Heavy meson decays as precision tools for new physics: A search for beyond Standard Model signals

Dipartimento Interateneo di Fisica "M. Merlin", Università e Politecnico di Bari, Istituto Nazionale di Fisica Nucleare, Sezione di Bari

December 17, 2024

Bari Theory Xmas Workshop 2024

Nicola Losacco

Dipartimento di Fisica, Università di Bari, INFN Bari

Overview

Research

- The Standard Model as an Effective Field Theory
- Tensions in the flavour sector

See Roselli talk

- Interplay between flavour physics and hadron spectroscopy
- Chaos and Holography

Overview

Research

- The Standard Model as an Effective Field Theory
- Tensions in the flavour sector
- Interplay between flavour physics and hadron spectroscopy
- Chaos and Holography

Motivations to physics beyond the SM

The Standard Model

Successes

- All predicted particles have been discovered
- The features of fundamental interactions correctly described

Flavour anomalies Instability of the Higgs mass under radiative • $\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$ [1.1, 6.0] correction $\mathcal{B}(B^+ \to K^+ e^+ e^-)$ [1.1, 6.0] Hierarchy among the fermion masses ٠ $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})$ $\mathcal{B}(B^0_* \to \phi \mu^+ \mu^-)$ [1.1, 6.0] $\mathcal{B}(B^0_s \to \mu^+ \mu^-)$ $\mathcal{B}(B^0 \to \mu^+ \mu^-)$ Furthermore, several anomalies $P'_{5}(B^{0} \to K^{*0} \mu^{+} \mu^{-})$ [2.5, 4.0] $P'_{5}(B^{0} \to K^{*0} \mu^{+} \mu^{-})$ [4.0, 6.0] in the flavour sector R_K [0.1, 1.1] - R_K [1.1, 6.0] - $R_{K_{2}^{0}}$ [1.1, 6.0] -Two procedures $R_{K^{*0}}$ [0.1, 1.1] - $R_{K^{*0}}$ [1.1, 6.0] - $R_{K^{*+}}$ [0.045, 6.0] - R_{pK} [0.1, 6.0] Top-down Bottom-up Muon q - 2 (WP) -Muon q - 2 (BMW) Predictions in a defined NP From experiments R(D) $R(D^*)$ extension of the SM-check finding hints towards $R(J/\psi)$ - $R(\Lambda_c^+)$ the experimental new physics $\mathcal{B}(B^+ \to \tau^+ \nu)$ consequences -5 -4 -3 -2 -1 02 5 3 4 1 Pull in σ

Unsolved issues

- Gravity not included
- No dark matter explanation
- Neutrino masses
- CP asymmetry not sufficient to explain the observed universe

Standard Model as an Effective Field Theory

A simple extension: U(1)'

P. Colangelo, F. De Fazio, F. Loparco, and N. L. Phys. Rev. D 110 (2024), no. 3 035007

Higgs interaction

UV

F

$$\mathcal{L}_{\varphi}^{Z'} = g_H \left(\varphi^{\dagger} \, i \stackrel{\leftrightarrow}{D}_{\mu} \varphi \right) \, Z'^{\mu}$$

$$g_H = g_Z \, z_H$$

 D_{μ} is the SM covariant derivative

7' Now gougo field

$$\varphi^{\dagger} \, i \, \overleftrightarrow{D}_{\mu} \, \varphi = \varphi^{\dagger} \, \left(i \, D_{\mu} \, \varphi \right) - \left(i \, D_{\mu} \, \varphi^{\dagger} \right) \, \varphi$$

Nicola Losacco

ν SMEFT Lagrangian from U(1)' extension

 ν SMEFT operators of d = 6 dimension after Z' integration

$$\begin{split} \mathcal{L}_{Z'}^{(6)} &= C_{\ell\ell} \, \mathcal{O}_{\ell\ell} + C_{qq}^{(1)} \, \mathcal{O}_{qq}^{(1)} + C_{ee} \, \mathcal{O}_{ee} + C_{uu} \, \mathcal{O}_{uu} + C_{dd} \, \mathcal{O}_{dd} + C_{\nu\nu}^{(6)} \, \mathcal{O}_{\nu\nu}^{(6)} \\ &+ C_{\ell q}^{(1)} \, \mathcal{O}_{\ell q}^{(1)} + C_{ud}^{(1)} \, \mathcal{O}_{ud}^{(1)} + C_{eu} \, \mathcal{O}_{eu} + C_{ed} \, \mathcal{O}_{ed} + C_{\ell e} \, \mathcal{O}_{\ell e} + C_{\ell u} \, \mathcal{O}_{\ell u} \\ &+ C_{\ell d} \, \mathcal{O}_{\ell d} + C_{qe} \, \mathcal{O}_{qe} + C_{qu}^{(1)} \, \mathcal{O}_{qu}^{(1)} + C_{qd}^{(1)} \, \mathcal{O}_{qd}^{(1)} + C_{\nu e} \, \mathcal{O}_{\nu e} + C_{\nu u} \, \mathcal{O}_{\nu u} \\ &+ C_{\nu d} \, \mathcal{O}_{\nu d} + C_{\ell \nu} \, \mathcal{O}_{\ell \nu} + C_{q\nu} \, \mathcal{O}_{q\nu} + C_{\varphi \Box} \, \mathcal{O}_{\varphi \Box} + C_{\varphi D} \, \mathcal{O}_{\varphi D} + C_{e\varphi} \, \mathcal{O}_{e\varphi} \\ &+ C_{u\varphi} \, \mathcal{O}_{u\varphi} + C_{d\varphi} \, \mathcal{O}_{d\varphi} + C_{\nu\varphi} \, \mathcal{O}_{\nu\varphi} + C_{\varphi\ell}^{(1)} \, \mathcal{O}_{\varphi\ell}^{(1)} + C_{\varphi e} \, \mathcal{O}_{\varphi e} + C_{\varphi q}^{(1)} \, \mathcal{O}_{\varphi q}^{(1)} \\ &+ C_{\varphi u} \, \mathcal{O}_{\varphi u} + C_{\varphi d} \, \mathcal{O}_{\varphi d} + C_{\varphi \nu} \, \mathcal{O}_{\varphi \nu} + \mathrm{h.c.} \, . \end{split}$$

