Università degli Studi di Bari Aldo Moro **Dipartimento Interateneo di Fisica** Michelangelo Merlin

Bari Theory Xmas Workshop 2024 Work fluctuations, **Singular Distributions and Big Jumps** for a harmonically confined **Active Particle**

Massimiliano Semeraro

Università degli Studi di Bari and INFN Sezione di Bari, Italy massimiliano.semeraro@uniba.it

Aula A «Giuseppe Nardulli» Dipartimento Interateneo di Fisica «Michelangelo Merlin» All students are welcome!

Outline

Singular Distributions

Active Work and Big Jumps

Take-home messages

single components transform energy from internal reservoirs or • Active Matter: from the surrounding environment to self propel

Nanometres

Micrometres

single components transform energy from internal reservoirs or • Active Matter: from the surrounding environment to self propel

schools of fishes

herds of buffalos

flocks of birds

• Active Matter:

single components transform energy from internal reservoirs or from the surrounding environment to self propel

melanocytic cells

colonies of bacteria

vibrated nanorods

Janus particle

Active Matter

• Theoretical interest

- strong connection with biological systems
- new paradigm of out-of-equilibrium systems

spontaneous flows

• Experimental and technological interest

new bio-inspired materials

targeted delivery

emergence of new features with no counterpart in passive systems

motility-induced phase separation

active engines

nanorobots

Brownian motion

• Langevin equations

$$\ddot{x}_{i}(t) = -\frac{dU(x(t))}{dx_{i}(t)} + f_{i}(t) - \gamma \dot{x}_{i}(t) + \sqrt{2D} \xi_{i}(t)$$
external and interaction forces thermal bath (friction + noise)

• Langevin equations

$$\ddot{x}_{i}(t) = -\frac{dU(x(t))}{dx_{i}(t)} + f_{i}(t) - \gamma \dot{x}_{i}(t) + \sqrt{2D} \xi_{i}(t)$$
external and interaction forces thermal bath (friction + noise)

Active particles models

• Langevin equations

$$\ddot{x}_{i}(t) = -\frac{dU(x(t))}{dx_{i}(t)} + f_{i}(t) - \gamma \dot{x}_{i}(t) + \sqrt{2D} \xi_{i}(t)$$

external and interaction forces thermal bath

(conservative + non-conservative)

(friction + noise)

Passive vs Active motion

Passive Brownian Particle

Active Brownian Particle

Work Observables and Distributions

ds

Dynamical observables

$$\mathcal{W}_{\tau} = \frac{1}{\tau} \int_0^{\tau} G(x(s), \dot{x}(s), a(s)) \dot{x}(s)$$

Active Work

$$\mathcal{W}_{\tau} = \frac{1}{\tau} \int_{0}^{\tau} a(s) \dot{x}(s) ds$$

- Large Deviations Theory $p(\mathcal{W}_{\tau} = w) \succeq e^{-\tau I(w)}$ asymptotic equivalence Rate Function (RF) I(W)extension of thermodynamic potentials to out of equilibrium configurations $\phi(\lambda) = \lim_{\tau} \frac{1}{-} \ln(\langle e^{\lambda \mathcal{W}_{\tau}} \rangle)$ Scaled Cumulant Generating Function function whose derivatives generate the moments of the distribution (SCGF) $\tau \rightarrow \infty \ T$ $I(w) = \sup\{\lambda w - \phi(\lambda)\} \triangleright$ RF and SCGF often related through Legendre-Fenchel transform
 - $\lambda \in O$

- integrated observables measured along particle trajectories
- G generic function of positions velocity and active force
- $1/\tau$ essential to make \mathscr{W}_{τ} intensive in time

it captures the energy cost to sustain self propulsion ds important in applications: thermodynamical efficiency

