

MULTIPARTITE ENTANGLEMENT AND QUANTUM FRUSTRATION

Paolo Scarafile

BARI THEORY XMAS WORKSHOP 2024

December 17, 2024

Multipartite entanglement analysis

Optimiization: Annealing

MULTIPARTITE ENTANGLEMENT A complex phenomenon

balanced bipartition

More than one bipartition possible & exponentially growing of bipartitions

information can be extracted by analyzing the **bipartite** entanglement associated to **each bipartition**

statistical approach based on the Random Matrix Theory

MMES AND THE EMERGE OF FRUSTRATION

perfect MMES: maximum bipartite entanglement with respect to all the balanced bipartitions

$$\pi_{ME}(|\psi\rangle) = \binom{n}{[n/2]}^{-1} \sum_{|A|=[n]}^{-1} \sum_{|A|=$$

searching for a perfect MMES results in the emergence of frustration

P Facchi et al. "Multipartite entanglement and frustration". In: New Journal of Physics 12.2 (Feb. 2010), p. 025015. issn: 1367–2630. doi: 10.1088/1367 2630/12/2/025015. url: http://dx.doi.org/10.1088/1367-2630/12/ 2/025015.

 $\pi_A(|\psi\rangle)$

/2]

EMERGE OF QUANTUM FRUSTRATION

existence of perfect MMES is not garanteed for every qubits system

number of qubits	Existence of pe
3	Ye
4	No
5	Ye
6	Ye
≥ 7	No

The components of the states do not satisfy all the conditions in order to have all balanced bipartition maximal entangled when: n
eq 3, 5, 6

$$\pi_{ME} > \frac{1}{2^{n_A}}$$

erfect MMES S \mathbf{S} \mathbf{S}

Random

$$|\psi\rangle = \sum_{k=0}^{2^n-1} z_k |k\rangle, \text{ with }$$

Unit hypersphere

Uniform real-phased:

$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{2^n - 1} s_k |k\rangle \quad \mathbf{w}$$

example k = 27 $|k\rangle = |27\rangle = |11011\rangle$

vith $s_k = \{+1, -1\}$

Gabriele Cenedese et al. "Generation of Pseudo-Random Quantum States on Actual Quantum Processors". In: Entropy 25.4 (Apr. 2023), p. 607. issn: 1099-4300. doi: 10.3390/e25040607. url: http://dx.doi.org/10.3390/ e25040607

```
58
      vettore = [1] + [random.choice(values) for _ in range(dim)]
59
      initial_state = [1/(np.sqrt(2**n_qubits)) * vettore[i] for i in
60
      range(2**n_qubits)]
      circuit = QuantumCircuit(n_qubits)
61
      circuit.initialize(initial_state)
62
```

SIMULATIONS

Creation of python vectors with uniform random value +1 and -1

Initialization of these vectors in quantum states using a proper quantum gate of the Qiskit library

n = 12

Absolute distance behavior

$$d_1 = \frac{1}{2} \sum_{i=1}^{n} |p(x_i) - q(x_i)| \cdot \delta x \quad u$$

 π_A

with $0 \le d_1 \le 1$

 π_{ME}

Optimization of the potential $\pi_M E$

$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{2^n-1} s_k |k\rangle$$
 with $s_k = \{+1\}$

It is a discrete submanifold with a finite(very large) number of states: 2^{2^n-1}

$$n = 5$$
: states $\sim 2, 12 \times 10^9$

$$\pi_{\rm ME}(s) = \frac{1}{N^2} \sum_{l,l',k,k' \in \mathbb{Z}_2^n} \Delta(l,l';k,k') s_l s'_l s_k s'_k$$

we want to minimize π_M

 $1, -1\}$

n = 10: states $\sim 9 \times 10^{307}$

Simulated Annealing and tempering(Parisi and Marinari)

each states a different set of coefficient $s = \{s_k\}$

Flipping one component of the state we end up with a new states with a new value of energy

different value of energies E

Procedure

Is the move accettable?

YES: Keep $|\psi_2 angle$ and E_2

NO: Come back to $|\psi_1
angle$ and E_1

Why $x < e^{(E_1 - E_2)\beta}$?