Wilson coefficients depend on the parameter of the UV theory: g_Z, z_{ψ}, z_H and Z' mass Blue terms are 0 for this extension

Relations from the gauge group structure

Wilson coefficient $\neq 0$ only if i = j and k = p

Relations from the gauge group structure

Defining $\underline{i} = ii$

Coefficients structure synthetized

$$C_{\varphi\psi} = \left(\begin{bmatrix} C_{\varphi\psi} \end{bmatrix}_{\underline{1}} \begin{bmatrix} C_{\varphi\psi} \end{bmatrix}_{\underline{2}} \begin{bmatrix} C_{\varphi\psi} \end{bmatrix}_{\underline{3}} \right)$$

$$C_{\psi\psi} = \frac{1}{C_{\varphi D}} \begin{pmatrix} \left(\begin{bmatrix} C_{\varphi\psi} \end{bmatrix}_{\underline{1}} \right)^2 & \begin{bmatrix} C_{\varphi\psi} \end{bmatrix}_{\underline{1}} \begin{bmatrix} C_{\varphi\psi} \end{bmatrix}_{\underline{2}} & \begin{bmatrix} C_{\varphi\psi} \end{bmatrix}_{\underline{1}} \begin{bmatrix} C_{\varphi\psi} \end{bmatrix}_{\underline{3}} \\ \begin{bmatrix} C_{\varphi\psi} \end{bmatrix}_{\underline{2}} \begin{bmatrix} C_{\varphi\psi} \end{bmatrix}_{\underline{1}} & \begin{pmatrix} \begin{bmatrix} C_{\varphi\psi} \end{bmatrix}_{\underline{2}} \right)^2 & \begin{bmatrix} C_{\varphi\psi} \end{bmatrix}_{\underline{3}} \\ \begin{bmatrix} C_{\varphi\psi} \end{bmatrix}_{\underline{3}} \begin{bmatrix} C_{\varphi\psi} \end{bmatrix}_{\underline{1}} & \begin{bmatrix} C_{\varphi\psi} \end{bmatrix}_{\underline{3}} \begin{bmatrix} C_{\varphi\psi} \end{bmatrix}_{\underline{2}} & \begin{pmatrix} \begin{bmatrix} C_{\varphi\psi} \end{bmatrix}_{\underline{3}} \right)^2 \end{pmatrix}$$

$$C_{\psi_1\psi_2} = \frac{2}{C_{\varphi D}} \begin{pmatrix} \begin{bmatrix} C_{\varphi\psi_1} \end{bmatrix}_{\underline{1}} \begin{bmatrix} C_{\varphi\psi_2} \end{bmatrix}_{\underline{1}} & \begin{bmatrix} C_{\varphi\psi_1} \end{bmatrix}_{\underline{1}} \begin{bmatrix} C_{\varphi\psi_2} \end{bmatrix}_{\underline{2}} & \begin{bmatrix} C_{\varphi\psi_1} \end{bmatrix}_{\underline{1}} \begin{bmatrix} C_{\varphi\psi_2} \end{bmatrix}_{\underline{3}} \\ \begin{bmatrix} C_{\varphi\psi_1} \end{bmatrix}_{\underline{2}} \begin{bmatrix} C_{\varphi\psi_2} \end{bmatrix}_{\underline{1}} & \begin{bmatrix} C_{\varphi\psi_1} \end{bmatrix}_{\underline{2}} \begin{bmatrix} C_{\varphi\psi_2} \end{bmatrix}_{\underline{2}} & \begin{bmatrix} C_{\varphi\psi_1} \end{bmatrix}_{\underline{2}} \begin{bmatrix} C_{\varphi\psi_2} \end{bmatrix}_{\underline{3}} \\ \begin{bmatrix} C_{\varphi\psi_1} \end{bmatrix}_{\underline{3}} \begin{bmatrix} C_{\varphi\psi_2} \end{bmatrix}_{\underline{1}} & \begin{bmatrix} C_{\varphi\psi_1} \end{bmatrix}_{\underline{3}} \begin{bmatrix} C_{\varphi\psi_2} \end{bmatrix}_{\underline{2}} & \begin{bmatrix} C_{\varphi\psi_1} \end{bmatrix}_{\underline{3}} \begin{bmatrix} C_{\varphi\psi_2} \end{bmatrix}_{\underline{3}} \\ \begin{bmatrix} C_{\varphi\psi_1} \end{bmatrix}_{\underline{3}} \begin{bmatrix} C_{\varphi\psi_2} \end{bmatrix}_{\underline{1}} & \begin{bmatrix} C_{\varphi\psi_1} \end{bmatrix}_{\underline{3}} \begin{bmatrix} C_{\varphi\psi_2} \end{bmatrix}_{\underline{3}} & \begin{bmatrix} C_{\varphi\psi_1} \end{bmatrix}_{\underline{3}} \begin{bmatrix} C_{\varphi\psi_2} \end{bmatrix}_{\underline{3}} \\ \end{bmatrix}$$

Constraints from Anomaly Cancellation Equations (ACE) $z_{\eta_{i}}^{(n)} = \sum_{i=1}^{3} z_{\eta_{i}}^{n}$ U'(1) $A_{33z} = 2 z_q^{(1)} - z_u^{(1)} - z_d^{(1)} = 0$ SU(3)SU(3)U'(1) $A_{22z} = 3 z_q^{(1)} + z_\ell^{(1)} = 0$ SU(2)SU(2)U'(1) $A_{11z} = \frac{1}{6} z_q^{(1)} - \frac{4}{3} z_u^{(1)} - \frac{1}{3} z_d^{(1)}$ $+\frac{1}{2} z_{\ell}^{(1)} - z_{e}^{(1)} = 0$ U(1)U(1)U'(1) $A_{GGz} = 2 \, z_{\ell}^{(1)} - z_{e}^{(1)} - z_{\nu}^{(1)} = 0$ grav. grav.

