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Active Matter
• Active Matter: single components transform energy from internal reservoirs or 

from the surrounding environment to self propel
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Active Matter
• Active Matter: single components transform energy from internal reservoirs or 

from the surrounding environment to self propel

schools of fishes herds of buffalos flocks of birds
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Active Matter
• Active Matter: single components transform energy from internal reservoirs or 

from the surrounding environment to self propel

melanocytic cells colonies of bacteria vibrated nanorods Janus particle

nature experiments
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• Theoretical interest

• Experimental and technological interest

‣ emergence of new features with no counterpart in passive systems

‣ strong connection with biological systems

‣ new paradigm of out-of-equilibrium systems

nanorobotsactive enginesnew bio-inspired materials targeted delivery

spontaneous flows active, liquid, hexatic and solid phases

Active Matter

motility-induced phase separation

5



Brownian motion

··xi(t) = −
dU(x(t))

dxi(t)
+ fi(t) − γ ·xi(t) + 2D ξi(t)

• Langevin equations

external and interaction forces 
(conservative + non-conservative)

thermal bath

(friction + noise)
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Active particles models 

··xi(t) = −
dU(x(t))

dxi(t)
+ fi(t) − γ ·xi(t) + 2D ξi(t)

• Langevin equations

+ai(t) a(t)

external and interaction forces 
(conservative + non-conservative)

thermal bath

(friction + noise)

active force 
(self-propulsion)

−γ ·x(t)
+ 2Dξ(t)
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Active particles models 

··xi(t) = −
dU(x(t))

dxi(t)
+ fi(t) − γ ·xi(t) + 2D ξi(t)

• Langevin equations

+ai(t) a(t)

external and interaction forces 
(conservative + non-conservative)

thermal bath

(friction + noise)

active force 
(self-propulsion)

−γ ·x(t)
+ 2Dξ(t)

Passive 
Brownian 

Particle

Active 
Brownian 
Particle

• Passive vs Active motion
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Work Observables and Distributions

p(𝒲τ = w) ≍ e−τI(w)

I(w)

𝒲τ =
1
τ ∫

τ

0
G(x(s), ·x(s), a(s)) ·x(s) ds

• Dynamical observables

• Large Deviations Theory

‣ integrated observables measured along particle trajectories


‣  generic function of positions velocity and active force


‣  essential to make  intensive in time
G
1/τ 𝒲τ

Rate Function (RF) ‣ extension of thermodynamic potentials 
to out of equilibrium configurations

‣ asymptotic equivalence

• Active Work 𝒲τ =
1
τ ∫

τ

0
a(s) ·x(s) ds ‣ it captures the energy cost to sustain self propulsion


‣ important in applications: thermodynamical efficiency

Scaled Cumulant 
Generating Function
(SCGF)

ϕ(λ) = lim
τ→∞

1
τ

ln(⟨eλ𝒲τ⟩)

I(w) = sup
λ∈O

{λw − ϕ(λ)} ‣ RF and SCGF often related through 
Legendre-Fenchel transform

‣ function whose derivatives generate 
the moments of the distribution

7



Singular distributions
• Rate Functions can be singular

• Active Work in a system of interacting active particles

‣ In singular trajectories 
particles dragged 
against their active force

‣ Dynamical Phase Transitions 

    change in the physical mechanism producing fluctuations  
‣ Trajectory Separation  
    trajectories in different regions of the RF behave dynamically different

𝒲τ =
1
τ ∫

τ

0
a(s) ·x(s) ds

• Many examples in the context of Langevin models, urn model, ferromagnets, glassy systems
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Analytical study of fluctuations of Active Work
• Setting                                                          

single particle with external potential

experimental realisations

confining potentials mimic the trapping 
of other particles at finite density

analytical results feasible

• Scope 

• Approach 

analytical evaluation of the Rate Function through Large Deviations techniques

• Interest ‣ Theoretical

• energy cost to sustain self propulsion

‣ Practical

• thermodynamic efficiency of Active Engines

• Active Ornstein-Uhlenbeck Particle  (AOUP) 
free or with external harmonic potential

