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What’s in this talk?

Definition of the non-local form factors (Nico)

Methods to calculate non-local form factors 

⟹ light-cone OPE (Nico)

Anomalous cuts (Simon)

Calculation of rescattering effects (Simon)

Parametrizations and unitarity bounds in presence of 

subthreshold and anomalous cuts (Nico)
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Introduction



𝐵 → 𝐾 ∗ ℓ+ℓ− decay amplitude

calculate decay amplitudes precisely to probe the SM 

𝑏 → 𝑠𝜇+𝜇− anomalies: NP or underestimated QCD uncertainties?

𝒜 𝐵 → 𝐾(∗)ℓ+ℓ− = 𝒩 𝐶9𝐿𝑉
𝜇

+ 𝐶10𝐿𝐴
𝜇

 ℱ𝜇
 −

𝐿𝑉
𝜇

𝑞2
𝐶7  ℱ𝑇,𝜇

 + ℋ𝜇
 

 

൝ 

Wilson coefficients, leptonic matrix elements (and constants 𝜶, 𝑽𝑪𝑲𝑴…) 

perturbative objects, small uncertainties
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𝐵 → 𝐾 ∗ ℓ+ℓ− decay amplitude

calculate decay amplitudes precisely to probe the SM 

𝑏 → 𝑠𝜇+𝜇− anomalies: NP or underestimated QCD uncertainties?

𝒜 𝐵 → 𝐾(∗)ℓ+ℓ− = 𝒩 𝐶9𝐿𝑉
𝜇

+ 𝐶10𝐿𝐴
𝜇

 ℱ𝜇
 −

𝐿𝑉
𝜇

𝑞2
𝐶7  ℱ𝑇,𝜇

 + ℋ𝜇
 

local hadronic matrix elements (MEs)

 ℱ𝜇
 = 𝐾 ∗ 𝑂7,9,10

had 𝐵  𝑂7,9,10
had = ( ҧ𝑠 Γ 𝑏)

leading hadronic contributions

non-perturbative QCD objects

⟹ calculate with lattice QCD (or LCSR)

moderate uncertainties 3% − 15% 
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𝐵 → 𝐾 ∗ ℓ+ℓ− decay amplitude

calculate decay amplitudes precisely to probe the SM 

𝑏 → 𝑠𝜇+𝜇− anomalies: NP or underestimated QCD uncertainties?

𝒜 𝐵 → 𝐾(∗)ℓ+ℓ− = 𝒩 𝐶9𝐿𝑉
𝜇

+ 𝐶10𝐿𝐴
𝜇

 ℱ𝜇
 −

𝐿𝑉
𝜇

𝑞2
𝐶7  ℱ𝑇,𝜇

 + ℋ𝜇
 

non-local hadronic MEs

 ℋ𝜇
 = 𝑖 න𝑑4𝑥 𝑒𝑖𝑞⋅𝑥 𝐾 ∗ 𝑇 𝑗𝜇

em(𝑥), 𝑂1,2
𝑐 (0) 𝐵

 𝑂1,2
𝑐 = ҧ𝑠 Γ 𝑏 ҧ𝑐 Γ 𝑐

subleading (?) hadronic contributions

non-perturbative QCD objects

⟹ very hard to calculate

large uncertainties
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Methods to calculate non-local FFs

Parametrize hadronic matrix elements in terms of form factors (FFs) 

 ℋ𝜇 𝑘, 𝑞 = ෍

𝜆

𝒮𝜆 𝑘, 𝑞  ℋ𝜆 𝑞2

Non-perturbative techniques are needed to compute non-local FFs

• lattice QCD ⟹ please wait one more hour

• QCD factorization:

factorize hard and soft contributions 

⟹ double expansion in 1/𝑚𝑏 and 1/𝐸
𝐾 ∗
 

valid for 𝑞2 < 7 GeV2 

How to calculate power corrections? How extend to Λ𝑏 decays?

Is the perturbative treatment of the charm loop reliable close to threshold?

