Robustness of quantum symmetries against perturbations

$V.Viesti^1 \quad P.Facchi^1 \quad M.Ligab{\diamond}^2$

¹Department of Physics University Aldo Moro of Bari

²Department of Mathematics University Aldo Moro of Bari

INFN Bari Theory Group Christmas Workshop, December 17th 2024

Vito Viesti

December 17th 2024 1 / 20

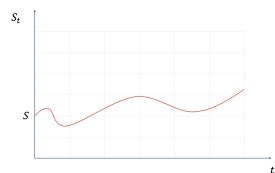
æ

Pragile and robust symmetries

æ

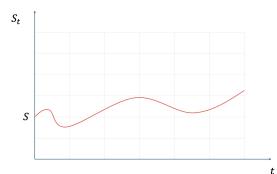
The evolution is unitary

• S bounded operator



The evolution is unitary

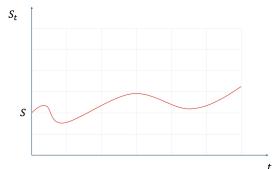
- $\bullet~S$ bounded operator
- $H = H^{\dagger}$ Hamiltonian



The evolution is unitary

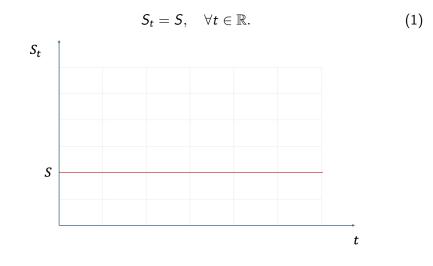
- S bounded operator
- $H = H^{\dagger}$ Hamiltonian
- Heisenberg evolution

$$S_t = \mathrm{e}^{\mathrm{i}tH} S \mathrm{e}^{-\mathrm{i}tH},$$



4 / 20

Conserved quantities are time-independent



• Noether's Theorem

S conserved quantity $\iff {
m e}^{-{
m i} heta S}$ continuous symmetry of H

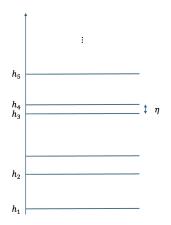
$$\mathrm{e}^{\mathrm{i}\theta S}H\mathrm{e}^{-\mathrm{i}\theta S}=H\quad\forall\theta\in\mathbb{R}$$

Noether's Theorem

S conserved quantity $\iff e^{-i\theta S}$ continuous symmetry of H $e^{i\theta S}He^{-i\theta S} = H \quad \forall \theta \in \mathbb{R}$ • Conserved quantities \iff Symmetries

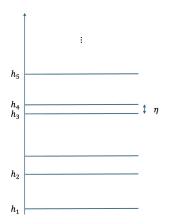
The Hamiltonian has discrete spectrum

• *H* with purely-point spectrum



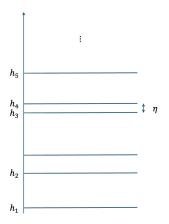
The Hamiltonian has discrete spectrum

- *H* with purely-point spectrum
- Non-vanishing gap

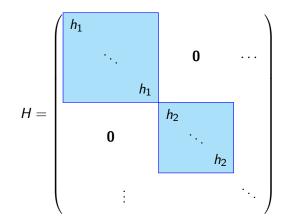


- *H* with purely-point spectrum
- Non-vanishing gap
- Spectral decomposition

$$H=\sum_{k\geq 1}h_kP_k$$



In matrix form we have ...