Singular distributions

Rate Functions can be singular

- Many examples in the context of Langevin models, urn model, ferromagnets, glassy systems
- Active Work in a system of interacting active particles

$$\mathcal{W}_{\tau} = \frac{1}{\tau} \int_{0}^{\tau} a(s) \dot{x}(s) \, ds$$

In singular trajectories particles dragged against their active force

Dynamical Phase Transitions

change in the physical mechanism producing fluctuations **Trajectory Separation**

trajectories in different regions of the RF behave dynamically different

Analytical study of fluctuations of Active Work

Setting

single particle with external potential

 Active Ornstein-Uhlenbeck Particle (AOUP) free or with external harmonic potential

Approach analytical evaluation of the Rate Function through Large Deviations techniques

Interest Theoretical

- energy cost to sustain self propulsion
- Practical
 - thermodynamic efficiency of Active Engines

confining potentials mimic the trapping of other particles at finite density

experimental realisations

analytical results feasible

$$\begin{cases} \dot{x}(t) = F_a \gamma^{-1} a(t) - k x(t) + \sqrt{2T/\gamma} \xi(t) \\ \dot{a}(t) = -\gamma_R a(t) + \sqrt{2D_R} \eta(t) \\ < a(t)a(t') > \simeq \left(e^{-\gamma_R(t-t')} - e^{-\gamma_R(t+t')}\right) \end{cases}$$

Scope investigation of distribution singularities and Dynamical Phase Transitions

9

J Stat Mech 2021, Semeraro, Suma, Petrelli, Cagnetta and Gonnella

- Free AOUP in *d* dimensions $\begin{cases} \dot{x}(t) = F_a \gamma^{-1} a(t) + \sqrt{2T/\gamma} \ \xi(t) \\ \dot{a}(t) = -\gamma_R a(t) + \sqrt{2D_R} \ \eta(t) \end{cases}$ Free AOUP
- Probability distribution $p(w) = \langle (\delta(\mathcal{W}_a w) \rangle) \asymp e$ evaluated through **path integral** techniques
 - Trajectory path probability initial conditions distribution $\mathscr{P}_{\tau}(x(\tau), a(\tau)) \propto p(x_0, a_0) \times$ $\times exp\left\{-\frac{1}{4D_{T}}\int_{0}^{\tau} [\dot{x}(s) - F_{a}\gamma^{-1}a(s)]^{2} ds\right\}exp\left\{-\frac{1}{4D_{R}}\int_{0}^{\tau} [\dot{a}(s) + \gamma_{R}a(s)]^{2} ds\right\}$

- Laplace representation of the δ function $p(w) = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} dx$
- $\phi(\lambda) = \langle e^{\lambda \mathcal{W}_a} \rangle \sim e^{\frac{\tau}{2}(\gamma_R \sqrt{\alpha})}$ Cumulant Generating Function
- Saddle-point estimation of the RF

• Active work
$$\mathscr{W}_a = \frac{1}{\tau} \int_0^{\tau} a(t)\dot{r}(t)$$

$$e^{-\tau I(w)}$$

$$\infty$$

$$e^{-\tau\lambda w} \langle e^{\lambda \mathcal{W}_a} \rangle$$

$$\left(\gamma_R^2 - 4D_R\lambda\gamma(1+T\lambda)\right)$$

• no singularities in I(w)

Onsager-Machlup weight for trajectories

Harmonically confined AOUP

 Harmonically-confined AOUP in 1 d

$$\begin{cases} \gamma \dot{x}(t) = a(t) - kx(t) + \sqrt{2\gamma} \\ \dot{a}(t) = -\nu a(t) + F\sqrt{2\nu} \eta(t) \end{cases}$$

- Direct evaluation of p(w) through path integral techniques becomes difficult
 - Trajectory path probability