Nicola Losacco

Dipartimento di Fisica, Università di Bari, INFN Bari

Constraints from Anomaly Cancellation

$$U'(1)$$

 $U(1)$ $U'(1)$

•
$$A_{1zz} = [z_q^{(2)} - 2 z_u^{(2)} + z_d^{(2)}] - [z_\ell^{(2)} - z_e^{(2)}] = 0$$

$$U'(1)$$

$$A_{zzz} = 3 \left[2 z_q^{(3)} - z_u^{(3)} - z_d^{(3)} \right] + \left[2 z_\ell^{(3)} - z_\nu^{(3)} - z_e^{(3)} \right] = 0$$

Relations among coefficients

$$\tilde{C}_{\varphi\psi}^{(n)} = \sum_{\underline{i}=\underline{1}}^{\underline{3}} \left(\left[C_{\varphi\psi} \right]_{\underline{i}} \right)^n \qquad \underline{i} = i\overline{i}$$

z-hypercharge dependence

 $z_{\psi}^{(n)} = \left(-\frac{M_{Z'}^2}{q_Z} \frac{1}{q_H}\right)^n \tilde{C}_{\omega \psi}^{(n)}$ $z_{\psi_i} = -\frac{M_{Z'}^2}{q_Z} \frac{1}{q_H} \left[C_{\varphi \psi} \right]_i$ $A_{GGz} \to 2\,\tilde{C}_{\omega\ell} - \tilde{C}_{\omega e} - \tilde{C}_{\omega \nu} = 0$ $A_{1zz} \to \tilde{C}_{\varphi q}^{(2)} - 2\,\tilde{C}_{\varphi u}^{(2)} + \tilde{C}_{\iota \circ d}^{(2)} - \tilde{C}_{\iota \circ \ell}^{(2)} + \tilde{C}_{\omega e}^{(2)} = 0$ $A_{zzz} \to 3 \left[2 \tilde{C}_{\varphi q}^{(3)} - \tilde{C}_{\varphi u}^{(3)} - \tilde{C}_{\varphi u}^{(3)} \right] + \left[2 \tilde{C}_{\varphi \ell}^{(3)} - \tilde{C}_{\varphi \nu}^{(3)} - \tilde{C}_{\varphi e}^{(3)} \right] = 0$

Dipartimento di Fisica, Università di Bari, INFN Bari

Conclusions and perspectives

SM might not be the ultimate theory

Explored U(1)' with vSMEFT :

- Gauge structure
 relations between coefficients
- Gauge anomaly cancellations significantly narrow down coefficients space

Results guide experimental searches and global fits

Future Work: Include experimental data to refine constraints.

THANKS FOR YOUR ATTENTION **BACK UP**

Overview

Research

- The Standard Model as an Effective Field Theory
- Tensions in the flavour sector
- Interplay between flavour physics and hadron spectroscopy
- Chaos and Holography

Anomalies in $b \rightarrow c \ell \nu$ transitions

Possibility to investigate NP that can explain both anomalies

$\overline{B} \to D^*(D \pi) \ell \overline{\nu}_\ell$ process

Generalized effective Hamiltonian

$$\begin{split} H_{eff}^{b \to U\ell\nu} &= \frac{G_F}{\sqrt{2}} V_{Ub} \times \Big\{ (1 + \epsilon_V^\ell) \left(\bar{U} \gamma_\mu (1 - \gamma_5) b \right) \left(\bar{\ell} \gamma^\mu (1 - \gamma_5) \nu_\ell \right) + \epsilon_R^\ell \left(\bar{U} \gamma_\mu (1 + \gamma_5) b \right) \left(\bar{\ell} \gamma^\mu (1 - \gamma_5) \nu_\ell \right) \\ &+ \epsilon_S^\ell \left(\bar{U} b \right) \left(\bar{\ell} (1 - \gamma_5) \nu_\ell \right) + \epsilon_P^\ell \left(\bar{U} \gamma_5 b \right) \left(\bar{\ell} (1 - \gamma_5) \nu_\ell \right) + \epsilon_T^\ell \left(\bar{U} \sigma_{\mu\nu} (1 - \gamma_5) b \right) \left(\bar{\ell} \sigma^{\mu\nu} (1 - \gamma_5) \nu_\ell \right) \Big\} + h.c. \\ & \text{For } V = D^* \end{split}$$