• light-cone operator product expansion (LCOPE) ⟹ see next slide
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Light-cone OPE for non-local FFs

1. Calculate the non-local FFs ℋ𝜆
 using a LCOPE at negative 𝑞2

ℋ𝜆 𝑞2 = 𝐶𝜆(𝑞2)ℱ𝜆 𝑞2 + ሚ𝐶𝜆(𝑞2)𝒱𝜆 𝑞2 + ⋯

2. Extract ℋ𝜆
 at 𝑞2 = 𝑚𝐽/𝜓

2  from 𝐵 → 𝐾 ∗ 𝐽/𝜓 measurements 

3. Interpolate these two results to obtain theoretical predictions 

in the low 𝑞2 (0 < 𝑞2 < 8 GeV2) region ⟹ compare with experimental data 

Need a parametrization to interpolate ℋ𝜆
 ⟹ see end of this talk

light-cone OPE                                𝑞2 = 0      interpolate (exp. data)      𝑞2 = 𝑚𝐽/𝜓
2
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Missing contributions? 

Ciuchini et al. 2022 (also way before) claim that 𝐵 → ഥ𝐷𝐷𝑠 → 𝐾 ∗ ℓ+ℓ− rescattering might 

have a sizable contribution ⟹ 𝑂(20%) at amplitude level

LCOPE contains (implicitly) rescattering effects

partonic calculation does not yield large contribution (LP OPE and NLO 𝛼𝑠)

ℋ𝜆 𝑞2 = 𝐶𝜆(𝑞2)ℱ𝜆 𝑞2 + ሚ𝐶𝜆(𝑞2)𝒱𝜆 𝑞2 + ⋯

𝐶𝜆 is complex valued for any 𝑞2 value due to branch cut in 𝑝2 = 𝑀𝐵
2 as expected

Large quark-hadron duality violation?

Slow convergence of the LCOPE?

Alternative approach ⟹ directly calculate rescattering effects using hadronic methods

Rescattering effects 5

[Asatrian/Greub/Virto 2019]



Anomalous thresholds



Triangle loops in non-local B → K (∗)γ∗ form factors

Triangle loop contributions to non-local form factors:
b s

u, c

b s

d̄ d̄
B K(∗)

π π

K(∗)
B K(∗)

D
(∗)
(s) D

(∗)
(s)

D
(∗)
(s)

Start with u-quark loop and ππ intermediate states:

CKM-suppressed ∼ λ4 compared to c-quark loop ∼ λ2

Input (Form factors, branching ratios, polarization fractions . . . ) well known

Sizable energy gap to next state πω

↪→ cf. various D(∗)
(s) D̄(∗)

(s) for hadronization of charm loop within close proximity

Build dispersive framework
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Analytic structure of form factors

Fundamental principles: analyticity (causality) and unitarity (probability conservation)

Start with analyticity: amplitudes are analytic in all kinematic invariants

Meson masses (q + k)2 = M2
B , k2 = M2

K (∗)

↪→ only defined on-shell

Photon virtuality q2

↪→ can define analytic continuation for arbitrary q2 in the complex plane

Singularities in q2

Poles: (infinitely) narrow states

↪→ q2 = M2
J/ψ ,M

2
ψ(2S)

Thresholds: branch points of γ∗ → {π+π−,DD̄, . . .} cuts

↪→ q2 = {4M2
π , 4M2

D , . . .}
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Dispersion relations

Next up: unitarity of the S-matrix implies unitarity relation (set t = q2)

discMif (t) ≡ lim
ε→0

[
Mif (t + iε)−Mif (t − iε)

]
= i

∑
n

M∗
fn Min

↪→ summing over intermediate states n ∈ {π+π−,DD̄, . . .}

Amplitudes are analytic with branch cuts along real axis

↪→ starting at thresholds tthr = {4M2
π, 4M2

D, . . .}

Know discontinuity along cuts from unitarity relation

Reconstruct from discontinuity via dispersion relation:

Mif (t) =
1

2πi

∮
dt ′

Mif (t ′)
t ′ − t

=
1

2πi

∫ ∞

tthr

dt ′
discMif (t ′)

t ′ − t
↪→ using Cauchy’s theorem

Re t

Im t

Nico Gubernari, Simon Mutke Progress with Non-local Form Factors April 09, 2025 8



Form factor dispersion relation

Unitarity relation for B → K (∗)γ∗ form factor with intermediate ππ

discΠ(t) = 2i t σπ(t)3 T (t)F V∗
π (t)

↪→ pion vector form factor F V
π (t), B → K (∗)ππ P-wave amplitude T (t)

Form factor dispersion relation

Π(t) =
1
π

∫ ∞

4M2
π

dt ′
t ′ σπ(t ′)3 T (t ′)F V∗

π (t ′)
t ′ − t

T (t)

