Probing the structure of the $\chi_{c1}(3872)$ meson: heavy quark symmetries at work

Giuseppe Roselli

Università degli Studi di Bari Dipartimento interateneo di Fisica "Michelangelo Merlin" Based on: P.Colangelo, F. De Fazio, and G.Roselli BARI-TH/770-24, in preparation (2024)

December 17, 2024

Features of strong interactions

- 2 Hadron spectroscopy: quark model classification and other possibilities
- 3 The case of $\chi_{c1}(3872)$ meson
- 4 Heavy Quark Effective theory (HQET)
- 5 Application to radiative decays of heavy quarkonia
- 6 Results and conclusions

- Difficulties in the application of perturbative methods.
- 1973: Non-Abelian gauge theories \implies asymptotic freedom.
- Deep inelastic scattering => evidences of almost free elementary constituents in the nucleon.
- 1973: **QCD** \implies quarks.

Light quarks	Heavy quarks
up (u)	charm (c)
down (d)	bottom (b)
strange (s)	top (t)

- Free quarks not observed \implies all hadronic states are color singlets. \implies confinement (non perturbative regime).
- Coupling constant is running:

Quark Model

• Since 1964 hadronic states classified within the quark model:

Hadron spectroscopy: quark model classification and other possibilities

More complex structures, called **exotic** states, include:

Hadron spectroscopy: quark model classification and other possibilities

- Tetraquarks and pentaquarks are compact multiquark states:
 - Quarks form qq pairs (diquarks), which combine with antidiquarks.

- Molecular Picture:
 - Loosely bound systems of two color-neutral objects.

• Classification using the Spectroscopic notation:

• For a meson
$$\vec{S} = \vec{s}_q + \vec{s}_{\bar{q}} \Longrightarrow S = \checkmark_1^0$$

• $P = (-1)^{L+1}$
• $C = (-1)^{L+S}$

э

3 × 4 3 ×

Image: A matrix

Conventional states classification

Giuseppe Roselli

December 11, 2024

9/48

Charmonium States

- Below the open-charm threshold, all states have been identified.
- Above this threshold, some conventional states remain unobserved, e.g., $2^1P_1 \rightarrow h_c(2P)$.

Bottomonium States

• Open-bottom threshold $M \approx 2m_B (= 10560 \text{ MeV})$

$\chi_{c1}(3872)$

- Since 2003: New observations challenge the quark model.
- My thesis: the case of $\chi_{c1}(3872)$.
- Observed by the Belle collaboration in the decay $B \to K \pi^+ \pi^- J/\psi$ \to narrow peak in the $\pi^+ \pi^- J/\psi$ invariant mass distribution.

- Confirmed by BaBar, BESIII, LHCb, CDF, D0, ATLAS, CMS, ALICE
- Fixed $J^{PC} = 1^{++}$.
- No isospin partners found.

$\chi_{c1}(3872)$

- Ordinary charmonium interpretation: most likely $\chi_{c1}(2P)$
- $m_{\chi_{c1}(3872)} = 3871.64 \pm 0.06$ MeV is very close to the $D^0 \bar{D}^{0*}$ threshold: $M_{th} = m(D^0) + m(\bar{D}^{0*}) = 3871.69 \pm 0.07$ MeV.

Giuseppe Roselli

★ Isospin violation in decays: Non-conventional interpretation?

$$\frac{\mathcal{B}(\chi_{c1}(3872) \to J/\psi\pi^{+}\pi^{-}\pi^{0})}{\mathcal{B}(\chi_{c1}(3872) \to J/\psi\pi^{+}\pi^{-})} = \begin{cases} 1.0 \pm 0.4 \pm 0.3 & \text{(Belle)}, \\ 0.8 \pm 0.3 & (1.7 \pm 1.3) & \text{(BaBar)}, \\ 1.6^{+0.4}_{-0.3} \pm 0.2 & \text{(BESIII)}. \end{cases}$$

• χ_{c1} as ordinary charmonium (I = 0):

- Decay into ω conserves isospin ($I(\omega) = 0$).
- Decay into ρ violates isospin ($I(\rho) = 1$).
- $\bullet\,$ Large phase space suppression of ω mode vs ρ mode.
- LHCb collaboration analysis: ratio of isospin-violating to isospin-conserving $\chi_{c1}(3872)$ couplings: 0.29 ± 0.04 (six times larger than in isospin-violating decays of $\psi(2S)$).
- Molecular interpretation proposed: not well-defined isospin.
 - Small production cross section disfavours the molecular model (being similar to the one expected for ordinary charmonium)

Isospin violation in $\chi_{c1}(3872)$ decays remains unresolved.