 $\epsilon_i^{\ell} \neq 0$ new physics lepton flavour dependent couplings

Angular decomposition

$$\mathcal{N} = \frac{3G_F^2 |V_{Ub}|^2 \mathcal{B}(V \to P_1 P_2)}{128(2\pi)^4 m_B^2} \qquad \vec{p}_V \text{ three momentum of the} \\ V \text{ meson in B rest frame} \\ \frac{d^4 \Gamma(\bar{B} \to V(P_1 P_2) \ell^- \bar{\nu}_\ell)}{dq^2 d \cos \theta \, d\phi \, d \cos \theta_V} = \mathcal{N} |\vec{p}_V| \left(1 - \frac{m_\ell^2}{q^2}\right)^2 \\ \times \left\{ I_{1s} \sin^2 \theta_V + I_{1c} \cos^2 \theta_V \\ + (I_{2s} \sin^2 \theta_V + I_{2c} \cos^2 \theta_V) \cos 2\theta \\ + I_3 \sin^2 \theta_V \sin^2 \theta \cos 2\phi + I_4 \sin 2\theta_V \sin 2\theta \cos \phi \\ + I_5 \sin 2\theta_V \sin \theta \cos \phi \\ + (I_{6s} \sin^2 \theta_V + I_{6c} \cos^2 \theta_V) \cos \theta \\ + (I_{6s} \sin^2 \theta_V \sin \theta \sin \phi + I_8 \sin 2\theta_V \sin 2\theta \sin \phi \\ + (I_9 \sin^2 \theta_V \sin^2 \theta \sin 2\phi) \right\} \qquad \text{Only in presence of NP}$$

Experiment

Results

Dipartimento di Fisica, Università di Bari, INFN Bari

Observables

 $w_0(\hat{J}_i) = \frac{\text{Zero of the } J_i \text{ angular}}{\text{coefficient function}}$

Observables J_{6c} $\epsilon_V = \epsilon_R = \epsilon_P = 0$ \longrightarrow $\sqrt{q^2} H_L^{\rm NP}(q^2) {\rm Re}[\epsilon_T] - 4m_\ell H_0(q^2) = 0$ 1.5 Only $\epsilon_T^{\mu} \neq 0$ 1.4 **()⁰ 1**.3 **м**⁰(**у**⁰ **г**) Range compatible with Belle results Small values of $Re[\epsilon_T]$ 1.1 Compatible with \hat{J}_{2s} zeros 1.0 -0.050.00 0.05 0.10 $\operatorname{Re}[\epsilon_T^{\mu}]$

Relativistic quark model predictions

Semileptonic B_c meson decays

Effective Hamiltonian for the process $b \rightarrow c \ell \bar{v}_{\ell}$ (same as in previous study)

$$H_{eff}^{b \to c \,\ell \,\bar{\nu}_{\ell}} = \frac{G_F}{\sqrt{2}} V_{cb} [(1 + \epsilon_V^{\ell})(\bar{c}\gamma_{\mu}(1 - \gamma_5)b)(\bar{\ell}\gamma^{\mu}(1 - \gamma_5)\nu_{\ell}) - SM \\ + \epsilon_R^{\ell} \left(\bar{c}\gamma_{\mu}(1 + \gamma_5)b\right) \left(\bar{\ell}\gamma^{\mu}(1 - \gamma_5)\nu_{\ell}\right) + \epsilon_S^{\ell}(\bar{c}b) \left(\bar{\ell}(1 - \gamma_5)\nu_{\ell}\right) \\ + \epsilon_P^{\ell}(\bar{c}\gamma_5b)(\bar{\ell}(1 - \gamma_5)\nu_{\ell}) + \epsilon_T^{\ell}(\bar{c}\sigma_{\mu\nu}(1 - \gamma_5)b)(\bar{\ell}\sigma^{\mu\nu}(1 - \gamma_5)\nu_{\ell})] \end{bmatrix} BSM$$

The matrix elements of these operators parametrized through hadronic form factors

Example I:

$$\left\langle V(p',\epsilon) \left| \bar{Q}'\gamma_{\mu}Q \right| B_{c}(p) \right\rangle = -\frac{2V^{B_{c} \to V}(q^{2})}{m_{B_{c}} + m_{V}} i \epsilon_{\mu\nu\alpha\beta} \epsilon^{*\nu} p^{\alpha} p'^{\beta} \right.$$
Example II:

$$\left\langle V(p',\epsilon) \left| \bar{Q}'\sigma_{\mu\nu}Q \right| B_{c}(p) \right\rangle = T_{0}^{B_{c} \to V}(q^{2}) \frac{\epsilon^{*} \cdot q}{\left(m_{B_{c}} + m_{V}\right)^{2}} \epsilon_{\mu\nu\alpha\beta} p^{\alpha} p'^{\beta} \right.$$

$$\left. + T_{0}^{B_{c} \to V}(q^{2}) \epsilon_{\mu\nu\alpha\beta} p^{\alpha} p'^{\beta} \right\} = T_{0}^{B_{c} \to V}(q^{2}) \epsilon_{\mu\nu\alpha\beta} p^{\alpha} p'^{\beta}$$

Semileptonic B_c decays

Two energy scales: m_b and m_c Expansion of the heavy quark field in $1/m_O$

A.F. Falk and M. Neubert, Phys. Rev. D 47 (1993) 2965
Heavy quark expansion

$$Q(x) = e^{-im_Q v \cdot x} \left(1 + \sum_{n=0}^{\infty} \left(-\frac{iv \cdot D}{2m_Q}\right)^n i \not D_{\perp}\right) \psi_+(x)$$
Positive energy component of the field

v 4-velocity of the meson containing the heavy quark

$$p = m_{B_c} v \qquad \qquad p' = m_{J/\psi(\eta_c)} v'$$

NRQCD suitable for the description of the dynamic of mesons with two heavy quaks

Power counting using \tilde{v} , relative velocity of the heavy quarks G.P. Lepage, L. Magnea, C. Nakhleh, U. Magnea and K. Hornbostel, Phys. Rev. D 46 (1992) 4052 $\begin{array}{l} D \sim \tilde{v}^2 \\ D_1 \sim \tilde{v} \end{array}$