 $\mathscr{P}_{\tau} \propto \left\{ -\frac{1}{2} (x(0) \ a(0)) \Sigma_{0}^{-1} \begin{pmatrix} x(0) \\ a(0) \end{pmatrix} \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4} \int_{0}^{\tau} [\dot{x}(s) - a(s) + \kappa x(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left\{ -\frac{1}{4Pe^{2}} \int_{0}^{\tau} [\dot{a}(s) + a(s)]^{2} \ ds \right\}_{\mathbf{H}}^{exp} \left$

initial conditions distribution

Onsager-Machlup weight for trajectories

Laplace representation of the δ function \checkmark

$$p(w) = \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} e^{-\tau \lambda w} \left\langle e^{\lambda \mathcal{W}_a} \right\rangle$$

- Cumulant Generating Function 🗶
- Saddle-point estimation of the RF

 $\overline{\gamma T} \xi(t)$

t)

 New Large Deviations results for quadratic functionals of **Gauss-Markov chains**

J Math Phys 2023, Zamparo and Semeraro

- Time-discretization procedure
- Evaluation of the SCGF functional form
- Evaluation of the SCGF domain
- Continuum limit
- Evaluation of the RF through Legendre-Fenchel transform

LDT for quadratic functionals of Gauss-Markov chains

- Time-discretizatioin procedure Langevin Equat $W_N = \frac{1}{2} < X_0, LX_0 >$ $W_{\tau} \cdot \tau \rightarrow \text{ quadratic functional}$
- Evaluation of the Scaled Cumulant Generating Function

$$\varphi(\mu) = \lim_{N \to \infty} \frac{1}{N} \log \langle e^{\lambda W_N} \rangle = -\frac{1}{4\pi} \int_0^{2\pi} \ln \det F_{\lambda}(\theta) \ d\theta$$
$$F_{\lambda}(\theta) = (I - S^T e^{i\theta})(I - S^T e^{-i\theta}) - \lambda(U + V e^{-i\theta} + V^T e^{i\theta})$$

Evaluation of the Rate Function

continuum limit
$$\phi(\lambda) = \lim_{\epsilon \to 0} \frac{\varphi(\mu)}{\epsilon}$$

tions
$$\rightarrow$$
 Markov chain $X_{n+1} = SX_n + G_n$
 $\Rightarrow + \frac{1}{2} < X_N, RX_N > + \frac{1}{2} \sum_{n=1}^N < X_n, UX_n > + \frac{1}{2} \sum_{n=2}^N < X_n, VX_n$

boundary terms

bulk contributions

Primary domain P: $F_{\lambda}(\theta)$ is positive definite for all $\theta \in (0, 2\pi)$

Effective domain E:

the matrices \mathscr{L}_{λ} and \mathscr{R}_{λ} related to the initial conditions (Σ_0) and boundary terms (L, R)are positive definite

Legendre-Fenchel transform

$$I(w) = \sup_{\lambda \in E} \{w\lambda - \phi(\lambda)\}$$

Singular Rate Function

 SCGF $\phi(\lambda) = \frac{1+\kappa}{2} - \frac{1}{2}\sqrt{(1+\kappa)^2 - 4Pe^2\lambda(1+\kappa)^2} - 4Pe^2\lambda(1+\kappa)^2 - 4Pe^2$ $Pe = \frac{Fd}{k_B T} \quad \kappa = \frac{kd^2}{k_B T}$

PRL 2023, Semeraro, Gonnella, Suma and Zamparo small Pe, κ

Rate function

$$I(w) = \begin{cases} (w - w_{-})\lambda_{-} + i(w) & w \le w_{-} \\ i(w) & w_{-} < w < w_{+} \\ (w - w_{+})\lambda_{+} - i(w) & w \ge w_{+} \end{cases}$$
$$i(w) = \frac{1}{2} \left(\sqrt{1 + \left(\frac{w}{Pe}\right)^{2}} + \sqrt{(1 + \kappa)^{2} + Pe^{2} - 1 - \kappa - w} \right)$$

intermediate Pe, κ

large Pe, κ

13

• Physical Mechanism:

Linear Tails and Trajectory Separation

14

Fluctuations of Injected power

Carollo, Semeraro, Gonnella and Zamparo

• $W \ll W_{-}$

$$\bar{\xi}(t)\dot{x}(t)dt = \frac{1}{2\tau}[v^2(\tau) - v^2(0)] + \frac{k}{2\tau}[x^2(\tau) - x^2(0)] + \frac{\gamma}{\tau}\int_0^\tau v(t)\dot{x}$$

 $W \gg W_+$

Big jumps in the initial conditions

J Phys A,

dt

Take-home messages

• Active matter is made of single components which transform energy to **self propel**

Active Work (and in general all work and work-related observables) play a major role on theoretical and experimental level

Peculiar tail structures of Rate Functions signal peculiar dynamical behaviours

fluctuations described through Large Deviation Theory by Rate Functions

big jumps (general mechanism)

Acknowledgements

Prof. Giuseppe Gonnella

Università degli Studi di Bari and INFN Bari

Dr. Antonio Suma

Università degli Studi di Bari and INFN Bari

Istituto Nazionale di Fisica Nucleare

Prof. Federico Corberi

Università degli Studi di Salerno

Dr. Marco Zamparo Università del Piemonte Orientale

MUR PRIN RECAS TTOOO

Fluctuations of Entropy Production

- Ensemble of interacting **Active Brownian Particles**
- Entropy production (similar to Active Work)

- $\begin{cases} \ddot{x}(t) = -\gamma \dot{x}(t) + F_a \hat{n}_i \sum_{i \neq j} \nabla U_i(r_{ij}) \sqrt{2\gamma k_B T} \xi_i(t) \\ \dot{\theta}_i(t) = \sqrt{2D_\theta} \eta_i \end{cases}$
- $\mathcal{S}_{\tau} = \lim_{\tau \to \infty} \frac{1}{\tau} \frac{F_a}{k_B T} \int_0^{\tau} \hat{n}_i(s) \dot{x}_i(s) ds$

Peculiar tail structures

Semeraro, Negro, Suma, Corberi and Gonnella

Associated to particles close to topological defects

16

Take-home messages

- Active matter is made of single components which transform energy to **self propel**
- Active Work (and in general all work and work-related observables) play a major role on theoretical and experimental level

Peculiar take structures of Rate Functions signal peculiar dynamical behaviours

fluctuations described through Large Deviation Theory by Rate Functions

singularities big jumps and linear tails (general mechanism) motion close anomalous tail to defects structure

Free AOUP: saddle
• Cumulant Generating Function
Miroduction to Path-Integral Methods in Physics and Polymer Science,
Wiegel 1986, Work Scientific
• Sources of singularities
• Branch points

$$\tilde{\mu}_{1/2} = \frac{\gamma_R^2}{4D_R\gamma} \left(2 + \frac{1}{2} \right)^{1/2} \left(2 + \frac{1}{2} \right$$

Saddle-point estimation of $p(w) = \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} d\mu \ F(\mu) e^{\tau \frac{d}{2}(\gamma_R - \alpha)}$

Steepest descent paths

$$Im[\mu w - \phi(\mu)] = 0$$

Saddle-points $\mu w - \phi(\mu) = 0 \rightarrow \tilde{\mu}_{\pm}^{(s)} = \frac{\gamma_R^2}{4D_R\gamma} \left| -\frac{1 \pm \sqrt{1 + 4A\left(\frac{4\tilde{w}^2 - 1}{4(A + \tilde{w})^2}\right)}}{2A} \right|$

Integration along steepest dissent paths deformed to pass by $\tilde{\mu}_{+}^{(s)}$ and avoid non-analicities of the integrand

$$p(w) \asymp \frac{F(\tilde{\mu}^{(s)})}{2\pi} \left(-\frac{1}{2\pi}\right)^{-1}$$

 \rightarrow Extraction of the Rate Function I(w)