æ

Symmetries commute with *H*

• S symmetry of $H \iff [S, H] = 0$

Image: A matrix

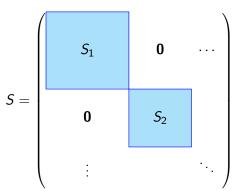
3

Symmetries commute with H

- S symmetry of $H \iff [S, H] = 0$
- S block-diagonal in H-representation

Symmetries commute with H

- S symmetry of $H \iff [S,H] = 0$
- S block-diagonal in H-representation
- In matrix form we have



æ

• *S* symmetry of *H*

э

- *S* symmetry of *H*
- V hermitian bounded operator

э

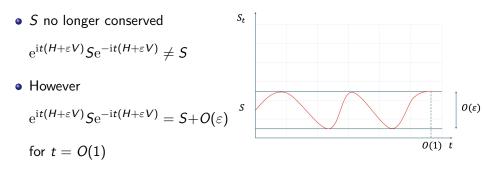
- S symmetry of H
- V hermitian bounded operator
- $H \rightarrow H + \varepsilon V$, $\varepsilon \ll 1$, perturbed Hamiltonian

- S symmetry of H
- V hermitian bounded operator
- $H \rightarrow H + \varepsilon V$, $\varepsilon \ll 1$, perturbed Hamiltonian
- $[S, V] \neq 0$ in general

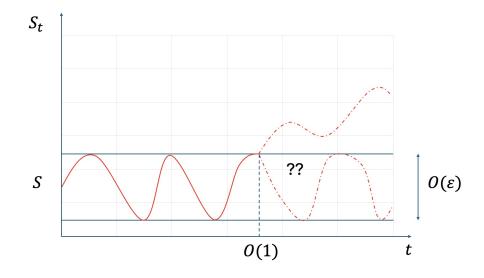
Symmetries are almost conserved for small times

• S no longer conserved $e^{it(H+\varepsilon V)}Se^{-it(H+\varepsilon V)} \neq S$ s o(t) $o(\varepsilon)$

Symmetries are almost conserved for small times

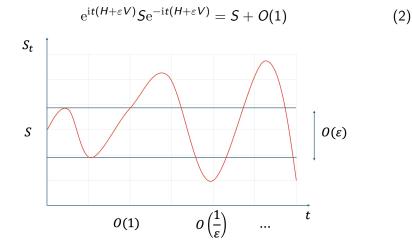


What happens for long times?



э

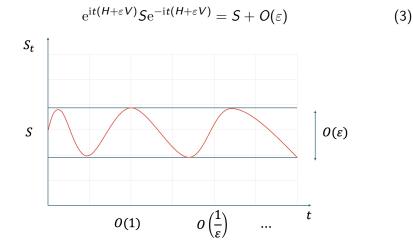
Fragile symmetries are lost for long times



December 17th 2024

э

Robust symmetries are almost conserved for all times



Vit

• $H + \varepsilon V$ self-adjoint:

$$H + \varepsilon V = \sum_{n \ge 1} h_n(\varepsilon) P_n(\varepsilon)$$
(4)

문 문 문

• $H + \varepsilon V$ self-adjoint:

$$H + \varepsilon V = \sum_{n \ge 1} h_n(\varepsilon) P_n(\varepsilon)$$
(4)

•
$$\{P_n(\varepsilon)\}_{n\geq 1}$$
 analytic

문 문 문

• $H + \varepsilon V$ self-adjoint:

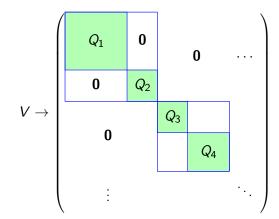
$$H + \varepsilon V = \sum_{n \ge 1} h_n(\varepsilon) P_n(\varepsilon)$$
(4)

•
$$\{P_n(\varepsilon)\}_{n\geq 1}$$
 analytic

• $Q_n := P_n(0)$ family of subprojections of the projections of H

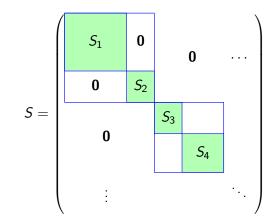
æ

Perturbations induces subprojections



э

Robust symmetries commute with the subprojections



• Symmetries commute with the projections of H

2

- Symmetries commute with the projections of H
- Robust symmetries commute with the family of subprojections induced by ${\cal V}$

э

[1] P. Facchi, M. Ligabò, V. Viesti *Robustness of quantum symmetries against perturbations*, arXiv:2411.18529 [quant-ph]