FV ∗
π (t)

B K(∗)

ππ

Consider left-hand cut from crossed-channel K (∗)-exchange in T (t)

↪→ leads to triangle topology

Simple Born amplitude violates unitarity (Watson’s theorem)

↪→ need to include ππ-rescattering

↪→ unitarize via Muskhelishvili–Omnès representation

B K(∗)

ππ

K(∗)

FV ∗
π (t)
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Analytic structure of form factors

Kinematic invariants

Meson masses (q + k)2 = M2
B , k2 = M2

K (∗)

↪→ only defined on-shell

Photon virtuality q2

↪→ can define analytic continuation for arbitrary q2 in the complex plane

Singularities in q2

Poles: (infinitely) narrow states

↪→ q2 = M2
J/ψ ,M

2
ψ(2S)

Normal thresholds: branch points of γ∗ → {π+π−,DD̄, . . .} cuts

↪→ q2 = {4M2
π , 4M2

D , . . .}
Anomalous thresholds: anomalous branch points

↪→ kinematic singularity of the triangle diagram

↪→ position depends on left-hand-cut structure of B → K (∗)ππ amplitude
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Dispersion relations with anomalous thresholds

Need to modify dispersion relation in presence of additional singularities!

↪→ anomalous threshold leading to additional cuts

Mif (t) =
1

2πi

∫ ∞

tthr

dt ′
discMif (t ′)

t ′ − t
+

1
2πi

∫ 1

0
dx

∂tx
∂x

discan Mif (tx)
tx − t

↪→ with integration contour tx = x tthr + (1 − x) tanom

Three cases:

Re t

Im t

(1) tanom on normal cut

↪→ analytic continuation of normal discontinuity

(2) tanom on negative real axis

↪→ integration deformed along real axis

(3) tanom in complex plane

↪→ integration deformed into complex plane

(1) (2) (3)
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Anomalous thresholds: where do they come from?

Landau equations: singularities of general loop integral

Triangle diagram:

αi (k
2
i − m2

i ) = 0
3∑

i=1

αi ki = 0

p1 p3

p2

k1 = q

k3 = q − p3k2 = q + p1

↪→ “Leading singularity” ⇔ all Feynman parameters αi ̸= 0

Normal thresholds: e.g., α1 = 0 ⇒ p2
2 = (m2 ± m3)

2

Anomalous threshold: all αi ̸= 0

↪→ p2
2 = t± ≡ p2

1
m2

1+m2
3

2m2
1

+ p2
3

m2
1+m2

2
2m2

1
−

p2
1p2

3
2m2

1
−

(
m2

1−m2
2
)(

m2
1−m2

3
)

2m2
1

± 1
2m2

1

√
λ
(
p2

1,m2
1,m2

2
)
λ
(
p2

3,m2
1,m2

3
)

↪→ can be complex-valued
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−
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−
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)(

m2
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3
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2m2
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± 1
2m2
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√
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2
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−
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Anomalous thresholds: when do they matter?

Anomalous threshold:

t± ≡ p2
1

m2
1 + m2

3

2m2
1

+ p2
3

m2
1 + m2

2

2m2
1

− p2
1p2

3

2m2
1
−

(
m2

1 − m2
2
)(

m2
1 − m2

3
)

2m2
1

± 1
2m2

1

√
λ
(
p2

1,m
2
1,m

2
2

)
λ
(
p2

3,m
2
1,m

2
3

)
For sufficiently small p2

1 , p2
3 , t± lie on the second sheet

But p2
1 = M2

B large: anomalous threshold moves onto first sheet for

m3p2
1 + m2p2

3 −
(
m2 + m3

)(
m2

1 + m2m3
)
> 0

↪→ condition simplifies to M2
B + M2

K (∗) > 2
(
M2
π + M2

K (∗)

)
(fulfilled!)