LDT for quadratic functionals of Gauss-Markov chains

Continuous model (
$$\gamma$$
, T , $d = 1$)

$$\begin{aligned}
\tau = N \cdot dt, x_{p} \\
\dot{x}(t) = a(t) - \kappa x(t) + \sqrt{2} \xi(t) \\
\dot{a}(t) = -a(t) + Pe\sqrt{2} \eta(t)
\end{aligned}$$
initial conditions
covariance matrix
$$\Sigma_{0} = \begin{pmatrix} \frac{1 + \kappa + Pe^{2}}{\kappa(1 + \kappa)} & \frac{Pe^{2}}{1 + \kappa} \\
\frac{Pe^{2}}{1 + \kappa} & Pe^{2} \end{pmatrix} \qquad \Sigma_{0} = \begin{pmatrix} \sigma_{x}^{2} & 0 \\
0 & \sigma_{a}^{2} \end{pmatrix}$$

• Entire trajectory is Gaussian distributed with
$$\{(x_0, a_0), ..., (a_N, x_N)\}$$
 zero mean and covariance matrix

Discretisation of Active Work as a quadratic functional

quasi-Toeplitz block matrix -

Discrete model as a Gauss-Markov chain $x_n, a_x \equiv x(n \cdot dt), a(n \cdot dt), \{\xi_n\}, \{\eta_n\}$ sequence of normal rv $r_n + a_n dt + \sqrt{2dt} \xi_n \longrightarrow X_{n+1} = SX_n + D\zeta_n \qquad X_n = (x_n, a_n)^T$ $a_n + Pe\sqrt{2dt} \eta_n$

$$S = \begin{pmatrix} 1 - \kappa dt & dt \\ 0 & 1 - dt \end{pmatrix} \qquad D = \begin{pmatrix} \sqrt{2dt}dt & dt \\ 0 & Pe\sqrt{2dt} \end{pmatrix} \qquad \zeta_n = \begin{pmatrix} \xi_n & 0 \\ 0 & \eta \end{pmatrix}$$
$$\Sigma_N = \begin{pmatrix} \Sigma_0^{-1} + S^{\mathsf{T}}D^{-2}S & -S^{\mathsf{T}}D^{-2} \\ -D^{-2}S & D^{-2} + S^{\mathsf{T}}D^{-2}S & \ddots \\ & \ddots & \ddots & \ddots \\ & \ddots & \ddots & \ddots \\ & \ddots & D^{-2} + S^{\mathsf{T}}D^{-2}S & -S^{\mathsf{T}}D^{-2} \\ & & -D^{-2}S & D^{-2} \end{pmatrix}^{-1} \qquad (r_0)$$

$$\mathsf{M}_{N} \equiv \begin{pmatrix} -E_{+} & E_{-}^{\top} & & \\ E_{-} & 0 & \ddots & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & 0 & E_{-}^{\top} \\ & & & E_{-} & E_{+} \end{pmatrix} \qquad \qquad E_{\pm} \equiv \frac{1}{2} \begin{pmatrix} 0 & 1 \\ \pm 1 & 0 \end{pmatrix}$$

LDT for quadratic functionals of Gauss-Markov chains

Evaluation of the SCGF (generalization of Szegö theorem)

$$\varphi(\lambda) = \lim_{N \to \infty} \frac{1}{N} \log \langle e^{\lambda W_N} \rangle = -\frac{1}{4\pi} \int_0^{2\pi} \ln \det F_{\lambda}($$