Semileptonic B_c decays

Spin interaction terms suppressed by powers of in $1/m_Q$

Heavy quark spin symmetry manifests

The heavy quark spin symmetry allows us to parametrize the current matrix elements using universal functions near the zero recoil point w = 1

$$\begin{array}{c} \left< M'(v') \right| J_0 \left| M(v) \right> = -\Delta(w) \mathrm{Tr} \left[\bar{H}'(v') \Gamma H(v) \right] \\ \text{Leading order term of the} \\ \text{current expansion} \end{array} \\ \end{array} \\ \begin{array}{c} w = v \cdot v' = \frac{m_M^2 + m_{M'}^2 - q^2}{2m_M m_{M'}} \\ \end{array} \\ \end{array}$$

H'(v') and H(v) 4×4 matrix describing the mesons that differ only by the quark spins orientation

$$(B_{c}, B_{c}^{*}) \quad H(v) = \frac{1+\psi}{2} \left[B_{c}^{*\mu} \gamma_{\mu} - B_{c} \gamma_{5} \right] \frac{1-\psi}{2}$$

$$(\eta_c, J/\psi) \quad H'(v') = \frac{1+\psi'}{2} \left[\Psi_c^{*\mu} \gamma_\mu - \eta_c \gamma_5 \right] \frac{1-\psi'}{2}$$

$B_c \to J/\psi(\eta_c) \ell \ \overline{\nu}$

$B_c \to J/\psi(\eta_c) \ell \ \overline{\nu}$

$B_c \to \chi_{cJ}(h_c) \ell \ \overline{\nu}$

The formalism can be applied to the transition P. Colangelo, F. De Fazio, F. Loparco, M. Novoa-Brunet, N.L., Phys. Rev. D 106 (2022), no. 9 094005

 $B_c \rightarrow \chi_{cI}(h_c) \ell \bar{\nu}$

$$Positive parity orbitally excited charmonium system$$

$$P-wave charmonium (\chi_{c0}, \chi_{c1}, \chi_{c2}, h_c) \text{ fields}$$

$$\mathcal{M}^{\mu}(v') = \frac{1+\psi'}{2} \left[\chi^{\mu\nu}_{c2} \gamma_{\nu} + \frac{1}{\sqrt{2}} \chi_{c1,\gamma} \epsilon^{\mu\alpha\beta\gamma} v'_{\alpha} \gamma_{\beta} + \frac{1}{\sqrt{3}} \chi_{c0} (\gamma^{\mu} - v'^{\mu}) + \frac{h^{\mu}_{c}}{2} \gamma_{5} \right] \frac{1-\psi'}{2}$$

R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Feruglio, and G. Nardulli, Phys. Lett. B 309, 163 (1993)

The obtained relations can be applied to the radial excitations

Useful to obtain information on the structure of $\chi_{c1}(3872) J^{PC} = 1^{++}$

X(3872): tetraquark, molecular state $\chi_{c1}(2P)$: radial excitation of the *P*-wave charmonium

 $B_c \rightarrow \chi_{cI}(h_c) \ell \, \bar{\nu}$

Ratios $\frac{d\Gamma(B_c \to \chi_{c1} \ell \overline{\nu})/dw}{d\Gamma(B_c \to \chi_{c0} \ell \overline{\nu})/dw}$ and $\frac{d\Gamma(B_c \to \chi_{c2} \ell \overline{\nu})/dw}{d\Gamma(B_c \to \chi_{c1} \ell \overline{\nu})/dw}$ in the hypothesis that $\chi_{c1}(3872)$ is the 2*P* state

Dipartimento di Fisica, Università di Bari, INFN Bari

Focus on
$$B_c^+ \rightarrow \chi_{cJ}(h_c) M_{P(V)}$$

$$= \int_{c}^{b} \int_{c}^{c} \int_{c}^{c} \chi_{c1}(3872)$$

$$= \int_{c}^{b} \int_{c}^{c} \int_{c}^{c} \chi_{cJ}, h_c$$

$$= \int_{c}^{b} \int_{c}^{c} \int_{c}^{c} \chi_{cJ}, h_c$$

$$= \int_{c}^{c} \int_{c}^{c} \chi_{cJ}, h_c$$

$$= \int_{c}^{c} \int_{c}^{c} \chi_{cJ} (1 - \gamma_5) q_{\alpha} \bar{b}_{\beta} \gamma_{\mu} (1 - \gamma_5) c_{\beta}$$

$$= \int_{c}^{c} \int_{c}^{c} \chi_{cJ} (1 - \gamma_5) q_{\beta} \bar{b}_{\beta} \gamma_{\mu} (1 - \gamma_5) c_{\alpha}$$

After Fierz transformation and discarding color-octect operator

$$\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} V_{cb}^* V_{uq} a_1(\mu) Q_1(\mu)$$

 $Q_1 =$

 $\mathcal{A}(B_{c}^{+} \to M_{c\bar{c}}(P) M_{P(V)}) = \frac{G_{F}}{\sqrt{2}} V_{cb}^{*} V_{uq} a_{1}(\mu) \left\langle M_{c\bar{c}}(P) \right| \bar{b} \gamma_{\mu} (1 - \gamma_{5}) c \left| B_{c}^{+} \right\rangle \left\langle M_{P(V)} \right| \bar{u} \gamma^{\mu} (1 - \gamma_{5}) q \left| 0 \right\rangle$