Anomalous term in form factor dispersion relation

Π(t) =
1
π

∫ ∞

4M2
π

dt ′
t ′ σπ(t ′)3 T (t ′)F V∗

π (t ′)
t ′ − t︸ ︷︷ ︸

≡Πnorm(t)

+
1
π

∫ 4M2
π

t+
dt ′

t ′ σπ(t ′)3 disc T (t ′)F V
π (t ′)

t ′ − t︸ ︷︷ ︸
≡Πanom(t)

↪→ how important is the anomalous part? Examine anomalous fraction |Πanom(t)/Πnorm(t)|
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Anomalous fractions for B0 → K (∗)0 γ∗

B

KK∗

π π

B

K∗
K

π π

B

K∗
K∗

π π

t+/GeV2 = 18.6 (case 1) −57.8 (case 2) 0.5 − 4.2i (case 3)

−50 −25 0 25 50 75
t in GeV2

0

20

40

60

Ab
s Π

an
om

P
(t)

/Π
no

rm
P

(t)
 in

 %

−50 0 50
t in GeV2

0

10

20

30

40

Ab
s Π

an
om

0
(t)

/Π
no

rm
0

(t)
in

 %

−50 0 50
t in GeV2

0

2

4

6

8

10

Ab
s Π

an
om

∥
(t)

/Π
no

rm
∥

(t)
in

 %

−50 0 50
t in GeV2

0.0

0.5

1.0

1.5

Ab
s Π

an
om

⟂
(t)

/Π
no

rm
⟂

(t)
in

 %

SM, Hoferichter, Kubis 2024

λ = 0 λ = ∥ λ =⊥

All parameters fixed from data! One ambiguity left due to lack of Dalitz plot data (blue and orange curve)

Anomalous contributions can be ≳ 10% away from thresholds, resonances

Hierarchy between cases 1,2,3? Or between helicities? → only have case 3 in c-loops
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Comparison: D∗ form factors

Study different scenario with same analytic structure: D∗ form factors at low q2

↪→ anomalous threshold at s+ = −λ(M2
π,M

2
D ,M

2
D∗ )

M2
D

= −0.0012 GeV2 on first sheet

↪→ small scale due to MD∗ ≳ MD + Mπ

D∗
D

π π

D∗

Three form factors (F1
(
q2) ∼ electric, F2

(
q2) ∼ magnetic, F3

(
q2) ∼ quadrupole)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
q2 in GeV2

0

1

2

3

4

5

Ab
s F

an
om

1
(q

2 )
/F

no
rm

1
(q

2 )
 in

 %

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
q2 in GeV2

0

2

4

6

8

10

12

14

Ab
s F

an
om

2
(q

2 )
/F

no
rm

2
(q

2 )
 in

 %

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
q2 in GeV2

0

200

400

600

800

1000

Ab
s F

an
om

3
(q

2 )
/F

no
rm

3
(q

2 )
 in

 %

SM et al., in progress

For F3
(
q2) the anomalous part dominates completely → indication for hierarchy between helicities
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Towards the charm loops

Expect impact of anomalous thresholds to be qualitatively similar

All anomalous threshold in lower complex plane (case 3)

Cannot assess size yet, but could expect similar hierarchy between helicities

Difficulties:

More intermediate states in close proximity: D̄D, D̄D∗, D̄∗D∗, . . .

Phenomenology of form factors and amplitudes less well understood

Need more precise data (branching ratios, polarization fractions, Dalitz plots, . . .)

for B → D(∗)
s D(∗) and B → K (∗)D(∗)

(s) D̄(∗)
(s)
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Parametrizations 
and unitarity bounds



The need of a (bounded parametrization)

FFs are functions of 𝑞2

FFs are known in a finite number of isolated 𝑞2 points

Interpolate or extrapolate FF using a parametrization

ℋ 𝑞2 ∝ ෍

𝑛=0

∞

𝑎𝑛 𝑔𝑛(𝑞2)

the functions 𝑔𝑛(𝑞2) are conveniently chosen, fit (a few) the 𝑎𝑛

What’s the best parametrization? How to estimate the truncation error?

17

light-cone OPE                                𝑞2 = 0      interpolate (exp. data)      𝑞2 = 𝑚𝐽/𝜓
2



Analytic properties of local FFs

Study FF analytic structure to find a suitable parametrization. Example 𝐵 → 𝐾 local FFs

18

FFs are analytic except for branch cuts (i.e. lines of discontinuity) starting at

𝑠+ = 𝑚𝐵 + 𝑚𝐾
2, process threshold

𝑠Γ = 𝑚𝐵𝑠
+ 𝑚𝜋

2
< 𝑠+, subthreshold branch cut

Obtain a constrain on the FFs using unitarity (see [Okubo 1971])