·x(t) = Faγ−1a(t) − kx(t) + 2T/γ ξ(t)
·a(t) = − γRa(t) + 2DR η(t)

‣ investigation of distribution singularities 
and Dynamical Phase Transitions

< a(t)a(t′￼) > ≃ (e−γR(t−t′￼) − e−γR(t+t′￼))
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Free AOUP
• Free AOUP        

in  dimensionsd
·x(t) = Faγ−1a(t) + 2T/γ ξ(t)
·a(t) = − γRa(t) + 2DR η(t) • Active work 𝒲a =

1
τ ∫

τ

0
a(t) ·r(t) dt

J Stat Mech 2021, 

Semeraro, Suma, Petrelli, Cagnetta and Gonnella

• Probability distribution  
evaluated through path integral techniques

p(w) = ⟨(δ(𝒲a − w)⟩) ≍ e−τI(w)

‣ no singularities in I(w)

 0
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 0.012
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I(w
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𝒫τ(x(τ), a(τ)) ∝ p(x0, a0) ×

× exp {−
1

4DT ∫
τ

0
[ ·x(s) − Faγ−1a(s)]2 ds}exp {−

1
4DR ∫

τ

0
[ ·a(s) + γRa(s)]2 ds}

Onsager-Machlup weight for trajectories

initial conditions distribution

‣ Saddle-point estimation of the RF

‣ Trajectory path probability

‣ Laplace representation of the  functionδ p(w) =
1

2πı ∫
+ı∞

−ı∞
e−τλw ⟨eλ𝒲a⟩

‣ Cumulant Generating Function ϕ(λ) = ⟨eλ𝒲a⟩ ∼ e
τ
2 (γR− γ2

R − 4DRλγ(1 + Tλ))
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Harmonically confined AOUP
• Harmonically-confined 

AOUP in 1 d
γ ·x(t) = a(t) − kx(t) + 2γT ξ(t)
·a(t) = − νa(t) + F 2ν η(t)

‣ Trajectory path probability


‣ Laplace representation of the  function


‣ Cumulant Generating Function


‣ Saddle-point estimation of the RF

δ

• Direct evaluation of  through path integral 
techniques becomes difficult

p(w)

‣ Time-discretization procedure


‣ Evaluation of the SCGF functional form


‣ Evaluation of the SCGF domain


‣ Continuum limit


‣ Evaluation of the RF through Legendre-Fenchel transform

• New Large Deviations results  
for quadratic functionals of 
Gauss-Markov chains

J Math Phys 2023, 

Zamparo and Semeraro

𝒫τ ∝ {−
1
2

(x(0) a(0))Σ−1
0 (x(0)

a(0))}exp {−
1
4 ∫

τ

0
[ ·x(s) − a(s) + κx(s)]2 ds}exp {−

1
4Pe2 ∫

τ

0
[ ·a(s) + a(s)]2 ds}

Onsager-Machlup weight for trajectoriesinitial conditions distribution

p(w) =
1

2πı ∫
+ı∞

−ı∞
e−τλw ⟨eλ𝒲a⟩
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LDT for quadratic functionals of Gauss-Markov chains

• Time-discretizatioin procedure

• Evaluation of the Scaled Cumulant Generating Function

J Math Phys 2023, 

Zamparo and 

Semeraro

ϕ(λ) = lim
ϵ→0

φ(μ)
ϵ

Xn+1 = SXn + Gn

WN =
1
2

< X0, LX0 > +
1
2

< XN, RXN > +
1
2

N

∑
n=1

< Xn, UXn > +
1
2

N

∑
n=2

< Xn, VXn−1 >

φ(μ) = lim
N→∞

1
N

log < eλWN > = −
1

4π ∫
2π

0
ln det Fλ(θ) dθ

Fλ(θ) = (I − STeıθ)(I − STe−ıθ) − λ(U + Ve−ıθ + VTeıθ)

 quadratic functionalWτ ⋅ τ →

Langevin Equations  Markov chain→

boundary terms bulk contributions

Primary domain P:

 is positive definite for all Fλ(θ) θ ∈ (0,2π)