Positive definiteness

$$\log \langle e^{\lambda W_N} \rangle = -\frac{1}{2} \ln \det(\Sigma_N^{-1} - \lambda M_N) - N \ln(2 \ dt \ Pe) - \frac{1}{2} \ln \det \Sigma_0 \ \Sigma_N^{-1} - \lambda M_N = \begin{pmatrix} L & V^{\top} & T_N \\ V & U & \ddots & \ddots \\ \ddots & U & V^{\top} \\ Gaussian \ integral \end{pmatrix} \begin{pmatrix} L = \Sigma_0^{-1} + S^{\top} D^{-2} \\ R = D^{-2} - \lambda E_+ \\ U = D^{-2} + S^{\top} D^{-2} \\ V = -D^{-2}S - \lambda E \\ V = -D^{-2}S - \lambda E \end{pmatrix}$$

$$= \text{ bulk block Toeplitx matrix } T_N \text{ is positive definite} \longrightarrow \text{ symbol matrix } F_\lambda(\theta) \\ \text{ positive definite for all } (0, 2\pi) \longrightarrow \text{ Primary domain } P = (\tilde{\lambda} - V^{\top} (T_N^{-1})_{1N} V - V^{\top} (T_N^{-1})_{1N} V^{\top}) \xrightarrow{N \to \infty} \begin{pmatrix} \mathscr{L}_\lambda & 0 \\ 0 & \mathscr{R}_\lambda \end{pmatrix} \text{ positive definite}$$

 $(-V(\mathsf{T}_N^{-1})_{N1}V \quad R - V(\mathsf{T}_N^{-1})_{NN}V')$ Hermitian $\mathscr{L}_{\lambda} \equiv \Sigma_0^{-1} + S^{\mathsf{T}} D^{-2} S + \lambda E_+ - (D^{-2} S)$ positive definiteness of $\begin{aligned}
\mathcal{R}_{\lambda} &\equiv D^{-2} - \lambda E_{+} - (D^{-2}S + \lambda E_{-})K_{\lambda}^{-1} \\
\Phi_{\lambda}(n) &\equiv \frac{1}{2\pi} \int_{0}^{2\pi} F_{\lambda}^{-1}(\theta) e^{-in\theta} d\theta \qquad H_{\lambda} &\equiv I + (D^{-2}S + \lambda E_{-})K_{\lambda}^{-1}
\end{aligned}$

Symbol matrix

 $(\theta) d\theta$

 $F_{\lambda}(\theta) \equiv V e^{-\mathrm{i}\theta} + U + V^{\mathrm{T}} e^{\mathrm{i}\theta}$ $-(D^{-2}S + \lambda E_{-})e^{-\mathrm{i}\theta} + D^{-2} + S^{\mathsf{T}}D^{-2}S - (D^{-2}S + \lambda E_{-})^{\mathsf{T}}e^{\mathrm{i}\theta}$

$$S + \lambda E_{-})^{\top} \Phi_{\lambda}(0) H_{\lambda}^{-1} (D^{-2}S + \lambda E_{-})$$

$$\xrightarrow{-1} \Phi_{\lambda}(0) (D^{-2}S + \lambda E_{-})^{\top}$$

$$\lambda E_{-}) \Phi_{\lambda}(1) \qquad K_{\lambda} \equiv I + \Phi_{\lambda}(1) (D^{-2}S + \lambda E_{-})$$

Examples of Singular Rate Functions

overdamped exchanged Heat by an Brownian particle dragged by a moving harmonic potential PRL 2003, Cohen, van Zon

Other examples for single particle models: J Stat Phys 2022, Farago

Phys Rep 2009, Touchette

J Phys A 2013, Gradenigo et al.

PRE 2018, Nyawo et al

Heat exchanged between non-equilibrium aging glassy systems and the thermal bath

EPL 2004, Crisanti, Ritort

PRL 2014, Nossan, Evans, Majumdar

PRE 2014, Zannetti, Corberi, Gonnella

Examples of Singular Rate Functions

а

Heat released by a ferromagnet after quench below the critical point

> J Phys A 2013, Piscitelli, Corberi, Gonnella.

Presented in Venice, this conference, october 2012 Heat exchanged between non-equilibrium aging glassy systems and the thermal bath in contact

Other examples:

PRL 2014, Gambassi

