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The Unruh Effect

The Unruh effect (1976) is a quantum field prediction according 
to which an accelerating observer in the vacuum detects thermal 
particles with a temperature directly proportional to its 
acceleration:

𝑇𝑈 =
𝑎

2𝜋

➢ An accelerating thermometer in empty space will record a non-
zero temperature.

(In Planck units:                                     )   



Let us consider a detector, a neutral two-level atom in a 1+1 Minkowski spacetime, whose Hamiltonian has 
the form

➢ There is no difference in the detection results between an accelerated observer in the vacuum and an 
observer at rest immersed in a thermal bath.

Demonstration: Unruh effect for a two-level atom
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and which is coupled with a massless boson scalar field

ො𝜑 𝑡, 𝑥 = ො𝜑 𝑡 𝜏 , 𝒙 𝜏 = න
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If the detector is at rest, immersed in a 
thermal bath at temperature T, the response 
function is equal to:

𝐹β(1+1) 𝜔 =
1

𝜔
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Uniformly accelerating two-level atom

𝑡 𝜏 =
1

𝑎
sinh(𝑎𝜏)

𝑥 𝜏 =
1

𝑎
cosh(𝑎𝜏)

The detector is now uniformly accelerated.

Its trajectory is given by the Rindler coordinates:



𝑉 = [ ො𝜎+ ⊗ ෠𝜙 𝑡, 𝑥 + ො𝜎− ⊗ ෠𝜙+(𝑡, 𝑥)]

𝑉 = [ ො𝜎+ ⊗ ෠𝜙+ 𝑡, 𝑥 +  ො𝜎− ⊗ ෠𝜙(𝑡, 𝑥)]
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The detector-field interaction
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Compare 
the 
results
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Response function for 
the uniformly 
accelerating detector
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➢ The Unruh effect is proved: there is no difference between an observer 
uniformly accelerating in the vacuum and an observer at rest in a thermal 
bath.



The Hawking Effect

If we take in exam a pair of particle-
antiparticle close to the horizon, 
generated due to the vacuum quantum 
fluctuations: the particle inside the 
horizon can not escape from the black 
hole, while the other one can move on to 
infinity.  Hence, the black hole emits a 
radiation with a temperature:         

The Hawking effect (1974) describes the theoretical thermal radiation emitted by a black hole.

𝑇𝐻 =
𝑘

2𝜋 k is the surface gravity of the 
black hole



Demonstration: Hawking effect and Bogolyubov 
transformations

• Let us consider a 1+1-dimensional black hole which 
is described by the Schwarzschild metric in terms 
of tortoise lightcone coordinates (෤𝑢, ෤𝑣).

• An observer at rest far away from the black hole 
    (𝑟 → ∞) can detect particles with frequency Ω.

• The creation and annihilation operators follow the 

commutaiton rule: ෠𝑏 Ω , ෠𝑏+ Ω′ = 𝛿(Ω − Ω′)

෠𝜙 𝑡, 𝑥 = න
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• Let us consider a 1+1-dimensional black hole which 
is described in terms of 

     Kruskal − Szekeres coordinates (𝑢, 𝑣).

• An observer who is crossing the horizon can detect 
particles with frequency 𝜔.

• The creation and annihilation operators follow the 
commutaiton rule: ො𝑎 𝜔 , ො𝑎+ 𝜔′ = 𝛿(𝜔 − 𝜔′)

෠𝜙 𝑡, 𝑥 = න
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➢ To consider the whole spacetime, it is necessary to introduce 
the Kruskal − Szekeres coordinate system, to have regularity 
in  𝑟 = 𝑟𝑆 (Schwarzschild radius). 



Through the annihilation operator ෠𝑏 Ω  it is possible to define the vacuum state: 

෠𝑏 Ω |0𝐵 > = 0
Boulware vacuum, vacuum state which doesn’t contain 
particles form the point of view of the observer far away 
from the black hole, physically unacceptable.

Through the annihilation operator ො𝑎 (Ω) it is possible to define the vacuum state: 

ො𝑎 𝜔 |0𝐾 > = 0 Kruskal vacuum, is regular on the horizon, physically 
acceptable.

Vacuum
states



Bogolyubov 
transformations

It is possible to connect the annihilation and creation operators a 
and b through the Bogolyubov transformations:

෠𝑏 (Ω) = න
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We can now compute  the expectation value of the number operator ෡𝑁Ω for the b-
particles in the Kruskal vacuum:

෡𝑁Ω = < 0𝐾
෠𝑏+ ෠𝑏 0𝐾 > = 𝑒2𝜋Ω/𝑘 − 1
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Equivalence
Principle

A uniformly accelerated 
observer experiences a 

uniform gravitational field 

The effects of the gravitational 
interactions are locally 

indistinguishable from the 
effects of an accelerated

frame

Equivalence principle 



The Hawking-Unruh Effect

Considering the  EP
The two phenomena are 
the manifestation of the 

same physcal effect

➢ A crucial role is played by vacuum fluctuations in both the effects.

➢ The Unruh temperature and the Hawking temperature present the same expression in which 
a is replaced by k.

Hawking-Unruh 
Effect

➢ The radiation production takes energy from the kinetic energy of the detector in Unruh, from 
the gravitational energy of the black hole in Hawking.



x

t

Nice

Naughty

This 
Christmas be 
nice…stay 
inside the 
horizon!

➢ An accelerating observer in 
a Rindler spacetime, will 
have an event horizon 
analogous to the one we get 
in the neighborhood of 
black hole.



Thank you for 
your attention.
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