Effective domain E: 

the matrices  and  related to the 
initial conditions ( ) and               
boundary terms  

are positive definite

ℒλ ℛλ
Σ0

(L, R)

• Evaluation of the Rate Function

I(w) = sup
λ∈E

{wλ − ϕ(λ)}continuum limit Legendre-Fenchel transform
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small Pe, κ

singularities

large Pe, κintermediate Pe, κ

singularities

Singular 
Rate 
Function
PRL 2023, 

Semeraro, Gonnella, 
Suma and Zamparo

• SCGF
ϕ(λ) =

1 + κ
2

−
1
2

(1 + κ)2 − 4Pe2λ(1 + λ)

Pe =
Fd
kBT κ =

kd2

kBT

• Rate function

I(w) =
(w − w−)λ− + i(w) w ≤ w−
i(w) w− < w < w+

(w − w+)λ+ − i(w) w ≥ w+

i(w) =
1
2

1 + ( w
Pe )

2

+ (1 + κ)2 + Pe2 − 1 − κ − w
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Linear Tails and Trajectory Separation
• Physical Mechanism:                                                         

singular trajectories are characterised and selected by     
big jumps in the initial ( ) or final ( ) valuesw ≪ w− w ≫ w+

PRL 2023, Semeraro, Gonnella, Suma and Zamparo
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• Underdamped Brownian particle 
with external harmonic potential {

·x = v(t)
·v(t) = − γv(t) − kx(t) + 2D ξ(t)

• Power injected by the random force Wτ =
2D
τ ∫

τ

0
ξ(t) ·x(t)dt =

1
2τ

[v2(τ) − v2(0)] +
k
2τ

[x2(τ) − x2(0)] +
γ
τ ∫

τ

0
v(t) ·x(t) dt

J Phys A, 

Carollo, Semeraro, 

Gonnella and ZamparoFluctuations of Injected power

• Singular Rate Functions • Big jumps in the 
initial conditions

(a) (b) (c)

(d) (e) (f)

singularities

‣ Fixed initial conditions ‣ Stationary initial conditions ‣ Generic uncorrelated initial conditions

singularity

(a) (b) (c)

(d)
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Take-home messages
• Active matter is made of single components 

which transform energy to self propel
many examples from 
nature and experiments

• Active Work (and in general all work and 
work-related observables) play a major role 
on theoretical and experimental level

• Peculiar tail structures of Rate Functions 
signal peculiar dynamical behaviours

fluctuations described through 
Large Deviation Theory                 
by Rate Functions

singularities 
and linear tails

big jumps 

(general mechanism)

17



Acknowledgements
Prof. Giuseppe Gonnella 

       Università degli Studi di Bari  
       and INFN Bari

Dr. Antonio Suma 
 Università degli Studi di Bari  
  and INFN Bari

Dr. Marco Zamparo 
  Università del Piemonte Orientale

Prof. Federico Corberi 
       Università degli Studi di Salerno 





23



• Ensemble of interacting          
Active Brownian Particles

··x(t) = − γ ·x(t) + Fa ̂ni ∑i≠j ∇Ui(rij) 2γkBT ξi(t)
·θi(t) = 2Dθ ηi

• Entropy production
(similar to Active Work) 𝒮τ = lim

τ→∞

1
τ

Fa

kBT ∫
τ

0
̂ni(s) ·xi(s) ds

EPL 2024, 

Semeraro, Negro, Suma, 

Corberi and GonnellaFluctuations of Entropy Production

• Peculiar tail structures • Associated to particles close to topological defects
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Take-home messages
• Active matter is made of single components 

which transform energy to self propel
many examples from 
nature and experiments

• Active Work (and in general all work and 
work-related observables) play a major role 
on theoretical and experimental level