න
𝒔+

∞

𝑑𝑞2 | det 𝐽 | 𝜙 𝑞2 ℱ 𝑞2 2 < 𝜒

calculate 𝜒 perturbatively, 𝜙 known function

𝑠+𝑠Γ ∞

Im 𝑞2

Re 𝑞2



Traditional approach: BGL

Perform the conformal mapping

𝑧 𝑞2 =
𝑠+ − 𝑞2 − 𝑠+

𝑠+ − 𝑞2 + 𝑠+
 

expand FFs for 𝑧 < 1 as

ℱ(𝑧) =
1

𝜙 𝑧
෍

𝑛=0

∞

𝑎𝑛𝑧𝑛

obtain a bound on the coefficients

න
𝒔+

∞

𝑑𝑞2 | det 𝐽 | 𝜙 𝑞2 ℱ 𝑞2 2 < 𝜒 ⟹  ෍

𝑛=0

∞

𝑎𝑛
2 < 𝜒

Problem! series is divergent due to the branch cut in 𝒔𝚪

19

𝑧 map

𝑠+𝑠Γ ∞
Im 𝑞2

Re 𝑞2

Re 𝑧

Im 𝑧

[Boyd/Grinstein/Lebed 1994 and 1997]



Problems with BGL

Having a branch cut invalidate the expansion for 𝑧 < 1 

ℱ 𝑧 ≠
1

𝜙 𝑧
෍

𝑛=0

∞

𝑎𝑛𝑧𝑛  for some 𝑧 < 1

same issue appears for FFs in 𝐵 → 𝐷(∗), Λ𝑏 → Λ, …

Issue discussed in the literature, but solutions are unsatisfactory:

they do not allow a rigorous estimate of the truncation error (see next slides)  

Find a way to recover the unitarity bound:

෍

𝑛=0

∞

𝑎𝑛
2 < 𝜒

Essential to estimate truncation error! (we can only fit a finite number of 𝑎𝑛
 )

20

[Boyd/Grinstein/Lebed 1995]

[Caprini/Neubert 1996]

[NG/van Dyk/Virto 2020]

[Flynn/Jüttner/Tsang 2023]

It is crucial to address this issue to accurately estimate uncertainties in 𝑏-hadron decays



Our approach: GG

Just a reminder: 𝑠+ = 𝑚𝐵 + 𝑚𝐾
2 , 𝑠Γ = 𝑚𝐵𝑠

+ 𝑚𝜋
2

Modify the conformal mapping (𝑠+ ↦ 𝑠Γ)

Ƹ𝑧 𝑞2 =
𝑠Γ − 𝑞2 − 𝑠Γ

𝑠Γ − 𝑞2 + 𝑠Γ

expand FFs for Ƹ𝑧 < 1 (no singularities now!) as

ℱ( Ƹ𝑧) =
1

𝜙 Ƹ𝑧
෍

𝑛=0

∞

𝑏𝑛 Ƹ𝑧𝑛

however

න
𝒔+

∞

𝑑𝑞2 | det 𝐽 | 𝜙 𝑞2 ℱ 𝑞2 2 < 𝜒 ⟹  ෍

𝑛=0

∞

𝑏𝑛
2 < 𝜒

Integral must over the whole circle!
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Ƹ𝑧 map

𝑠+𝑠Γ ∞
Im 𝑞2

Re 𝑞2

Re Ƹ𝑧

Im Ƹ𝑧



Our derivation of the unitarity bound

Start from

න
𝒔+

∞

𝑑𝑞2 | det 𝐽 | 𝜙 𝑞2 ℱ 𝑞2 2 < 𝜒

add on both sides

Δ𝜒 ≡ න
𝒔𝚪

𝒔+

𝑑𝑞2 det 𝐽 𝜙 𝑞2 ℱ 𝑞2 2

Estimate Δ𝜒 using large 𝑞2 scaling behaviour (for 𝐵 → 𝐾 FFs 
Δ𝜒

𝜒
< 1%)

Obtain the unitarity bound 

න
𝒔𝚪

∞

𝑑𝑞2 det 𝐽 𝜙 𝑞2 ℱ 𝑞2 2 < 𝜒 + Δ𝜒 ⟹  ෍

𝑛=0

∞

𝑏𝑛
2 < 𝜒 + Δ𝜒
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New parametrization for FFs that allows to calculate the truncation error!

