

0.06 0.1 015 0.2 025 03 035 04 045 0.5 0.06 0.1 0.15 02 025 03 035 04 045 0.5
T~ T~

* Ref.[3] = T.Janowski, B.Pullin and R.Zwicky, arXiv:2106.13616, LCSR

* Ref.[4]= A.Kozachuk, D.Melikhov and N.Nikitin, arXiv:1712.07926, relativistic dispersion relations

* Ref.[5]= D.Guadagnoli, C.Normand, S.Simula and L.Vittorio, arXiv:2303.02174, VMD+quark model+lattice at charm

* In general our results for the form factors differ significantly from earlier estimates.



Other Contributions - F;

H;i”(p, k) = iJ dty e PRy (] T[J;(O) Jg‘m(y)] |B(0) ) = — et*re k, pa—T where
My,

k” |
J% = —1Z:(u) s56"’b — .
mp

A)

* The difficulty arises from the first diagram above when 7, > 0.

* In that case we potentially have a hadronic intermediate state (e.g. an ss 1~ state) with smaller mass than

\/ (p — k)z, leading to an imaginary part and problems with the continuation to Euclidean space.

2
My

2, 2 ~
\/mV+E},+Ey<mBS = x, <1 " ~ ] ;
BS BS

4 2
"K ~0.96.
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F (cont.)

N “dE .
. Forz> Odefine Cy"(¢,k) = (0 |JE, (7, — K) J2(0) | B,(0)) = J py e " p'(EK).
gl g <7
0 . “dE
b . In Euclidean space C¥(t,k) = | — e ™™ p"(E,K).
e 27
* For the amplitude we require:
0 . * dE M(E, Kk
H;i”(mB, k) = iJ dt e C*(t, k) = lim J ps (£, %) — (a) = | k| )
5 0 e~0 Jps 2 E— (mg — w) — i€
xpandin ~ J€)e we obtain

. LXp g i 8n

n=1

H"(mp. k) = lim

e—0

o0 AdE Uv E,k N
J ps (.5 — = lim E g, (mg — w, €) C*(an, k)
pe 2 E— (mp—w) —ie e—0 =

* Now we need to see how well we can make this work.
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F (cont.)

Determining the g, requires a balance between the systematic error due to the approximation of 1/(E — E’'— ie) by a
finite number of exponentials (in which the coefficients are generally large with alternating signs) and the statistical errors

in the correlation functions C(an, K).

We have computed F'; at all four values of x,, at three of the five values of my, (m;,/m, = 1,1.5,2.5) and on two of the

gauge-field ensembles (@ = 0.0796(1) fm and 0.0569(1) fm).

) F._ only gives a very small contribution to the rate and is therefore not needed with great precision.
1) The spectral density method is computationally expensive.

An extrapolation in € is required, as well as those in a and m,, .

Resulting error is O(100%) but F' << Fry, Fr, . No clear x, dependence is observed in our data and we quote:

Re F;(xy) = —0.019(19) and Im F;(x},) = 0.018(18).
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F?.- Ilustrative Plots

0.01 Ty =0.1 myp=me, xy=0.1, E=3GeV, ¢=1.4 GeV
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Other Contributions - Charming Penguins

, — C
s 01,03

» Of the contributions we have not computed directly , the most significant one at large g* is expected to be that

from the operators Oy , (charming penguins) and we are aiming to use the spectral density reconstruction method
to overcome this.

* In the meantime we followed previous ideas and estimate the contribution based on VMD inserting all cc
resonances from the J/¥ to the W¥(4660) . It can be viewed as a shiftin Cy — Cgeff(qz) = Cy + AC9(q2) :

Or C s myly B(V = p™u™)
ACy(q) =———(Cr+ =) D lkyle® ——
A 3 > q- — mi; + imyl’y,

* ky and &y, parametrise the deviation from the factorisation approximation (in which 6y, = k,, — 1 = 0). We allow 0o,
to vary over (0,2r7) and | ky,/| to vary in the range 1.75 = 0.75 .
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Branching Fractions

1e-09 ; ‘ -
16‘08_ | : q? > (4.9 GeV)?
1e-09 - _E le-10 -
16—10 / f 45\ |
: ; le-11+
< . B - T ;
T le-11- Na) |
9 _— BT | = lo-12 W = INT —
le-12 - INT = | | W = INT no penguins —
7 no penguins — ] le-13 | W = SD—
le-13 - 5D — ; W = SD no penguins —
SD no penguins =
le-14 | | | | | * le-14 5 | p— | | | *
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Loy CC%Ut

* Structure Dependent (SD) contribution dominated by Fj, .