 $\chi_{c1}(3872)$

 $\mathcal{R} \equiv \frac{\Gamma(\chi_{c1}(3872) \rightarrow \psi(2S)\gamma)}{\Gamma(\chi_{c1}(3872) \rightarrow J/\psi\gamma)}$ sensitive to the structure of $\chi_{c1}(3872)$

Giuseppe Roselli

$\chi_{c1}(3872)$

• Experimental results for the ratio $\mathcal{R}:$

LHCb Average 2024:

$\mathcal{R} = 1.67 \pm 0.21 \pm 0.12 \pm 0.04$

Heavy Quark Effective Theory

- HQET: an effective theory of QCD valid in the large mass limit of heavy quarks (c, b).
- The hadron radius $R_{\rm had} pprox 1\,{
 m fm}$ corresponds to $\Lambda_{\rm QCD} pprox 200\,{
 m MeV}$,

• For a heavy quark:

$$m_Q \gg \Lambda_{\rm QCD} \implies \lambda_Q \ll R_{\rm had}$$

- HQ acts like a static source of color field \implies New symmetries arise.
- Remaining degrees of freedom have no sensitivity to HQ flavour or spin.

Heavy Quark Effective Theory

• QCD Lagrangian for a heavy quark:

$$\mathcal{L}_Q = \bar{Q}(i\not\!\!D - m_Q)Q,$$

• HQ nearly on-shell ($v^2 = 1$):

$$P^{\mu}_{Q}=m_{Q}v^{\mu}+k^{\mu},$$

where $k \approx \mathcal{O}(\Lambda_{QCD})$.

• Q(x) is redefined as:

$$Q(x) = e^{-im_Q v \cdot x} [h_v(x) + H_v(x)],$$

• $H_v(x)$ integrated out (EOM).

$$\bigvee_{e^{im_Q v \cdot x} \frac{1+\dot{y}}{2}Q(x)} e^{im_Q v \cdot x \frac{1-\dot{y}}{2}Q(x)} Q(x)$$

• The effective Lagrangian becomes:

Heavy-Light Multiplets

• Due to these new symmetries, hadrons, which differ only for the orientation of SQ, can be collected in multiplets

•
$$\vec{J} = \vec{S} + \vec{L}$$
, for mesons: $S = \checkmark_1^0$

- e.g. with L = 0:
 - $J = (0,1) \implies$ Doublet: $J^P = (0^-, 1^-)$,
 - Denoted as:

Heavy Quarkonia Multiplets

- Identify states obtained rotating the spin of both HQs.
- The number of states in a multiplet depends on L.
- L=1 multiplet (P-wave): $J^{\mu} = \frac{1+\cancel{p}}{2} \left\{ H_{2}^{\mu\alpha}\gamma_{\alpha} + \frac{1}{\sqrt{2}} \epsilon^{\mu\alpha\beta\gamma} v_{\alpha}\gamma_{\beta}H_{1\gamma} + \frac{1}{\sqrt{3}} (\gamma^{\mu} - v^{\mu})H_{0} + K_{1}^{\mu}\gamma_{5} \right\} \frac{1-\cancel{p}}{2};$ $\chi_{Q0} \qquad h_{Q}$
- L=0 multiplet (S-wave):

$$J = rac{1+\not\!\!\!/}{2} \left[H_1^\mu \gamma_\mu - H_0 \gamma_5
ight] rac{1-\not\!\!\!/}{2} \; . \ \psi\left(\Upsilon
ight) \qquad \eta_{\mathcal{Q}}$$

Effective Lagrangian for Radiative Decays

Effective Lagrangians can be constructed in terms of the just presented multiplets:

• Radiative nP
ightarrow mS transitions are described by:

$$\mathcal{L}_{n_P\leftrightarrow m_S} = \delta_Q^{n_P m_S} \text{Tr} \left[\overline{J}(m_S) J_{\mu}(n_P) \right] v_{\nu} F^{\mu\nu} + \text{h.c.}$$
Hadron velocity
$$F^{\mu\nu} = \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}$$

- Invariant under the symmetries:
 - *C*, *P*, *T*
 - SU(2)_{HQ}

 δ_Q^{nPmS} describes **all** the transitions among the members of the nP multiplet to the mS one.

Considered radiative decays

Giuseppe Roselli

Considered radiative decays

Giuseppe Roselli

Coupling δ_Q^{nPmS} determined comparing HQ predictions to experimental data:

$$\begin{split} \Gamma(n^{3}P_{J} \to m^{3}S_{1}\gamma) &= \frac{(\delta_{Q}^{nPmS})^{2}}{3\pi}k_{\gamma}^{3}\frac{M_{S_{1}}}{M_{P_{J}}}\\ \Gamma(m^{3}S_{1} \to n^{3}P_{J}\gamma) &= (2J+1)\frac{(\delta_{Q}^{nPmS})^{2}}{9\pi}k_{\gamma}^{3}\frac{M_{P_{J}}}{M_{S_{1}}} \end{split}$$

$$\begin{split} &\Gamma(n^1P_1 \to m^1S_0\gamma) \quad = \quad \frac{(\delta_Q^{nPmS})^2}{3\pi} k_\gamma^3 \frac{M_{S_0}}{M_{P_1}} \\ &\Gamma(m^1S_0 \to n^1P_1\gamma) \quad = \quad \frac{(\delta_Q^{nPmS})^2}{\pi} k_\gamma^3 \frac{M_{P_1}}{M_{S_0}} \end{split}$$