Application of QCD factorization to nonleptonic decays

Decay amplitude depends on form factors and decay constants

 $B_c \rightarrow \chi_{cJ}(h_c) M$ *M* light pseudoscalar or vector meson

Pseudoscalar case (π^+, K^+) :

$$\begin{split} f_0^{\chi_{c0}}(q^2) &= -\frac{((m_{B_c} - m_{\chi_{c0}})^2 - q^2)((m_{B_c} + m_{\chi_{c0}})^2 - q^2)}{4\sqrt{3}(m_{B_c} - m_{\chi_{c0}})(m_{B_c}m_{\chi_{c0}})^{3/2}} \Xi(q^2), \\ A_0^{\chi_{c1}}(q^2) &= 0, \\ A_0^{h_c}(q^2) &= -i\frac{(m_{B_c} - m_{h_c})((m_{B_c} + m_{h_c})^2) - q^2)}{4(m_{B_c}m_{h_c})^{3/2}}\Xi(q^2), \\ A_0^{\chi_{c2}}(q^2) &= i\frac{m_{B_c} + m_{\chi_{c2}}}{2\sqrt{m_{B_c}m_{\chi_{c2}}}}\Xi(q^2), \end{split}$$

Vector case (ρ^+ , K^{*+}):

$$\begin{split} f_{+}^{\chi_{c0}}(q^2) &= -\frac{((m_{B_c} + m_{\chi_{c0}})^2 - q^2)(m_{B_c} - m_{\chi_{c0}})}{4\sqrt{3}(m_{B_c}m_{\chi_{c0}})^{3/2}} \Xi(q^2), \\ V^{\chi_{c1}}(q^2) &= -\frac{((m_{B_c} + m_{\chi_{c1}})^2 - q^2)(m_{B_c} + m_{\chi_{c1}})}{4\sqrt{2}(m_{B_c}m_{\chi_{c1}})^{3/2}} \Xi(q^2), \\ A_1^{\chi_{c1}}(q^2) &= -\frac{m_{B_c}^4 + (m_{\chi_{c1}} - q^2)^2 - 2m_{B_c}^2(m_{\chi_{c1}}^2 + q^2)}{4\sqrt{2}(m_{B_c}m_{\chi_{c1}})^{3/2}(m_{B_c} + m_{\chi_{c1}})} \Xi(q^2), \\ A_2^{\chi_{c1}}(q^2) &= \frac{(m_{B_c}^2 - m_{\chi_{c1}}^2 - q^2)(m_{B_c} + m_{\chi_{c1}})}{4\sqrt{2}(m_{B_c}m_{\chi_{c1}})^{3/2}} \Xi(q^2), \\ V^{\chi_{c2}}(q^2) &= \frac{m_{B_c} + m_{\chi_{c2}}}{2\sqrt{m_{B_c}m_{\chi_{c2}}}} \Xi(q^2), \quad A_1^{\chi_{c2}}(q^2) = i\frac{((m_{B_c} + m_{\chi_{c2}})^2 - q^2)}{2\sqrt{m_{B_c}m_{\chi_{c2}}}} \Xi(q^2), \\ A_2^{\chi_{c2}}(q^2) &= i\frac{m_{B_c} + m_{\chi_{c2}}}{2\sqrt{m_{B_c}m_{\chi_{c2}}}} \Xi(q^2), \\ V^{h_c}(q^2) &= 0, \\ A_1^{h_c}(q^2) &= 0, \\ A_2^{h_c}(q^2) &= i\frac{m_{h_c}(m_{B_c} + m_{h_c})^2}{2(m_{B_c}m_{\chi_{c2}})} \Xi(q^2). \end{split}$$

Dipartimento di Fisica, Università di Bari, INFN Bari

Predictions on ratios of branching fractions

N. L., Mod. Phys. Lett. A 38 (2023), no. 04 2350027

	$\mathcal{B}(B_c^+ \to \chi_{c0} \pi^+)$	$\mathcal{B}(B_c^+ \to h_c \pi^+)$	$\mathcal{B}(B_c^+ \to h_c \pi^+)$		$\mathcal{B}(B_c^+ \to \chi_{c0} K^+)$	$\mathcal{B}(B_c^+ \to h_c K^+)$	$\mathcal{B}(B_c^+ \to h_c K^+)$
	$\mathcal{B}(B_c^+ \to \chi_{c2} \pi^+)$	$\overline{\mathcal{B}(B_c^+ \to \chi_{c0} \pi^+)}$	$\overline{\mathcal{B}(B_c^+ \to \chi_{c2} \pi^+)}$		$\mathcal{B}(B_c^+ \to \chi_{c2} K^+)$	$\mathcal{B}(B_c^+ \to \chi_{c0} K^+)$	$\mathcal{B}(B_c^+ \to \chi_{c2} K^+)$
1P	0.658	2.429	1.597	1P	0.663	2.482	1.645
2P	0.583	2.746	1.601	2P	0.586	2.845	1.668
	I				I		
	$\mathcal{B}(B_c^+ \to \chi_{c1} \rho^+)$	$\mathcal{B}(B_c^+ \to \chi_{c1} \rho^+)$	$\mathcal{B}(B_c^+ \to \chi_{c0} \rho^+)$		$\mathcal{B}(B_c^+ \to \chi_{c1} K^{*+})$	$\mathcal{B}(B_c^+ \to \chi_{c1} K^{*+})$	$\mathcal{B}(B_c^+ \to \chi_{c0} K^{*+})$
	$\mathcal{B}(B_c^+ \to \chi_{c0} \rho^+)$	$\overline{\mathcal{B}(B_c^+ \to \chi_{c2} \rho^+)}$	$\overline{\mathcal{B}(B_c^+ \to \chi_{c2} \rho^+)}$		$\overline{\mathcal{B}(B_c^+ \to \chi_{c0} K^{*+})}$	$\mathcal{B}(B_c^+ \to \chi_{c2} K^{*+})$	$\overline{\mathcal{B}(B_c^+ \to \chi_{c2} K^{*+})}$
1P	0.206	0.122	0.590	1P	0.276	0.157	0.570
2P	0.315	0.159	0.503	2P	0.422	0.203	0.481
	$\mathcal{B}(B_c^+ \to h_c \rho^+)$	$\mathcal{B}(B_c^+ \to h_c \rho^+)$	$\mathcal{B}(B_c^+ \rightarrow h_c \rho^+)$		$\mathcal{B}(B_c^+ \to h_c K^{*+})$	$\mathcal{B}(B_c^+ \to h_c K^{*+})$	$\mathcal{B}(B_c^+ \to h_c K^{*+})$
	$\mathcal{B}(B_c^+ \to \chi_{c0} \rho^+)$	$\mathcal{B}(B_c^+ \to \chi_{c1} \rho^+)$	$\mathcal{B}(B_c^+ \to \chi_{c2} \rho^+)$		$\mathcal{B}(B_c^+ \to \chi_{c0} K^{*+})$	$\mathcal{B}(B_c^+ \to \chi_{c1} K^{*+})$	$\mathcal{B}(B_c^+ \to \chi_{c2} K^{*+})$
1P	2.226	10.790	1.312	1P	2.159	7.834	1.231
2P	2.449	7.770	1.232	2P	2.350	5.568	1.131

