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Active Matter

e Active Matter: single components transform energy from internal reservoirs or
from the surrounding environment to self propel
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Active Matter

e Active Matter: single components transform energy from internal reservoirs or
from the surrounding environment to self propel
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Active Matter

® Theoretical interest » emergence of new features with no counterpart in passive systems
» strong connection with biological systems
» new paradigm of out-of-equilibrium systems
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e Experimental and technological interest
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Brownian motion

e Langevin equations

dU(x(1))

X(1) = ) Ff(D) — yx (1) + /2D &(1)
’ 1 |
external and interaction forces thermal bath

(conservative + non-conservative) (friction + noise)




Active particles models

e Langevin equations
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external and interaction forces thermal bath active force
(conservative + non-conservative) (friction + noise) (self-propulsion)




Active particles models

e Langevin equations

L dUG() |
60 ===y HIO = 50 +V/2D &0

external and interaction forces thermal bath active force
(conservative + non-conservative) (friction + noise) (self-propulsion)

e Passive vs Active motion

Passive Active
Brownian Brownian
Particle Particle




Work Observables and Distributions

e Dynamical observables

T

T
T Jo

e Active Work WT

e Large Deviations Theory p(%f — W) e~ TW)

1
$(A) = lim —In({e*”+)) Generating Function

7500 T

W _ = l G(x(s), x(s), a(s))x(s) ds

T

l a(s)x(s) ds

T Jo

[(w) Rate Function (RF)

Scaled Cumulant

(SCGF)

>

iIntegrated observables measured along particle trajectories
G generic function of positions velocity and active force
1/7 essential to make 7 _ intensive in time

it captures the energy cost to sustain self propulsion
important in applications: thermodynamical efficiency

asymptotic equivalence

extension of thermodynamic potentials
to out of equilibrium configurations

function whose derivatives generate
the moments of the distribution

I(W) — sup{/lw — ¢(/1)} » RF and SCGF often related through

=10,

Legendre-Fenchel transform



Singular distributions

e Rate Functions can be singular > Dynamical Phase Transitions
change in the physical mechanism producing fluctuations
> Trajectory Separation
trajectories in different regions of the RF behave dynamically different

e Many examples in the context of Langevin models, urn model, ferromagnets, glassy systems

e Active Work in a system of interacting active particles

W _ = l ra(s))'c(s) ds

> |n singular trajectories
particles dragged
against their active force

30 20
(W, < W, >0)N< W2 >




Analytical study of fluctuations of Active Work

confining potentials mimic the trapping

e Setting | ni |
single particle with external potential of other particles at finite density
_ experimental realisations
; | analytical results feasible

(N — o]
e Active Ornstein-Uhlenbeck Particle (AOUP) i) = Foy ™ a() = kx(1) ++/ 2Ty &)
free or with external harmonic potential a(t) = — ypa(t) + \/Z_DR n()

< a(ta(t’) > =~ (e 1= — g1+

® Approach
analytical evaluation of the Rate Function through Large Deviations technigues

® Interest » Theoretical ® Scope » investigation of distribution singularities
* energy cost to sustain self propulsion and Dynamical Phase Transitions

» Practical
* thermodynamic efficiency of Active Engines



J Stat Mech 2021,
Semeraro, Suma, Petrelli, Cagnetta and Gonnella

® Free AOUP x(H) = F y~la(r) \/ 2Ty &(1)
in d dimensions
a(t) = — ygra(t) + /2Dy n(1)

e Probability distribution p(w) = ((8(#', — w))) < e~ W)
evaluated through path integral techniques

> Trajectory path probability

initial conditions distribution

P _(x(1), a(7)) Ip(xo, ao)l X

_ L [ rits) = Fomlas)i2 L >
Xexp{ D, [0 [X(s) — F y~"a(s)] ds}exp{ D, ‘AO la(s) + yra(s)] ds}

Onsager-Machlup weight for trajectories

+100
» Laplace representation of the & function pP(w) = z—mJ e~ (')

' - =/ 17 — 4DgAy(1 + TA
» Cumulant Generating Function  ¢(1) = ("7 ) ~ P /1 = 4D+ T2)

» Saddle-point estimation of the RF

® Active work Wa —

: r a(H)r(t) dt

Theéretical
=500 — - -

1=1000 — - -
1=2000
1=3000 — - - |

> no singularities in I(w)
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Harmonically confined AOUP

e Harmonically-confined | 7X(1) = a(t) — kx(1) +1/2y 1 £(1)

AOUPin1d a(t) = — va(t) + F\/2v n(1)
e Direct evaluation of p(w) through path integral e New Large Deviations results
techniques becomes difficult for quadratic functionals of Jampare and Semeraro

Gauss-Markov chains
> Trajectory path probability
P, o {_%@«» a(0)z;' (28;) }exp {_wa ~ a(s) + Kx()I’ ds }xp {— — [O [a(s) + a(s)T’ ds} > Time-discretization procedure

0
| | |
initial conditions distribution Onsager-Machlup weight for trajectories » Evaluation of the SCGF functional form