Process	Branching ratio (Γ_i/Γ)
$J/\psi \to \gamma \eta_c(1S)$	$(1.41 \pm 0.14)\%$
$\chi_{c0}(1P) \rightarrow \gamma J/\psi$	$(1.41 \pm 0.09)\%$
$\chi_{c1}(1P) \rightarrow \gamma J/\psi$	$(34.3 \pm 1.3)\%$
$\chi_{c2}(1P) \rightarrow \gamma J/\psi$	$(19.5 \pm 0.8)\%$
$h_c(1P) \to \gamma \eta_c(1S)$	$(60 \pm 4)\%$
$\eta_c(2S) \to \gamma J/\psi$	< 1.4%
$\psi(2S) \to \gamma \chi_{c0}(1P)$	$(9.77 \pm 0.23)\%$
$\psi(2S) \rightarrow \gamma \chi_{c1}(1P)$	$(9.75 \pm 0.27)\%$
$\psi(2S) \rightarrow \gamma \chi_{c2}(1P)$	$(9.36 \pm 0.23)\%$
$\psi(2S) \to \gamma \eta_c(1S)$	$(3.6 \pm 0.5) \times 10^{-3}$
$\psi(2S) \to \gamma \eta_c(2S)$	$(7\pm5)\times10^{-4}$
$\chi_{c1}(3872) \rightarrow \gamma J/\psi$	$(7.8 \pm 2.9) \times 10^{-3}$

	Process	Branching ratio (Γ_i/Γ)
	$J/\psi \to \gamma \eta_c(1S)$	$(1.41 \pm 0.14)\%$
$(\delta_{O}^{nPmS})^{2} M_{S}$	$\chi_{c0}(1P) \rightarrow \gamma J/\psi$	$(1.41 \pm 0.09)\%$
$\Gamma(n^3 P_J \to m^3 S_1 \gamma) = \frac{\langle Q \rangle}{3\pi} k_\gamma^3 \frac{N S_1}{M_{P_J}}$	$\chi_{c1}(1P) \rightarrow \gamma J/\psi$	$(34.3 \pm 1.3)\%$
$\Gamma(3C, 3D) = (2L+1) \left(\delta_Q^{nPmS} \right)^2 M_{P_I}$	$\chi_{c2}(1P) \rightarrow \gamma J/\psi$	$(19.5 \pm 0.8)\%$
$\Gamma(m^{\circ}S_1 \to n^{\circ}P_J\gamma) = (2J+1) \frac{1}{9\pi} k_{\gamma} \frac{1}{M_{S_1}}$	$h_c(1P) \to \gamma \eta_c(1S)$	$(60 \pm 4)\%$
	$\eta_c(2S) \to \gamma J/\psi$	< 1.4%
$\Gamma(n^1 P_1 \to m^1 S_0 \gamma) = \frac{(\delta_Q^{nPmS})^2}{3\pi} k_\gamma^3 \frac{M_{S_0}}{M_{P_1}}$	$\psi(2S) \rightarrow \gamma \chi_{c0}(1P)$	$(9.77 \pm 0.23)\%$
	$\psi(2S) \to \gamma \chi_{c1}(1P)$	$(9.75 \pm 0.27)\%$
$\Gamma(m^1 S_0 \to n^1 P_1 \gamma) = \frac{(\delta_Q^{nrms})^2}{k_q^3} k_q^3 \frac{M_{P_1}}{M_{P_1}},$	$\psi(2S) \to \gamma \chi_{c2}(1P)$	$(9.36 \pm 0.23)\%$
πM_{S_0}	$\psi(2S) \rightarrow \gamma \eta_c(1S)$	$(3.6 \pm 0.5) \times 10^{-3}$
	$\psi(2S) \rightarrow \gamma \eta_c(2S)$	$(7\pm5)\times10^{-4}$
	$\chi_{c1}(3872) \rightarrow \gamma J/\psi$	$(7.8 \pm 2.9) \times 10^{-3}$