* The error from the charming penguins increases with x, (at x, = 0.4 it is about 30 % ).

* Our Result - B (0.166) = 6.9(9) x 1071, LHCb - B¢(0.166) < 2 x 1077



Comparisons

Le-08 ¢
1e-09 |
=0
D 1e-10
)
~ 1ol
: This work =—
c% le-12 FF from Ref. [4] =
Q 9]
le13 | FF from Ret. _3_
FF from Ref. |5
le-14 ' ' ' ' ' ' ‘
0.05 0.1 0.15 0.2 0.25 0.3 0.35
yeut
Y

Ref.[3] = T.Janowski, B.Pullin and R.Zwicky, arXiv:2106.13616, LCSR

Ref.[4]= A.Kozachuk, D.Melikhov and N.Nikitin, arXiv:1712.07926,

relativistic dispersion relations

Ref.[5]= D.Guadagnoli, C.Normand, S.Simula and L.Vittorio,
arXiv:2303.02174, VMD+quark model+lattice at charm

Discrepancy persists since rate dominated by F,

0.4

5 100° gr—— 7y T
—— LHCb direct (5.4 ')
"; LHCb —e— LHCb indirect (9 fo™")
—7 e [ Single pole
8 10 Preliminary &Y Multipole
= -— - SCET
S Jy [ LCSR
&~ = w(2S) ELQCD + HQET
JIFL ] F— r
3. 1 0—9 -? AN \
L |
= 10| A e £t
5 107 F
10_1 1 p— ANANAARAAARRRRANARANAAAARAAAAAANNNNNNNNN
10—12 E‘ 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I | 1 1 1 I 1 1 1 ]
0 5 10 15 20 25 30
g2 [GeV?/c4]

* New LHCb update with direct detection of

final state photon. l.Bachiller, La Thuile 2024
LHCDb, 2404.07648

* For g% > 15 GeV? the bound is about an
order of magnitude higher than before.
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4. Towards the evaluation of the charming penguin contributions

C ,y*
C C C Y * C C C C
b 5 5 b oL . b 5 7 b S
0) o\ o4) 019
BO ‘ KO BO ) KO BO ‘ - KO BO ) KO
d d d
(b) (c) ! (d)

* As explained above, the new spectral density reconstruction techniques, described earlier in this talk, give us the

opportunity to evaluate the charming penguin contributions to B — K£*t#~ and B, — yutu™ decays (work in
progress).
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Evaluating the charming penguin contributions (cont.)

For B — yZ7¢~decays, with the B-meson at rest, the hadronic factor in the amplitude is

sy =i [ [ @ [ [ @y 0T 52 0,5) 0w, D)1 B(0) e
where the subscripts y and y* indicate the currents at which the real and virtual photons are emitted.

There are now three operators and so 6 possible time-orderings. The three above are the ones requiring spectral
density methods.

In (@), t;y < 0 < 1, on-shell states with energies E < mjy can propagate between t;;; and 0.

In (b), t;;; < t < 0, on-shell states with energies E; < myg can propagate between fy;, and t. In addition however,

depending on the value of g, on-shell states with energies £, < g" can propagate between ¢ and 0. In this case we
have a double pole:

In (o), t < 1y, < 0, depending on the value of g, on-shell states with energies £ < g" can propagate between tyand O.
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Evaluating the charming penguin contributions (cont.)