» Laplace representation of the 0 function \/

1 +100
p(W) — _J e—dw <€A%a>
2rt J_ o > Continuum limit

» Evaluation of the SCGF domain

» Cumulant Generating Function
x » Evaluation of the RF through Legendre-Fenchel transform

» Saddle-point estimation of the RF

11



J Math Phys 2023,

LDT for quadratic functionals of Gauss-Markov chains = zaoend

Semeraro

® Time-discretizatioin procedure Langevin Equations— Markov chain X, ., = SX, + G,

n

1 1 ] © ] ©
W, -t — quadratic functional ~ W, = > < Xo, LXy > + > < Xy, RXy > + > Z <X,UX >+ > Z <X,VX _|>
| 1 n=1 n=2 |
boundary terms bulk contributions

e Evaluation of the Scaled Cumulant Generating Function
Primary domain P:

1 21 F,(0) is positive definite for all 6 € (0,2x)
4 J

1
p(u) = lim —log < ev > =

Nooo N Indet £7,(0) d© Effective domain E:

0 the matrices £, and £, related to the

F,(0) = — STe“g)(I — STe_le) — WU + Ve " + VTelé’) initial conditions (Z) and
boundary terms (L, R)
are positive definite

e Evaluation of the Rate Function

continuum limit ¢(/1) — lim ¢(ﬂ) Legendre-Fenchel transform ](W) — sup{w/l — ¢(/1)}
c—0 € AEE
12



Singular
Rate
Function

PRL 2023,
Semeraro, Gonnella,
Suma and Zamparo

« SCGF

 Rate function

_1+1<_l > 5
P) = — 2\/(1+;<) 4Pe2A(1 + 1)

Fd kd?
Pe = — K = ——
kBT kBT
small Pe, k
x 10+
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I(w) = <

1

i Ww—w_)Al_+i(w) w<w_
1(w) w_o<w< w,

L(w—w+)/1+— (w) w2>w,

intermediate Pe, «
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Linear Tails and Trajectory Separation

PRL 2023, Semeraro, Gonnella, Suma and Zamparo

e Physical Mechanism:
singular trajectories are characterised and selected by
big jJumps in the initial (w << w_) or final (w > w_ ) values

x 102

| — < w_

| —— W~ <w>
| — W>>W+

/f wav v& ~ w*"\ py.
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Fluctuations of Injected power xS

Gonnella and Zamparo

* Underdamped Brownian particle X = (1)
with external harmonic potential o(f) = — yv(t) — kx(f) + /2D &(7)
. V2D (* 1, , k ) y [*
* Power injected by the random force  W_= Ex(Odt = —|[v(r) —v(0)] + —[x“(7) — x“(0)] + = | v(6)x(¢) dt
T ) 2T 2T T J,
» Singular Rate Functions * Big jumps in the
> Fixed initial conditions > Stationary initial conditions > Generic uncorrelated initial conditions Initial conditions

T=2-10
T=5-10 A

singularities

T =102
T=5-102
T=103

15



Take-home messages

e Active matter is made of single components
which transform energy to self propel

® Active Work (and in general all work and
work-related observables) play a major role -_—
on theoretical and experimental level

e Peculiar tail structures of Rate Functions singularities
signal peculiar dynamical behaviours and linear tails

many examples from
nature and experiments

fluctuations described through
Large Deviation Theory
by Rate Functions

big jJumps

_> .
(general mechanism)
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EPL 2024,

Fluctuations of Entropy Production =i

%(1) = — (D) + F iy X,V Ulryh/2rksT E(1)

* Ensemble of interacting

Active Brownian Particles 0.(1) = 2D, 1,
* Entropy production §_= lim L L Tﬁ-(s)fc-(s) ds
(similar to Active Work) " oo T kpT . e
* Peculiar tail structures » » Associated to particles close to topological defects

I~
Py
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Y 15
L
<
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Take-home messages

® Active matter is made of single components many examples from
which transform energy to self propel nature and experiments

® Active Work (and in general all work and fluctuations described through
work-related observables) play a major role - Large Deviation Theory
on theoretical and experimental level by Rate Functions
singullarities. | big jJumps |
and linear talls (general mechanism)

® Peculiar take structures of Rate Functions
signal peculiar dynamical behaviours

anomalous tall motion cli
| otion close

structure to defects
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Free AOUP: saddle point

¢ Cumulant Generating Function  (¢#74) =

Introduction to Path-Integral Methods in Physics and Polymer Science,
Wiegel 1986, Work Scientific

6377f§(?ﬁe“(1)

1 4 2%
2

® Sources of singularities » Branch points

> Poles of F(u)

Saddle-point estimation of p(w) = —
27l |

» Steepest descent paths

Imluw — dp(u)] =0

Vi

r 4100

—I100

d/
d/l2 y) 2
| YT Q&
) (2 F 2 tanh(z,)
3 7% li\/l+4A
Hip = - A
4Dy 2A
(
. 2 _li\/1+4A(1+y2)
K1Y 4Dy oA

du F(u)e s

(
4w — 1
11\/1 +44 (=L

)\

: _ —0— 7 —
» Saddle-points #w— @) =0 = i Doy

> Integration along steepest dissent paths
deformed to pass by /Jiﬂ_f)

and avoid non-analicities of the integrand

2A

p(w)

F(a®)

—
~
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J Stat Mech 2021,

Semeraro, Suma, Petrelli,

Cagnetta and Gonnella

> =F ()e™ st _ a = \/ Yk — 4Dguy(1 + Dyyp)

Im(})

5

4 |

3 -

1=1 °
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7=100 °

Im(\)
:
?