$$\delta_c^{1P1S}{=}(2.35\pm0.12)\times10^{-1}\,{\rm GeV}^{-1}$$

	Process	Branching ratio (Γ_i/Γ)
	$J/\psi \to \gamma \eta_c(1S)$	$(1.41 \pm 0.14)\%$
$(\delta_{O}^{nPmS})^{2} \circ M_{S}$	$\chi_{c0}(1P) \rightarrow \gamma J/\psi$	$(1.41 \pm 0.09)\%$
$\Gamma(n^3 P_J \to m^3 S_1 \gamma) = \frac{\langle Q \rangle}{3\pi} k_{\gamma}^3 \frac{m S_1}{M_{P_J}}$	$\chi_{c1}(1P) \to \gamma J/\psi$	$(34.3 \pm 1.3)\%$
$D(3C, 3D) = (2L+1) (\delta_Q^{nPmS})^2 {}_{13} M_{P_I}$	$\chi_{c2}(1P) \rightarrow \gamma J/\psi$	$(19.5 \pm 0.8)\%$
$\Gamma(m^{\circ}S_1 \to n^{\circ}P_J\gamma) = (2J+1)\frac{1}{9\pi}k_{\gamma}^{\circ}\frac{1}{M_{S_1}}$	$h_c(1P) \to \gamma \eta_c(1S)$	$(60 \pm 4)\%$
	$\eta_c(2S) \to \gamma J/\psi$	< 1.4%
$\Gamma(n^{1}P_{1} \to m^{1}S_{0}\gamma) = \frac{(\delta_{Q}^{nPmS})^{2}}{3\pi}k_{\gamma}^{3}\frac{M_{S_{0}}}{M_{P_{1}}}$	$\psi(2S) \rightarrow \gamma \chi_{c0}(1P)$	$(9.77 \pm 0.23)\%$
	$\psi(2S) \to \gamma \chi_{c1}(1P)$	$(9.75 \pm 0.27)\%$
$\Gamma(m^1 S_0 \to n^1 P_1 \gamma) = \frac{(\delta_Q^{nPmS})^2}{2} k_{\alpha}^3 \frac{M_{P_1}}{2},$	$\psi(2S) \rightarrow \gamma \chi_{c2}(1P)$	$(9.36\pm 0.23)\%$
$\pi \gamma M_{S_0}$	$\psi(2S) \to \gamma \eta_c(1S)$	$(3.6 \pm 0.5) \times 10^{-3}$
	$\psi(2S) \rightarrow \gamma \eta_c(2S)$	$(7\pm5) imes10^{-4}$
	$\chi_{c1}(3872) \rightarrow \gamma J/\psi$	$(7.8 \pm 2.9) \times 10^{-3}$

$$\delta_c^{1P1S} = (2.34 \pm 0.08) \times 10^{-1} \,\mathrm{GeV}^{-1}$$

	Process	Branching ratio (Γ_i/Γ)
	$J/\psi \to \gamma \eta_c(1S)$	$(1.41 \pm 0.14)\%$
$(\delta_{O}^{nPmS})^2 \circ M_{S}$	$\chi_{c0}(1P) \rightarrow \gamma J/\psi$	$(1.41 \pm 0.09)\%$
$\Gamma(n^3 P_J \to m^3 S_1 \gamma) = \frac{\langle Q_J \gamma \rangle}{3\pi} k_\gamma^3 \frac{m_{S_1}}{M_{P_J}}$	$\chi_{c1}(1P) \to \gamma J/\psi$	$(34.3 \pm 1.3)\%$
$\Gamma(3, \alpha, \beta, \gamma) = (\alpha, \beta, \gamma)^2 M_{P_I}$	$\chi_{c2}(1P) \rightarrow \gamma J/\psi$	$(19.5 \pm 0.8)\%$
$\Gamma(m^{\circ}S_{1} \to n^{\circ}P_{J}\gamma) = (2J+1)\frac{1}{9\pi}k_{\gamma}^{\circ}\frac{1}{M_{S_{1}}}$	$h_c(1P) \to \gamma \eta_c(1S)$	$(60 \pm 4)\%$
	$\eta_c(2S) \to \gamma J/\psi$	< 1.4%
$\Gamma(n^1 P_1 \to m^1 S_0 \gamma) = \frac{(\delta_Q^{nPmS})^2}{k^3} k^3 \frac{M_{S_0}}{M_{S_0}}$	$\psi(2S) \to \gamma \chi_{c0}(1P)$	$(9.77 \pm 0.23)\%$
$3\pi \gamma M_{P_1}$	$\psi(2S) \rightarrow \gamma \chi_{c1}(1P)$	$(9.75 \pm 0.27)\%$
$\Gamma(m^1 S_0 \to n^1 P_1 \gamma) = \frac{(\delta_Q^{nPMS})^2}{k_Q^3 M_{P_1}} k_{\gamma}^3 M_{P_1},$	$\psi(2S) \to \gamma \chi_{c2}(1P)$	$(9.36 \pm 0.23)\%$
$\pi \gamma M_{S_0}$	$\psi(2S) \rightarrow \gamma \eta_c(1S)$	$(3.6 \pm 0.5) \times 10^{-3}$
	$\psi(2S) \to \gamma \eta_c(2S)$	$(7\pm5)\times10^{-4}$
	$\chi_{c1}(3872) \rightarrow \gamma J/\psi$	$(7.8 \pm 2.9) \times 10^{-3}$