Predictions on ratios of branching fractions

N. L., Mod. Phys. Lett. A 38 (2023), no. 04 2350027

	$\mathcal{B}(B_c^+ \to \chi_{c0} \pi^+)$	$\mathcal{B}(B_c^+ \to h_c \pi^+)$	$\mathcal{B}(B_c^+ \to h_c \pi^+)$		$\mathcal{B}(B_c^+ \to \chi_{c0} K^+)$	$\mathcal{B}(B_c^+ \to h_c K^+)$	$\mathcal{B}(B_c^+ \to h_c K^+)$
	$\mathcal{B}(B_c^+ \to \chi_{c2} \pi^+)$	$\overline{\mathcal{B}(B_c^+ \to \chi_{c0} \pi^+)}$	$\mathcal{B}(B_c^+ \to \chi_{c2} \pi^+)$		$\mathcal{B}(B_c^+ \to \chi_{c2} K^+)$	$\mathcal{B}(B_c^+ \to \chi_{c0} K^+)$	$\mathcal{B}(B_c^+ \to \chi_{c2} K^+)$
1P	0.658	2.429	1.597	1P	0.663	2.482	1.645
2P	0.583	2.746	1.601	2P	0.586	2.845	1.668
	1				I		
	$\mathcal{B}(B_c^+ \to \chi_{c1} \rho^+)$	$\mathcal{B}(B_c^+ \to \chi_{c1} \rho^+)$	$\mathcal{B}(B_c^+ \to \chi_{c0} \rho^+)$		$\mathcal{B}(B_c^+ \to \chi_{c1} K^{*+})$	$\mathcal{B}(B_c^+ \to \chi_{c1} K^{*+})$	$\mathcal{B}(B_c^+ \to \chi_{c0} K^{*+})$
	$\mathcal{B}(B_c^+ \to \chi_{c0} \rho^+)$	$\mathcal{B}(B_c^+ \to \chi_{c2} \rho^+)$	$\mathcal{B}(B_c^+ \to \chi_{c2} \rho^+)$		$\overline{\mathcal{B}(B_c^+ \to \chi_{c0} K^{*+})}$	$\mathcal{B}(B_c^+ \to \chi_{c2} K^{*+})$	$\mathcal{B}(B_c^+ \to \chi_{c2} K^{*+})$
1P	0.206	0.122	0.590	1P	0.276	0.157	0.570
2P	0.315	0.159	0.503	2P	0.422	0.203	0.481
	$\mathcal{B}(B_c^+ \rightarrow h_c \rho^+)$	$\mathcal{B}(B_c^+ \to h_c \rho^+)$	$\mathcal{B}(B_c^+ \to h_c \rho^+)$		$\mathcal{B}(B_c^+ \to h_c K^{*+})$	$\mathcal{B}(B_c^+ \to h_c K^{*+})$	$\mathcal{B}(B_c^+ \to h_c K^{*+})$
	$\mathcal{B}(B_c^+ \to \chi_{c0} \rho^+)$	$\overline{\mathcal{B}(B_c^+ \to \chi_{c1} \rho^+)}$	$\overline{\mathcal{B}(B_c^+ \to \chi_{c2} \rho^+)}$		$\overline{\mathcal{B}(B_c^+ \to \chi_{c0} K^{*+})}$	$\overline{\mathcal{B}(B_c^+ \to \chi_{c1} K^{*+})}$	$\overline{\mathcal{B}(B_c^+ \to \chi_{c2}K^{*+})}$
1P	2.226	10.790	1.312	1P	2.159	7.834	1.231
2P	2.449	7.770	1.232	2P	2.350	5.568	1.131

 χ_{c1} state suppressed

If $\chi_{c1}(3872)$ is NOT a pure charmonium state different hierarchy

Rare charm decays induced by $c \rightarrow u \gamma$ transition

Amplitude for the transition $B_c(p) \rightarrow A(p', \epsilon) \gamma(q, \lambda)$

 $\mathcal{A}(B_c(p) \to B_1'(p',\epsilon)\gamma(q,\lambda)) = \left\{ A_{PC} \left[p \cdot qg^{\alpha\beta} - q^{\alpha}p^{\beta} \right] + iA_{PV}\varepsilon^{\alpha\beta\mu\nu}p_{\mu}q_{\nu} \right\} \epsilon_{\alpha}^* \lambda_{\beta}^*$