[Gopal/NG 2024]



Problems with cut modelling and polynomials

Model the branch cut and subtract it

෨ℱ 𝑧 ≡ ℱ 𝑧 − ℱcut 𝑧

expand ෨ℱ 𝑧

Problem: ℱcut 𝑧  is not known

⟹ cannot rely on exact numerical 

cancellation of singularities

23

[NG/van Dyk/Virto 2020]

[Flynn/Jüttner/Tsang 2023]

Im 𝑧

Re 𝑧

[Boyd/Grinstein/Lebed 1995]

[Caprini/Neubert 1996]

Expand in polynomials orthogonal 

on the blue arc

ℱ( Ƹ𝑧) =
1

𝜙 Ƹ𝑧
෍

𝑛=0

∞

𝑏𝑛 Ƹ𝑧𝑛

|𝒑𝒏 ො𝒛 | → ∞ for 𝒏 → ∞ and

some Ƹ𝑧 in the unit disk

Re Ƹ𝑧

Im Ƹ𝑧



Anomalous branch cuts

Non-local FFs may present have anomalous branch cuts that extend into the complex plane

Example 𝐵 → 𝐷𝐷𝑠
∗ → 𝐾ℓ+ℓ− rescattering

𝑠+ = 𝑚𝐵 + 𝑚𝐾
2 𝑠Γ = 2𝑚𝐷

2 𝑠𝐴 = 24.1 −  3.5𝑖

Apply the same procedure as for the subthreshold branch cuts, but: 

• Ƹ𝑧 map is very hard to obtain (existence guaranteed by the Riemann Mapping Theorem)

• Δ𝜒 calculation extremely challenging
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[Mutke et al. 2024]
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Summary and conclusions



Summary and conclusions

Contributions from anomalous thresholds can make up ≳ 10% of (light-quark-loop-induced) non-local FFs

Precise data needed (branching ratios, polarization fractions, Dalitz plots,...) to quantify this for charm loops

The traditional (BGL) parametrization neglect subthreshold branch cuts, leading to systematic effects 

(polynomial expansion and non-orthogonal bounds do not fully resolve the issue)

We propose a new easy to implement parametrization to solve the issue

Our parametrization can account for both subthreshold and anomalous cuts
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Impact of branch cuts in a Taylor expansion

𝑓test 𝑧 = 𝑧 + 𝑧2 + 0.05 0.7 − 𝑧

Even if the branch cut is suppressed it generates divergent coefficients. Hence:

෍

𝑛=0

∞

𝑏𝑛
2 < 𝜒



Schwarz–Christoffel formula

Map the unit disk to the domain Ω

𝑔(𝑧) = 𝐴 + 𝐶 න
0

𝑧

𝑑 𝜁 ෑ

𝑘=1

4

1 −
𝜁

𝑧𝑘

𝜙𝑘
𝜋 −1

where 

Ω = ℂ \ ( 𝑠Γ, ∞ ∪  { 1 − 𝑡 𝑠𝐴  +  𝑡 𝑠Γ:  𝑡 ∈  [0,1] })



Schwarz–Christoffel formula at work

[Driscoll/Trefethen 2002]



Δ𝜒 calculation

Approximate FFs using their large \( 𝑞2 \) scaling behaviour calculated in perturbative QCD

E.g. for 𝐵 → 𝐾

ℱ+ 𝑞2 2 ≃ 𝐾
𝑠Γ

𝑞2

2

According to [Becher/Hill 2005] 𝐾~1

Even assuming 𝐾~100

Δ𝜒

𝜒
≡

1

𝜒
න

𝒔𝚪

𝒔+

𝑑𝑞2 det 𝐽 𝜙 𝑞2 ℱ 𝑞2 2 ≃ 0.005 

i.e. smaller than the uncertainty on𝜒

This is due to the fact that 
𝒔+−𝒔𝚪

𝒔𝚪
≪ 𝟏 and that 𝜒 is an inclusive quantity while Δ𝜒 is exclusive

[Lepage/Brodsky 1980]
[Akhoury et al. 1994]



Re Ƹ𝑧

Im Ƹ𝑧

Polynomial parametrization

polynomial parametrization ( Ƹ𝑧 polynomials)