$$\delta_c^{1P1S} = (2.31 \pm 0.09) \times 10^{-1} \,\mathrm{GeV}^{-1}$$

Results

	Process	Branching ratio (Γ_i/Γ)
	$J/\psi \to \gamma \eta_c(1S)$	$(1.41 \pm 0.14)\%$
$(\delta^{nPmS})^2 \circ M_S$	$\chi_{c0}(1P) \rightarrow \gamma J/\psi$	$(1.41 \pm 0.09)\%$
$\Gamma(n^3 P_J \to m^3 S_1 \gamma) = \frac{\langle Q \rangle}{3\pi} k_\gamma^3 \frac{MS_1}{M_{P_J}}$	$\chi_{c1}(1P) \rightarrow \gamma J/\psi$	$(34.3 \pm 1.3)\%$
$\mathbf{E} \begin{pmatrix} 3 \\ Q \end{pmatrix} \begin{pmatrix} 3 \\ Q \end{pmatrix} \begin{pmatrix} 0 \\ Q \end{pmatrix}$	$\chi_{c2}(1P) \rightarrow \gamma J/\psi$	$(19.5 \pm 0.8)\%$
$\Gamma(m^{\circ}S_1 \to n^{\circ}P_J\gamma) = (2J+1) \frac{1}{9\pi} k_{\gamma}^{\circ} \frac{1}{M_{S_1}}$	$h_c(1P) \to \gamma \eta_c(1S)$	$(60 \pm 4)\%$
	$\eta_c(2S) \to \gamma J/\psi$	< 1.4%
$\Gamma(n^1 P_1 \to m^1 S_0 \gamma) = \frac{(\delta_Q^{nPmS})^2}{k^3} \frac{M_{S_0}}{M_{S_0}}$	$\psi(2S) \to \gamma \chi_{c0}(1P)$	$(9.77 \pm 0.23)\%$
$3\pi \gamma M_{P_1}$	$\psi(2S) \to \gamma \chi_{c1}(1P)$	$(9.75 \pm 0.27)\%$
$\Gamma(m^1 S_0 \to n^1 P_1 \gamma) = \frac{(\delta_Q^{nPmS})^2}{2} k_{\alpha}^3 \frac{M_{P_1}}{2},$	$\psi(2S) \to \gamma \chi_{c2}(1P)$	$(9.36 \pm 0.23)\%$
π M_{S_0}	$\psi(2S) \to \gamma \eta_c(1S)$	$(3.6 \pm 0.5) \times 10^{-3}$
	$\psi(2S) \to \gamma \eta_c(2S)$	$(7\pm5) imes10^{-4}$
	$\chi_{c1}(3872) \rightarrow \gamma J/\psi$	$(7.8 \pm 2.9) \times 10^{-3}$

$$\delta_c^{1P1S} = (2.00 \pm 0.40) \times 10^{-1} \,\mathrm{GeV}^{-1}$$

Results

Average: $\delta_c^{1P1S} = (0.232 \pm 0.005) \, \text{GeV}^{-1}$.

Results fulfill the expectations based on HQ symmetries.

Giuseppe Roselli

э

I analyze the radiative decays:

•
$$(\chi_{c0}(1P), \chi_{c1}(1P), \chi_{c2}(1P), h_c(1P)) \rightarrow (\eta_c(1S), J/\psi),$$

•
$$(\chi_{c0}(2P), \chi_{c1}(2P), \chi_{c2}(2P), h_c(2P)) \rightarrow (\eta_c(1S), J/\psi),$$

• $(\chi_{c0}(2P), \chi_{c1}(2P), \chi_{c2}(2P), h_c(2P)) \rightarrow (\eta_c(2S), \psi(2S)),$
• $(\chi_{b0}(2P), \chi_{b1}(2P), \chi_{b2}(2P), h_b(2P)) \rightarrow (\eta_c(1S), J/\psi),$

•
$$(\chi_{b0}(2P), \chi_{b1}(2P), \chi_{b2}(2P), h_b(2P)) \rightarrow (\eta_c(1S), J/\psi),$$

•
$$(\chi_{b0}(2P), \chi_{b1}(2P), \chi_{b2}(2P), h_b(2P)) \to (\eta_c(2S), \psi(2S)).$$

Coupling δ_Q^{nPmS} determined comparing HQ predictions to experimental data:

- Predictions limited by incomplete knowledge of total widths for bottomonia states.
- Introducing:

$$\tilde{\delta_b}^{nPmS}(P_b) = \frac{\delta_b^{nPmS}}{[\Gamma_{\text{tot}}(P_b)]^{1/2}}, \qquad P_b = \chi_{Q0}, \chi_{Q1}, \chi_{Q2}, h_Q$$

and

$$R_b^{\delta}(P_b) \equiv \frac{\delta_b^{2P2S}(P_b)}{\delta_b^{2P1S}(P_b)} = \frac{\tilde{\delta}_b^{2P2S}(P_b)}{\tilde{\delta}_b^{2P1S}(P_b)}$$

