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A (very) challenging calculation

• We focus on the charming
penguin diagram in the figure.

• We have investigated the
possibility of computing this
diagram on a single Extended
Twisted Mass (ETM) gauge
ensemble (a ≃ 0.08 fm).

• We considered a single heavy quark mass mh = 2mc < mb, and single photon
momentum q ≃ 250 MeV in the decaying meson rest frame.

• A full calculation requires handling both the IR part (through the SFR/HLT
method) and the UV part (renormalization of the relevant matrix elements).

• For now we only performed a proof-of-principles calculation to show that the IR
part (the previously-considered limiting factor) can be controlled.

• However, this is the first time charming penguin diagrams are investigated on
the lattice. 1



The lattice correlator for t > 0 (where SFR/HLT is required)

**PRELIMINARY** results for C̃ν+
1,2 (t, q) = e−EK(ηs)tCν+

1,2 (t, q)
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• In the factorization approximation: Cν+
1,V = 3Cν+

2,V , Cν+
1,2,A = 0.

• We find a very small Cν+
1,A, but Cν+

2,A (purely non-fact.) is sizable.
• No renormalization performed: these are the bare correlators. 2



Sanity check: the lowest intermediate-state energy

• Correlators C̃ν+
1,2 (t, q) are of the form: C̃ν+

1,2 (t, q) =
∑

n
A

ν+(n)
1,2 e−Ent.

• Lowest expected energy E0 is:
E0 = mJ/Ψ + mK (B → Kℓ+ℓ−), E0 = mJ/Ψ + mηs (Bs → ηsℓ+ℓ−)
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From the Euclidean correlators to the amplitude

The charming-penguin contribution to the hadronic part (Hν
1,2(q)) of the

B → Kℓ+ℓ− (or Bs → ηsℓ+ℓ−) amplitude can be written as (q0 is γ∗ energy)

Hν
1,2(q) =

∫ ∞

E−
0

ρν−
1,2(E, q)

E − mB + q0 − iϵ︸ ︷︷ ︸
Hν−

1,2 (q)

+
∫ ∞

E0

dE

2π

ρν+
1,2(E, q)

E − mB − iϵ︸ ︷︷ ︸
Hν+

1,2 (q)

The spectral densities ρ±
1,2 are related to the Euclidean correlators through

Cν−
1,2 (t, q) =

∫ ∞

E−
0

dE

2π
e−E|t|ρν−

1,2(E, q) , C̃ν+
1,2 (t, q) =

∫ ∞

E0

dE

2π
e−Etρν+

1,2(E, q)

• As shown by Chris, only the second term is problematic: the integrand develops
singularities in the integration-range for ε → 0+. In the SFR method∗ one
promotes ε to a non-zero energy scale (which regularizes the singularities). This
defines the smeared amplitude

Hν+
1,2 (q, ε) ≡

∫ ∞

E0

dE

2π

ρν+
1,2(E, q)

E − mB − iϵ

∗ R. Frezzotti, G. Gagliardi, V. Lubicz, F. Sanfilippo, S. Simula, N. Tantalo, arXiv:2306.07228 4



SFR/HLT applied to the charming penguin diagram

It is convenient to organize the calculation in such a way that the (difficult) part
treated with SFR/HLT does not have contact divergencies:

Hν
1,2(q) =

∫ ∞

−∞
dt Cν

1,2(t, q) f(t)︸ ︷︷ ︸
easy-part, contact-log-divergence

+ lim
m→mB(s)

lim
ε→0+

Hν+;3−subs
1,2 (q, m; ε)︸ ︷︷ ︸

handled via SFR/HLT

Hν+;3−subs
1,2 (q, m; ε) =

∫ ∞

E0

dE

2π
ρν+(E, q)K3−subs(E, m; ε) ,

where the three-times-subtracted kernel is given by

K3−subs(E, m; ε) =
1

E − m − iε
+

3
E + m − iε

−
3

E − iε
−

1
E + 2m − iε

We have done the exercise of computing Hν+;3−subs
1,2 (q, m; ε) as a function of m, for

different ε.
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**PRELIMINARY** numerical results

We show, as an example, the results for Bs → ηsℓ+ℓ−.

• The results are shown as a function of m for the Oc
1-contribution.

• ε is taken to be m−dependent: ε(m) = α|m − E0|, for different choices of the
parameter α (at fixed α the difficulty of the spectral reconstruction is basically
m−independent).
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A simple model for ρν+
1 (E, q)

Let’s try to compare our results with a rough model for the spectral density ρν+
1 ,

assuming the factorization approximation (V µ(x) = c̄(x)γµc(x))

ρν+;FA
1 (E, q, mH) = ⟨ηs(−q)|s̄γµb|Bs(0)⟩ × Qc⟨0|Vµ(0) δ(E − H) V ν(0, q)|0⟩

The first term parametrized by local FF f0 and f+

⟨ηs(−q)|s̄γµb(0)|Bs(0)⟩ = f+(q2)
(

pµ
H + pµ

η −
m2

H − m2
ηs

q2 qµ

)
+ f0(q2)

m2
H − m2

ηs

q2 qµ

• f+(q2), f0(q2) directly evaluated on the lattice.

• The cc̄ part modeled as a sum of charmonium resonances (V ) as:

⟨0|Vµ(0) δ(E − H) V ν(0, q⃗)|0⟩ =
∑

V

f2
V m2

V

2EV

(
δν

µ −
1

m2
V

kV µkν
V

)
δ(E − EV )

• EV =
√

m2
V + |q|2. Masses and decay constants taken from PDG for the first

few resonances. We also added to ρν+;FA
1 a perturbative high-energy part

∝ E2. 7



Comparison with the simple model

The comparison between model and lattice data is qualitative. Overall scale (due to
the missing renormalization in our results) adjusted to make model and data agree at
low values of m (turns out to be ≃ 1). Discretization effects are present in the data

(especially relevant at large m).
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No orders-of-magnitude difference between model and lattice data for all m and ε

explored. However, this is only the Oc
1 contribution! 8
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Conclusions

Todo list (Short-term):
• Perform SFR/HLT analysis also for B → Kℓ+ℓ−.

• In the region of m where the spectral density is smooth (away from narrow cc̄

resonances) attempt ε → 0 extrapolation.

Todo list (Long-term):

• Producing phenomenologically relevant results for B → Kℓ+ℓ− requires
performing a series of very demanding calculations, e.g.: computations must be
performed for several heavy-quark masses to extrapolate to physical b quark,
several momenta q must be considered, all contractions of the four-fermion
operators must be included (not only the charming-penguin).

• Non-perturbative renormalization must be performed, and calculations must be
done on at least three gauge ensemble to perform continuum-limit
extrapolation.

Thank you for the attention
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