ℋ𝜆 Ƹ𝑧 =
1

 𝒫 𝑧 𝜙(𝑧) 
෍

𝑛=0

∞

𝛽𝑛𝑝𝑛( Ƹ𝑧) ෍

𝑛=0

∞

𝛽𝑛
 2 < 1

|𝑝𝑛 Ƹ𝑧 | → ∞ for 𝑛 → ∞ some 𝑧 in the unit disk

𝑝0
𝐵→𝐾 Ƹ𝑧 =

1

2𝛼𝐵𝐾
 

𝑝1
𝐵→𝐾 Ƹ𝑧 = Ƹ𝑧 −

sin 𝛼𝐵𝐾

𝛼𝐵𝐾

𝛼𝐵𝐾

2𝛼𝐵𝐾
2 +cos 2𝛼𝐵𝐾 −1

 

𝑝2
𝐵→𝐾 Ƹ𝑧 = Ƹ𝑧2 +

sin 𝛼𝐵𝐾 sin 2𝛼𝐵𝐾 −2𝛼𝐵𝐾

2𝛼𝐵𝐾
2 +cos 2𝛼𝐵𝐾 −1

Ƹ𝑧 +
2 sin 𝛼𝐵𝐾 sin 𝛼𝐵𝐾 −2𝛼𝐵𝐾

2𝛼𝐵𝐾
2 +cos 2𝛼𝐵𝐾 −1

 

𝑝3
𝐵→𝐾 Ƹ𝑧 = ⋯ 

[NG/van Dyk/Virto 2020]



Muskhelishvili–Omnès representation

Unitarize B → K (∗)ππ P-waves by including ππ rescattering (to fulfill Watson’s theorem)

disc T (t) = 2i T (t) sin δ(t) e−iδ(t) = 2i T (t)σπ(t) t1∗
1 (t)

↪→ ππ elastic scattering phase shift δ(t) (I = 1, L = 1), t1
1 (t) = sin δ(t) eiδ(t)/σπ(t)

↪→ via Muskhelishvili–Omnès representation

X Y

ππ
= +

Z

Z

π π
ρ

+

ρ

↪→ dominated by ρ resonance

T MO(t) = Ω(t)

[
t

π

∫ ∞

4M2
π

dt′

t′
T Born(t′) sin δ(t′)

|Ω(t′)|(t′ − t)
+

t

π

∫ 1

0

dx

tx

∂tx
∂x

disc T Born(tx )σπ(tx ) t1
1 (tx )

Ω(tx )(tx − t)

]

T Omnès(t) = a Ω(t), Ω(t) = exp

[
t

π

∫ ∞

4M2
π

dt′

t′
δ(t′)

t′ − t

]
= |Ω(t)| eiδ(t)
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Anomalous thresholds for B → (P,V ) γ∗: list of processes

B → Kγ∗ B → K∗γ∗ B → πγ∗ B → ργ∗ B → ωγ∗

B

KK∗

π π

B

K∗
K

π π

B

K∗
K∗

π π

B

πρ

π π

B
ρπ

π π

B
ρω

π π

B

ωρ

π π

t+/GeV2 = 18.6 −57.8 0.5 − 4.2i 26.4 −859.3 0.7 − 4.8i 0.2 − 4.9i

Br[B → K∗π] Br[B → K (∗)π] Br[B → ρπ] Br[B → ππ, πω] Br[B → ρπ]

Br[B → Kππ] Br[B → K∗ππ] Br[B → 3π] Br[B → ρππ] Br[B → ωππ]

tthr = 4M2
π = 0.08 GeV2

Large energy scales in limit MB → ∞, Mπ → 0: t+ ≃ −M2
BM2

ρ

M2
π

≃ −860 GeV2
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Example: anomalous contribution to the longitudinal B0 → K ∗0γ∗ FF

−1 0 1 2 3
t in GeV2

−2

−1

0

1

2
Re

 Π
0(

t) 
in

 G
eV

−1

×10−4

Re Π0(t)
10 × Re Πanom

0 (t)

−1 0 1 2 3
t in GeV2

−5

−4

−3

−2

−1

0

Im
 Π

0(
t) 

in
 G

eV
−1

×10−4

Im Π0(t)
10 × Im Πanom

0 (t)

−1 0 1 2 3
t in GeV2

0

1

2

3

4

5

Ab
s Π

0(
t) 

in
 G

eV
−1

×10−4

Abs Π0(t)
10 × Abs Πanom

0 (t)

−1 0 1 2 3
t in GeV2

0

10

20

30

40

50

60

Ab
s Π

an
om

0
(t)

/Π
no

rm
0

(t)
in

 %
SM, Hoferichter, Kubis 2024
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