э

$$\begin{split} & \Gamma(n^{3}P_{J} \to m^{3}S_{1}\gamma) = \frac{(\delta_{Q}^{nPmS})^{2}}{3\pi}k_{\gamma}^{3}\frac{M_{S_{1}}}{M_{P_{J}}} \\ & \Gamma(m^{3}S_{1} \to n^{3}P_{J}\gamma) = (2J+1)\frac{(\delta_{Q}^{nPmS})^{2}}{9\pi}k_{\gamma}^{3}\frac{M_{P_{J}}}{M_{S_{1}}} \\ & \Gamma(n^{1}P_{1} \to m^{1}S_{0}\gamma) = \frac{(\delta_{Q}^{nPmS})^{2}}{3\pi}k_{\gamma}^{3}\frac{M_{S_{0}}}{M_{P_{1}}} \\ & \Gamma(m^{1}S_{0} \to n^{1}P_{1}\gamma) = \frac{(\delta_{Q}^{nPmS})^{2}}{\pi}k_{\gamma}^{3}\frac{M_{P_{1}}}{M_{S_{0}}}, \end{split} \\ & \Gamma(m^{1}S_{0} \to n^{1}P_{1}\gamma) = \frac{(\delta_{Q}^{nPmS})^{2}}{\pi}k_{\gamma}^{3}\frac{M_{P_{1}}}{M_{S_{0}}}, \end{split} \\ & \frac{Process}{\chi_{b0}(2P) \to \gamma\Upsilon(1S)} & (3.8 \pm 1.7) \times 10^{-3} \\ & \chi_{b0}(2P) \to \gamma\Upsilon(2S) & (1.38 \pm 0.30)\% \\ & \chi_{b1}(2P) \to \gamma\Upsilon(1S) & (9.9 \pm 1.0)\% \\ & \chi_{b1}(2P) \to \gamma\Upsilon(1S) & (6.6 \pm 0.8)\% \\ & \chi_{b2}(2P) \to \gamma\Upsilon(1S) & (6.6 \pm 0.8)\% \\ & \chi_{b2}(2P) \to \gamma\Upsilon(2S) & (8.9 \pm 1.2)\% \\ & h_{b}(2P) \to \gamma\eta_{b}(1S) & (22 \pm 5)\% \\ & h_{b}(2P) \to \gamma\eta_{b}(2S) & (48 \pm 13)\% \end{split}$$

$$R_b^{\delta}(\chi_{b0}(2P)) = 13 \pm 4$$

- ∢ ⊒ →

æ

$\Gamma(n^3 P_{\tau} \rightarrow m^3 S_{\tau} \gamma)$	_	$\frac{(\delta_Q^{nPmS})^2}{k^3} M_{S_1}$	Process	Branching ratio (Γ_i/Γ)
$I(n \mid j \rightarrow m \mid S_{1}))$	_	$3\pi n^{\kappa_{\gamma}} \overline{M_{P_J}}$	$\chi_{b0}(2P) \to \gamma \Upsilon(1S)$	$(3.8 \pm 1.7) \times 10^{-3}$
$\Gamma(m^3S_1 \to n^3P_I\gamma)$	=	$(2J+1)\frac{(\delta_Q^{nPmS})^2}{2}k_q^3M_{PMS}$	$\chi_{b0}(2P)\to\gamma\Upsilon(2S)$	$(1.38 \pm 0.30)\%$
		$(23 + 1) 9\pi N\gamma M_{S_1}$	$\chi_{b1}(2P) \to \gamma \Upsilon(1S)$	$(9.9 \pm 1.0)\%$
		$(snPmS)^2$	$\chi_{b1}(2P) \to \gamma \Upsilon(2S)$	$(18.1 \pm 1.9)\%$
$\Gamma(n^1 P_1 \to m^1 S_0 \gamma)$	=	$\frac{(\delta_Q^{-m})^2}{3\pi}k_\gamma^3\frac{M_{S_0}}{M_{P_0}}$	$\chi_{b2}(2P) \to \gamma \Upsilon(1S)$	$(6.6 \pm 0.8)\%$
		$(\delta_{n}^{nPmS})^2 \sim M_{P_1}$	$\chi_{b2}(2P) \to \gamma \Upsilon(2S)$	$(8.9 \pm 1.2)\%$
$\Gamma(m^1 S_0 \to n^1 P_1 \gamma)$	=	$\frac{\langle Q \rangle}{\pi} k_{\gamma}^3 \frac{M_{P_1}}{M_{S_0}},$	$h_b(2P) \to \gamma \eta_b(1S)$	$(22 \pm 5)\%$
			$h_b(2P) \to \gamma \eta_b(2S)$	$(48 \pm 13)\%$

$$R_b^\delta(\chi_{b1}(2P)) = 8 \pm 1$$

æ

$\Gamma(n^3 P_1 \rightarrow m^3 S_1 \gamma)$	_	$\frac{(\delta_Q^{nPmS})^2}{k^3} \frac{M_{S_1}}{M_{S_1}}$	Process	Branching ratio (Γ_i/Γ)
$1(n \mid j \mid j \mid n \mid D_{1}))$	_	$3\pi {}^{n_{\gamma}}M_{P_J}$	$\chi_{b0}(2P) \to \gamma \Upsilon(1S)$	$(3.8 \pm 1.7) \times 10^{-3}$
$\Gamma(m^3S_1 \to n^3P_J\gamma)$	=	$(2J+1)\frac{(\delta_Q^{nPmS})^2}{2}k_{\gamma}^3\frac{M_{P_J}}{2}$	$\chi_{b0}(2P)\to\gamma\Upsilon(2S)$	$(1.38 \pm 0.30)\%$
		9π $M_{\rm S1}$	$\chi_{b1}(2P) \to \gamma \Upsilon(1S)$	$(9.9 \pm 1.0)\%$
		(SnPmS)2 M	$\chi_{b1}(2P) \to \gamma \Upsilon(2S)$	$(18.1 \pm 1.9)\%$
$\Gamma(n^1 P_1 \to m^1 S_0 \gamma)$	=	$\frac{(\delta_Q)}{3\pi}k_\gamma^3\frac{MS_0}{M_{P_1}}$	$\chi_{b2}(2P) \to \gamma \Upsilon(1S)$	$(6.6 \pm 0.8)\%$
		$(\delta_{O}^{nPmS})^2 \circ M_{P_n}$	$\chi_{b2}(2P) \to \gamma \Upsilon(2S)$	$(8.9 \pm 1.2)\%$
$\Gamma(m^{1}S_{0} \to n^{1}P_{1}\gamma)$	=	$\frac{1}{\pi} k_{\gamma}^{3} \frac{1}{M_{S_{0}}},$	$h_b(2P) \to \gamma \eta_b(1S)$	$(22\pm5)\%$
		-	$h_b(2P) \to \gamma \eta_b(2S)$	$(48 \pm 13)\%$