• Peculiar take structures of Rate Functions 
signal peculiar dynamical behaviours

fluctuations described through 
Large Deviation Theory                 
by Rate Functions

singularities 
and linear tails

big jumps 

(general mechanism)

anomalous tail 
structure

motion close 
to defects
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Free AOUP: saddle point J Stat Mech 2021, 

Semeraro, Suma, Petrelli, 

Cagnetta and Gonnella

⟨eμ𝒲a⟩ =
eτ d

2 (γR−α)

( 1 + e−2τα

2 )
d/2 (2 +

γ2
R + α2

γRα tanh(τα))
d/2 = F(μ)eτ d

2 (γR−α)• Cumulant Generating Function α = γ2
R − 4DRμγ(1 + DTγμ)

Introduction to Path-Integral Methods in Physics and Polymer Science, 
Wiegel 1986, Work Scientific

 0

 1

 2

 3

 4

 5

-100 -50  0  50  100

Im
(λ

)

Re(λ)

λ1
λ2

τ=1
τ=10
τ=20
τ=50

τ=100

Im
(λ

)

Re(λ)

‣ Saddle-points

p(w) ≍
F(μ̃(s))

2π ( 2π
𝒞 )

1/2

e−τI(w)

A =
γ2

RDT

4DR
μ̃1/2 =

γ2
R

4DRγ (−
1 ± 1 + 4A

2A )• Sources of singularities ‣ Branch points

‣ Poles of F(μ) μ̃1/2(y) =
γ2

R

4DRγ
−

1 ± 1 + 4A(1 + y2)

2A

‣ Steepest descent paths

w > 0 w < 0

μw − ϕ(μ) = 0 → μ̃(s)
± =

γ2
R

4DRγ
−

1 ± 1 + 4A ( 4w̃2 − 1
4(A + w̃)2 )

2A

Im[μw − ϕ(μ)] = 0

• Saddle-point estimation of p(w) =
1

2πı ∫
+ı∞

−ı∞
dμ F(μ)eτ d

2 (γR−α)

‣ Integration along steepest dissent paths 
deformed to pass by                            
and avoid non-analicities of the integrand

μ̃(s)
± Extraction of the Rate Function I(w)
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LDT for quadratic functionals of Gauss-Markov chains
‣ Continuous model ( )γ, T, d = 1

·x(t) = a(t) − κx(t) + 2 ξ(t)
·a(t) = − a(t) + Pe 2 η(t)

𝒲a ⋅ τ = ∫
τ

0
a(t) ·r(t) dt

‣ Discrete model as a Gauss-Markov chain        
 sequence of normal rvτ = N ⋅ dt, xn, ax ≡ x(n ⋅ dt), a(n ⋅ dt), {ξn}, {ηn}

rn+1 = (1 − κdt) rn + an dt + 2dt ξn

an+1 = (1 − dt) an + Pe 2dt ηn

Xn+1 = SXn + Dζn

S = (1 − κdt dt
0 1 − dt)

Xn = (xn, an)T

D =
2dtdt dt

0 Pe 2dt
ζn = (ξn 0

0 ηn)

ΣN =

Σ−1
0 + S⊤D−2S −S⊤D−2

−D−2S D−2 + S⊤D−2S ⋱
⋱ ⋱ ⋱

⋱ D−2 + S⊤D−2S −S⊤D−2

−D−2S D−2

−1

{(x0, a0), …, (aN, xN)}
‣ Entire trajectory is Gaussian distributed with                

zero mean and covariance matrix 

Σ0 =
1 + κ + Pe2

κ(1 + κ)
Pe2

1 + κ

Pe2

1 + κ Pe2
Σ0 = (σ2

x 0
0 σ2

a)