. e |

-100
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Re()\)

w >0

w <0

A]_ As

A2

» Extraction of the Rate Function I(w)
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LDT for guadratic functionals of Gauss-Markov chains

» Discrete model as a Gauss-Markov chain

> Continuous model (y, T, d = 1) t=N-dt, x,a = x(n-dt),an-dt),{£,}, {n,} sequence of normal rv
(1) = — r,.. = —xdt) r, +a, dt++/2dt
x(t) Cl(t) K)C(t) + \/5 é(t) > n+1 ( ) n n gn | Xn+1 — SXn + Dé«n Xn — (xn’ an)T
a(t) = — a(t) + Pey/2 5(t) a, , = (1 —dt) a,+ Pe\/2dt 7,
(1 + k+ Pe?  Pe? ) _ ( 2dtdt dt \ 5 O
initial conditions s | *1+x 1+« y 03 0 S = (1 ket dt > D = é’n — ( "t
covariance matrix =~ ° Pe> P2 0~ 0 o2 0 1 —dt .0 Pey/2dt 0 n,
\ |+« ) a
~1
' +S'™D2s —S'D™?
. . . . . —D™°S D>+ 8'"D™*S
» Entire trajectory is Gaussian distributed with Sy = +.. }
{(xg, ap), ..., (ay, xy)} ZE€ro mean and covariance matrix D24 STD-25 _gTp-2
—D72S D2 .
» Discretisation of Active Work as a quadratic functional ao
N 0
7 1 1
Wa°T:J a(t)i(t) dt > WN:EZ(CZ”_I_an—l)(Fn_Fn—l)ZE(FO do --- Tn Ady) I\/IN :
dy
E 0O |
quasi-Toeplitz block matrix > My = - . F =_ 0 1
0 ET =72 \+1 0
\ Eo By
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LDT for guadratic functionals of Gauss-Markov chains

» Evaluation of the SCGF (generalization of Szegd theorem) Symbol matrix
= 11m O e""'N — 11 Adc . ,
bulk block Toeplitz
> Positive definiteness 7 L=3'+STD25+ IE,

i i 1 R=D"7*-]E,
log < e >T= - Inde (Zy' — AMy| = N In(2 dt Pe) — > IndetZy Zy - AMy =

Gaussian integral

U=D?%+S"D2S
V=—-D2S - J\E_

symbol matrix F,(0)

— bulk block Toeplitx matrix T, is positive definite — —— Primary domain P = (1_, 1)

positive definite for all (0,27)

_ vTT-1 _vi(T-1 T g O
— Schur complement SNE<L R R > Noo < /

) positive definite

~V(TOmV  R=V(TyHwV' 0 X 1
Iiermitian
positive — vy—1 T—2 (D2 T —1/—2
wroove £, =25+ STDTS + AE, — (DTS + AE_) @, (0)H; (DTS + AE.)
> —— > Effective domain £ = (4_,4,)
R, =D"*—AE, — (D2 + AE))K;'®,(0)(D™*S + AE_)'

O |
D,(n) = 2—ﬂJ F7(0)ed0 IHA =]+ (D725 + AE_)D,(1) K, =1+ ®,(1)(D2S+ AE_) |
0

Invertible

28



Examples of Singular Rate Functions

O
Heat exchanged by — an overdamped @ aqt gxchanged between non-equilibrium aging
Brownian particle dragged by a moving glassy systems and the thermal bath
harmonic pOtentiaI PRL 2003, Cohen, van Zon

EPL 2004, Crisanti, Ritort

e(p)

linear tails,
no fluctuation theorem

orresponding to
different heat
exchange
mechanisms

®  Other examples for single ® Other examples for interacting
particle models:  J Stat Mech 2006, Visco J Stat Mech 2012, Seifert, Speck et al particle systems, urn models,
. ete ol
Y SIERFE A0 (el 4, Burioni PRL 2014, Nossan, Evans, Majumdar

Phys Rep 2009, Touchette J Phys A 2013, Gradenigo et al.

PRE 2014, Zannetti, Corberi, Gonnella
PRE 2018, Nyawo et al



Heat released by a ferromagnet after

quench below the critical point

J Phys A 2013, Piscitelli,
Corberi, Gonnella.

Examples of Singular Rate Functions

a Heat exchanged between non-equilibrium aging
glassy systems and the thermal bath in contact

0.99998

@ 0.99996
N

~ - .
a macroscopic

0.99994 - fraction of heat is
released by the
-k = 0 component
0.99992 |- Of the order
parameter

condensation at
Zero wave vector

0.9999
-0.0:¢

Presented In Venice, this
conference, october 2012

Other examples:

EPL 2004, Crisanti et al

signals of different
heat exchange
mechanisms

PRL 2014, Gambassi