$$R_b^\delta(\chi_{b2}(2P)) = 7 \pm 1$$

∃ →

Giuseppe Roselli

$$\begin{split} \Gamma(n^{3}P_{J} \to m^{3}S_{1}\gamma) &= \frac{(\delta_{Q}^{nPmS})^{2}}{3\pi} k_{\gamma}^{3} \frac{M_{S_{1}}}{M_{P_{J}}} \\ \Gamma(m^{3}S_{1} \to n^{3}P_{J}\gamma) &= (2J+1) \frac{(\delta_{Q}^{nPmS})^{2}}{9\pi} k_{\gamma}^{3} \frac{M_{P_{J}}}{M_{S_{1}}} \\ \hline \Gamma(m^{1}S_{1} \to m^{1}S_{0}\gamma) &= \frac{(\delta_{Q}^{nPmS})^{2}}{3\pi} k_{\gamma}^{3} \frac{M_{S_{1}}}{M_{P_{1}}} \\ \Gamma(m^{1}S_{0} \to n^{1}P_{1}\gamma) &= \frac{(\delta_{Q}^{nPmS})^{2}}{\pi} k_{\gamma}^{3} \frac{M_{P_{J}}}{M_{S_{0}}}, \end{split}$$

$$R_b^{\delta}(h_b(2P)) = 8 \pm 2$$

< □ > < 同 >

æ

Bottom Sector Predictions

• Average result:

$$R_b^{\delta} = 9.0 \pm 0.7$$

Differences between QQ and $Q\bar{q}$ symmetries:

- ✓ spin symmetry
- X flavour symmetry $\implies \frac{1}{m_Q}$ suppression \implies cancels in ratios $\implies R_c^{\delta} \approx R_b^{\delta}$.

• My Prediction for the ratio:

$$\mathcal{R}(\chi_{c1}(3872)) = \frac{\mathcal{B}(\chi_{c1}(3872) \rightarrow \psi(2S)\gamma)}{\mathcal{B}(\chi_{c1}(3872) \rightarrow J/\psi\gamma)} \propto (\mathcal{R}_c^{\delta})^2$$

$$\mathcal{R}(\chi_{c1}(3872)) = 1.7 \pm 0.3$$

P.Colangelo, F. De Fazio, and G. Roselli BARI-TH/770-24, in preparation (2024)

イロト イポト イヨト イヨト

Results

э

The predicted δ allows to find several other observables e.g.:

- Branching ratios:
 - $\mathcal{B}(\chi_{c2}(2P) \to J/\psi\gamma) = (3.1 \pm 1.5) \, 10^{-4}$
 - $\mathcal{B}(\chi_{c1}(3872) \rightarrow \psi(2S)\gamma) = (9.0 \pm 3.4) \times 10^{-3}.$
- The analogous \mathcal{R} for $\chi_{c0}(2P)$ and $\chi_{c2}(2P)$:

•
$$\mathcal{R}(\chi_{c0}(2P)) = 1.5 \pm 0.2$$

•
$$\mathcal{R}(\chi_{c2}(2P)) = 2.9 \pm 0.4$$

- Large HQ mass limit: HQ spin and HQ flavour symmetries.
- χ_{c1}(3872):
 - many observables, many puzzles, many interpretations.
- Under the assumption $\chi_{c1}(3872) \equiv \chi_{c1}(2P) \implies$ the prediction follows:

$$\mathcal{R} = \frac{\mathcal{B}(\chi_{c1}(3872) \rightarrow \psi(2S)\gamma)}{\mathcal{B}(\chi_{c1}(3872) \rightarrow J/\psi\gamma)} = 1.7 \pm 0.3$$

• Experimental LHCb 2024 average:

$$\mathcal{R} = 1.67 \pm 0.21 \pm 0.12 \pm 0.04.$$

This agreement supports the assumed identification.

- Open questions:
 - Size of isospin-breaking in $\chi_{c1}(3872)$ decays.
 - Understanding production cross sections.
- Observation of missing conventional states preliminary and necessary step.
- Predictions for unobserved radiative decays to be compared to experimental data still to come →further test of the method and the results.

Thank You!