‣ Discretisation of Active Work as a quadratic functional

WN =
1
2

N

∑
n=1

(an + an−1)(rn − rn−1) =
1
2

(r0 a0 … rN aN) 𝖬N

r0
a0
⋮
rN
aN

𝖬N ≡

−E+ E⊤
−

E− 0 ⋱
⋱ ⋱ ⋱

⋱ 0 E⊤
−

E− E+

E± ≡
1
2 ( 0 1

±1 0)quasi-Toeplitz block matrix

initial conditions 
covariance matrix
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φ(λ) = lim
N→∞

1
N

log < eλWN > = −
1

4π ∫
2π

0
ln det Fλ(θ) dθ

LDT for quadratic functionals of Gauss-Markov chains

‣ Positive definiteness

Σ−1
N − λMN =

L V⊤

V U ⋱
⋱ ⋱ ⋱

⋱ U V⊤

V R

- bulk block Toeplitx matrix  is positive definite𝖳N

log < eλWN > = −
1
2

ln det(Σ−1
N − λMN) − N ln(2 dt Pe) −

1
2

ln det Σ0

Gaussian integral

‣ Evaluation of the SCGF (generalization of Szegö theorem) Symbol matrix

Fλ(θ) ≡ Ve−iθ + U + V⊤eiθ

−(D−2S + λE−)e−iθ + D−2 + S⊤D−2S − (D−2S + λE−)⊤eiθ

L = Σ−1
0 + S⊤D−2S + λE+

U = D−2 + S⊤D−2S

R = D−2 − λE+

V = − D−2S − λE−

𝖳N

bulk block Toeplitz

symbol matrix             
positive definite for all 

Fλ(θ)
(0,2π)

Primary domain P = (λ̃−, λ̃+)

- Schur complement 𝖲N ≡ (
L − V⊤(𝖳−1

N )11V −V⊤(𝖳−1
N )1NV⊤

−V(𝖳−1
N )N1V R − V(𝖳−1

N )NNV⊤) positive definite(ℒλ 0
0 ℛλ)N → ∞

ℒλ ≡ Σ−1
0 + S⊤D−2S + λE+ − (D−2S + λE−)⊤Φλ(0)H−1

λ (D−2S + λE−)

ℛλ ≡ D−2 − λE+ − (D−2S + λE−)K−1
λ Φλ(0)(D−2S + λE−)⊤

positive 
definiteness of

Effective domain E = (λ−, λ+)

Hλ ≡ I + (D−2S + λE−)Φλ(1) Kλ ≡ I + Φλ(1)(D−2S + λE−)Φλ(n) ≡
1

2π ∫
2π

0
F−1

λ (θ)e−inθdθ
invertible

Hermitian
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Examples of Singular Rate Functions

7

• Other examples for single 
particle models:

PRL 2003, Cohen, van Zon

4, Burioni

• Heat exchanged between non-equilibrium aging
glassy systems and the thermal bath

Corresponding to
different heat
exchange
mechanisms

• Heat exchanged by an overdamped
Brownian particle dragged by a moving
harmonic potential

PRL 2014, Nossan, Evans, Majumdar

• Other examples for interacting
particle systems, urn models, 
etc:

PRE 2014, Zannetti, Corberi, Gonnella

…l.
J Stat Mech 2012, Seifert, Speck et al

EPL 2004, Crisanti, Ritort
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Examples of Singular Rate Functions
• Heat released by a ferromagnet after a

quench below the critical point
J Phys A 2013, Piscitelli, 

Corberi, Gonnella.

8

EPL 2004, Crisanti et al

• Heat exchanged between non-equilibrium aging
glassy systems and the thermal bath in contact

a macroscopic
fraction of heat is
released by the 
! = 0 component 
of the order
parameter

condensation at
zero wave vector

signals of different
heat exchange
mechanisms

• Other examples:
PRL 2014, Gambassi

Presented in Venice, this
conference, october 2012