* For B, —» y£*¢~ decays, from diagram (b) we can have a double pole:

H™ (7)) = /OO d /OO dEz phY (Ey, By, k)
(b) 2w (Fq — mp. — ie) (E2 + ko — mep. — ie)

* Both factors in the denominator to be expanded in terms of exponentials.

* In the forthcoming paper, we show that in general matrix elements of non-local operators, consisting of n local

operators, can be written as a sum of n! spectral integrals each with n — 1 factors of the form E; — E/ — i€ in the
denominator.

* The £, ,i = 1,---,(n — 1), are integration variables over the spectral region of energies of channel i.

* The E/, are the energies in the i™ channel if energy were conserved at each vertex.

* As seen previously, not all poles lie in the region of integration, so the corresponding ie can be dropped (in

principle at least)
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5. Other contributions requiring spectral density methods

* We have already seen that the form factor F' contributing to the B, — yZ*¢~ decay amplitude required the
spectral density approach. B=0

* Although the diagrams are different (e.g. there is no connected charm-quark loop), the above discussion of the
charming penguin operators 01(62) can be repeated for the chromomagnetic operator Og . For example:

and similarly for B, = yZ+#~ decays.

* Similarly for the QCD penguins O;- O when they are eventually included.

* In general which time orderings require the spectral density approach has to be determined by inspection.
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6. Renormalisation
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* Renormalisation of the operators is necessary, but highly non-trivial, for the numerical evaluation of the decay amplitudes.

* The Wilson coefficients are generally computed perturbatively in the MS scheme, which is purely perturbative and in
which power UV divergences are not present.

* Non-perturbative, regularisation independent, schemes exist, which can be used (and which are being widely used)
in lattice QCD computations (e.g. RI-Mom, RI-SMom, Schrodinger functional). They then require perturbative

matching to the MS scheme to correspond to the known Wilson coefficients.

* A much more significant problem, is the subtraction of the power divergences, which are present in non-perturbative
schemes due to the mixing of the dimension 6-operators 01(62) with operators of lower dimension, e.g. 5y°b or 5b.
* Such divergences appear as inverse powers of the lattice spacing, 1/a’, 1/a?, 1/a, and must be subtracted non-perturbatively.

* The divergences, and hence the subtraction procedures, are scheme dependent.

* In the forthcoming paper we show that the subtractions can be performed for the Twisted Mass formulation of Lattice
Fermions being used in the numerical calculations.
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Renormalisation - Contact Terms

* When evaluating matrix elements there may be additional UV divergence when
two local operators approach each other - contact terms.

?< 0§ >_KT * An example is provided by diagram (a) which contains a logarithmic divergence
. renormalised by subtracting the matrix elements of O, and Oq with suitable
(a) Wilson coefficients.

* However, as we have seen, using SFR we treat the two time orderings separately, and in each case the UV
divergence is quadratic as given by dimensional power counting. The quadratic divergences cancel when the two
contributions are summed, as required by electromagnetic current conservation.

* In the forthcoming paper we show how to separate the renormalisation of UV divergences (including the
cancelation of the power divergences), from the terms which require the SFR/HLT approach.

* Although the details of the separation are process dependent, the approach we follow can be generalised.
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7. Conclusions

* For B, —» y£*¢~ decays, we have computed the local form factors Fy,, F, , Fr, and F;,. The amplitude is

dominated by Fy, .
There are significant discrepancies with earlier estimates of the form factors obtained using other methods.

* We have also used HLT & SFR to compute the form factor F. In spite of the O(100%) error, we confirm that it
gives a negligible contribution to the amplitude.

* As g?is decreased towards the region of charmonium resonances, the uncertainties grow, from 15 % with
qczut = 4.9 GeV to about 30 % for qczut = 4.2 GeV , largely due to the charming penguins for which we have

included a phenomenological parametrisation.

* The priority now is to implement spectral density methods which would allow the evaluation of the charming

penguin contributions, as well as those from the operators O; for B — K¢ ¢~ and B, — y£+¢~decays etc..
Although still in its early stages, this work has begun.

* How to manage the various technical issues optimally will take some effort, but we can confidently expect that
such amplitudes will be computed with increasing precision in the coming years.
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