æ

Further predictions are possible by constructing an nSmS interaction Lagrangian:

- from the decay $J/\psi \rightarrow \eta_c(1S)\gamma$: $\delta_c^{1S1S} = 0.0485 \pm 0.0024 \text{ GeV}^{-1}$
- from the decay $\psi(2S) \rightarrow \eta_c(1S)\gamma$: $\delta_c^{2S1S} = (3.42 \pm 0.26) \times 10^{-3} \text{ GeV}^{-1}$

• from the decay
$$\psi(2S) \rightarrow \eta_c(2S)\gamma$$
:
 $\delta_c^{2S2S} = (0.66 \pm 0.24) \times 10^{-1} \text{ GeV}^{-1}$

• from the decay $\Upsilon(2S) \rightarrow \eta_b(1S)\gamma$: $\delta_b^{2S1S} = (4.50 \pm 0.05) \times 10^{-4} \text{ GeV}^{-1}.$

The large number of predictions confirms the important role of the effective theory approach.

- Degeneracy among spin multiplet members is broken by the chromomagnetic operator.
- Effective Lagrangian for spin symmetry breaking:

$$\mathcal{L}^{SpSB} = \frac{\lambda_J}{2m_Q} \frac{1}{\mathcal{N}} \mathrm{Tr}[\bar{J}_{\mu_1...\mu_n} \sigma_{\alpha\beta} J_{\nu_1...\nu_n} \Phi^{\mu_1...\mu_n \alpha\beta\nu_1...\nu_n}]$$

with normalization $\mathcal{N} = \mathrm{Tr}[\bar{J}_{\mu_1\dots\mu_n}J^{\mu_1\dots\mu_n}].$

- Function Φ ensures invariance under P, C, T and satisfies antisymmetry of σ_{αβ}.
- For S-wave states, hyperfine splitting arises:

$$\mathcal{L}_{S}^{SpSB} = \frac{\lambda_{S}}{2m_{Q}} \frac{1}{\mathcal{N}} \mathrm{Tr}[\bar{J}\sigma_{\alpha\beta} J \sigma^{\alpha\beta}]$$

with spin, parity, and charge quantum numbers $J^{PC} = (0^{-+}, 1^{--})$. • Mass formula for S-wave states:

$$m_H = m_Q + \bar{\Lambda}_S + \frac{-\lambda_1 + d_H \lambda_S}{2m_Q}$$

Mass splitting

• For P-wave states:

$$\mathcal{L}_{P}^{SpSB} = \frac{\lambda_{P}}{2m_{Q}} \frac{1}{\mathcal{N}} \mathrm{Tr}[\bar{J}_{\mu}\sigma_{\alpha\beta}J_{\nu}\Phi^{\alpha\beta\mu\nu}]$$

• P-wave multiplet states $J^{PC} = (0^{++}, 1^{++}, 2^{++}, 1^{+-})$:

$$m_{H} = m_{Q} + \bar{\Lambda}_{P} + \frac{-\lambda_{1}}{2m_{Q}} + \frac{d_{H}^{(1)}\lambda_{P}^{(1)} + d_{H}^{(2)}\lambda_{P}^{(2)} + d_{H}^{(3)}\lambda_{P}^{(3)}}{2m_{Q}}$$

Parameters for mass splitting:

$$\lambda_P^{(1)} = \frac{1}{24} \left(-m_0^2 + 3m_1^2 + m_2^2 - 3m_h^2 \right), \quad \lambda_P^{(2)} = \frac{1}{24} \left(-2m_0^2 - 3m_1^2 + 5m_2^2 \right),$$
$$\lambda_P^{(3)} = \frac{1}{24} \left(-2m_0^2 + 3m_1^2 - m_2^2 \right)$$

where m_0, m_1, m_2, m_h are masses of states in the multiplet.

- Recent discoveries of exotic hadrons include:
 - $P_c(4380)^+$, $P_c(4440)^+$, $P_c(4457)^+$, and $P_c(4312)^+$, observed in $\Lambda_b^0 \to J/\psi p K^-$ decays.
 - X(6900) in $J/\psi J/\psi$ final states.
 - $X_0(2900)$ and $X_1(2900)$ in $B^+ \to D^+ D^- K^+$.
 - $Z_{cs}(4000)^+$ and $Z_{cs}(4220)^+$ in $B^+ \rightarrow J/\psi \phi K^+$.
 - $T_{cc}(3875)^+$ in $D^0D^0\pi^+$.

Multiplets transform under the discrete symmetries C, P, and T:

$$J^{\mu_1\dots\mu_k} \xrightarrow{P} \gamma^0 J_{\mu_1\dots\mu_k} \gamma^0$$

$$J^{\mu_1\dots\mu_k} \xrightarrow{C} \hat{C} (J^{\mu_1\dots\mu_k})^T \hat{C}^{\dagger} (-1)^L$$

$$J^{\mu_1\dots\mu_k} \xrightarrow{T} - \hat{T} J_{\mu_1\dots\mu_k} \hat{T}^{-1}$$

 $\hat{C} = i\gamma^2\gamma^0$ and $T = i\gamma^1\gamma^3$.

The electromagnetic field strength tensor transforms as:

$$F^{\mu\nu} \xrightarrow{P} F_{\mu\nu}, \quad F^{\mu\nu} \xrightarrow{C} - (F^{\mu\nu}), \quad F^{\mu\nu} \xrightarrow{T} - F_{\mu\nu}.$$