SD contribution:

$$A_{PC}^{SD} = i \frac{G_F}{(2\pi)^{3/2}} m_c \alpha^{1/2} (C_7^{eff} + C_7') (T_1'(0) + T_2'(0))$$
$$A_{PV}^{SD} = -i \frac{G_F}{(2\pi)^{3/2}} m_c \alpha^{1/2} (C_7^{eff} - C_7') (T_1'(0) + T_2'(0))$$

P. Colangelo, F. De Fazio, F. Loparco, PRD103 (2021) 075019

Heavy quark spin symmetry relates new physics form factors to SM ones through universal functions

Y.-J. Shi, W. Wang, and Z.-X. Zhao, Eur. Phys. J. C 76 (2016), no. 10 555

$$T'_{0}(q^{2}) = 2i \frac{(m_{B_{c}} + m_{B'_{1}})^{2} \sqrt{m_{B'_{1}}}}{m_{B_{c}}^{3/2}} a_{0} \Omega'_{2}$$
Hadronic suppression $I'_{1}(q^{2}) = -\frac{m_{B'_{1}}}{m_{B_{c}}} T'_{2}(q^{2})$

$$T'_{2}(q^{2}) = -i \sqrt{\frac{m_{B_{c}}}{m_{B'_{1}}}} \Omega'_{1}$$
Universal functions

Rare charm decays induced by $c \rightarrow u \gamma$ transition

LD vs SD contributions to branching ratios

Rare charm decays induced by $c \rightarrow u \gamma$ transition

Ratio of branching fraction: LD vs SD contributions

NP better accessible in $B_c \rightarrow B^* \gamma$ channel

Overview

Research

- The Standard Model as an Effective Field Theory
- Tensions in the flavour sector
- Interplay between flavour physics and hadron spectroscopy
- Chaos and Holography

Use Dalitz decays $D_{sJ}^{(*)} \rightarrow D_s^{(*)} \ell^+ \ell^$ to probe the nature of D_{s0}^* and D_{s1}' complement the information from the electric dipole radiative decays $D_{s0}^* \rightarrow D_s^* \gamma, D_{s1}' \rightarrow D_s^{(*)} \gamma$

cs system composed of heavy-light quarks

Heavy degrees of freedom decouple

Heavy quark spin \vec{s}_Q and total angular momentum of the light degrees of freedom \vec{s}_ℓ separately conserved

heavy quark spin symmetry

$$H_a = \frac{1+\not}{2} \left[P_{a\mu}^* \gamma^\mu - P_a \gamma_5 \right]$$

$$S_a = \frac{1+\not}{2} \left[P_{1a}^{\prime\mu} \gamma_{\mu} \gamma_5 - P_{0a}^* \right]$$

States classified in doublets

$$(s_{\ell}^P = \frac{1}{2}^-)$$
 \boldsymbol{D}_s , \boldsymbol{D}_s^*

$$(s_{\ell}^{P} = \frac{1}{2}^{+})$$
 D_{s0}^{*} , D_{s1}'

Uncertainties from $au_{1/2}$, $au_{3/2}$ and g_1^S, g_2^S, h^T

 g_1^S : from the semileptonic $D \rightarrow K^*$ form factor Phys. Rept. 281 (1997) 145{238}

 g_2^S : from light-cone QCD sum rule computation of the decay amplitude of the positive parity charmed mesons to real photons Phys. Rev. D 72 (2005) 074004

h^T: from strong decay width of excited charmed mesons Phys. Rev. D 98 (2018) 114028

 $au_{1/2}$, $au_{3/2}$: from semileptonic B decays to positive parity charmed mesons Phys. Rev. D 58 (1998) 116005

Sign of interference not known

Two extreme cases depending on the product between $au_{1/2}$, $au_{3/2}$ and g_1^S, g_2^S, h^T

Case A POSITIVE Case B NEGATIVE

Dipartimento di Fisica, Università di Bari, INFN Bari

• $D'_{s1} \rightarrow D^{(*)}_{s} \mu^{+} \mu^{-}$ P. Colangelo, F. De Fazio, F. Loparco, and N. L., Phys. Rev. D 108 (2023), no. 7 074027

• $D_{s1} \to D_s^{(*)} \mu^+ \mu^-$

• $D_{s2}^* \to D_s^{(*)} \mu^+ \mu^-$

• $D'_{s1} \rightarrow D^{(*)}_{s} \mu^+ \mu^-$ Angular Distribution

Case A

Dipartimento di Fisica, Università di Bari, INFN Bari

• $D_{s1} \rightarrow D_s^{(*)} \mu^+ \mu^-$ Angular Distribution

Case A

Case **B**

• $D_{s2}^* \rightarrow D_s^{(*)} \mu^+ \mu^-$ Angular Distribution

Processes currently under investigation by the LHCb collaboration

Dipartimento di Fisica, Università di Bari, INFN Bari

Overview

Research

- The Standard Model as an Effective Field Theory
- Tensions in the flavour sector
- Interplay between flavour physics and hadron spectroscopy
- Chaos and Holography

Bound on Chaos

Maldacena, Shenker and Stanford conjecture

J. Maldacena, S. H. Shenker, and D. Stanford, A bound on

chaos, JHEP 08 (2016) 106

Thermodynamic quantum system at temperature *T*

Bound on chaos:

 $\lambda \leq 2 \pi T$ Largest Lyapunov exponent

Using holographic methods to test the MSS bound on chaos

Strongly coupled $Q\bar{Q}$ pair in a finite temperature and density/constant and uniform magnetic field *B*

Open string in a 5-dimensional metric with suitable boundary conditions

Exemple: external magnetic field

Bound on Chaos

Largest Lyapunov exponent for different values of magnetic field

Conclusions and perspectives

Necessity to continue the investigation for a deeper understanding of nature

THANKS FOR YOUR ATTENTION