Also move to higher energies can be accepted

You can escape from the relative minima of $\pi_{ME}(s)$

Eccape local minima

This can not be accomplished using the condition:

 $E_{2} < E_{1}$

Annealing plot

Future implementations

Concluding the optimizatin of the 7 qubits systems. At the moment:

 $min[\pi_{ME}] = 0.13504$ over to $\pi_{min} = 0.125$

Analysis of the thermodynamics behavouir for 5 qubits on:

BACK-UP SLIDES

Quantifier of entanglement: Purity π

Purity lives in a well-defined intervall: $\mathbb{I} = \left| \frac{1}{N_A}, 1 \right|$ where:

where $N_A = 2^{n_A}$ and where n_A is the number of qubits in A

$$f_A = \operatorname{tr}(\rho_A^2) = \sum_k p_k^2$$

- maximal entangled state
 - separable state

DISTRIBUTION OF BIPARTITE ENTANGLEMENT

case of n-qubits system uniformly distributed on the unitary hypersphere (Haar)

P.Facchi et al. "Statistical mechanics of multipartite entanglement". In: Jour nal of Physics A: Mathematical and Theoretical 42.5 (Jan. 2009), p. 055304. issn: 1751-8121. doi: 10.1088/1751-8113/42/5/055304. url: http://dx.doi.org/10.1088/1751-8113/42/5/055304

The parameters of the distributions can be approximate in the limit of large number of qubits

$$\mu = \langle \pi_A \rangle = \frac{N_A + N_{\overline{A}}}{N+1}$$
$$\sigma^2 = \langle (\pi_A - \mu)^2 \rangle = \frac{2(N_A^2 - 1)(N_{\overline{A}}^2 - 1)}{(N+1)^2(N+2)(N+3)}$$

where:

 $N_A = 2^{n_A}$ and where n_A is the number of qubits in A $N_{\overline{A}}=2^{n_{\overline{A}}}$ and where $n_{\overline{A}}^{-}\,$ is the number of qubits in $\,\overline{A}\,$ $N=N_AN_{\overline{A}}=2^{n_A+n_{\overline{A}}}=2^n$ and where n is the number of qubits of the system

P.Facchi et al. "Statistical mechanics of multipartite entanglement". In: Jour nal of Physics A: Mathematical and Theoretical 42.5 (Jan. 2009), p. 055304. issn: 1751-8121. doi: 10.1088/1751-8113/42/5/055304. url: http://dx.doi.org/10.1088/1751-8113/42/5/055304

MAXIMAL MULTIPARTITE ENTANGLED STATES: MMES

perfect MMES: maximum bipartite entanglement with respect to all the balanced bipartitions

How to identify them?

P Facchi et al. "Multipartite entanglement and frustration". In: New Journal of Physics 12.2 (Feb. 2010), p. 025015. issn: 1367–2630. doi: 10.1088/1367 2630/12/2/025015. url: http://dx.doi.org/10.1088/1367-2630/12/ 2/025015.

has to be propotional to the

π_A has to be $\frac{1}{N_A}$ for any bipartition

 $\pi_{ME}(|\psi\rangle) = \binom{n}{[n/2]}^{-1} \sum_{|A|=[n/2]} \pi_A(|\psi\rangle)$

The state is a **perfect MMES**

the potential of the multipartite entanglement has to be $\overline{N_A}$

The generic bipartite entanglement distribution becomes a delta dirac function

P Facchi et al. "Multipartite entanglement and frustration". In: New Journal of Physics 12.2 (Feb. 2010), p. 025015. issn: 1367–2630. doi: 10.1088/1367 2630/12/2/025015. url: http://dx.doi.org/10.1088/1367–2630/12/ 2/025015.

Number of uniform states per number of qubits

The number of elements is equal to

number of qubits	uniform real-phased
3	128
4	32768
5	$2, 12 \times 10^{9}$
6	$9,22 \times 10^{18}$
7	$1,07 \times 10^{38}$
8	$5,69 \times 10^{76}$
9	$6,70 \times 10^{153}$
10	$8,99 \times 10^{307}$
11	$> 10^{308}$

The pseudo-random sub-manifold is continuous

ased states ٦ 10^{9} 0^{18} 10^{38} 0^{76}

Number of states simulated

number of qubits	Pseudo-Random	Uniform Real-Phased
3	2×10^6	128
4	2×10^6	32678
5	2×10^6	2×10^6
6	2×10^6	2×10^6
7	2×10^6	2×10^6
8	2×10^6	2×10^6
9	2×10^6	2×10^6
10	2×10^6	2×10^6
11	10^{6}	10^{6}
12	106	10 ⁶

Collection of data

choose a balanced bipartition (A, A)

For each state until 10 qubits, all purities relative to each balanced bipartition have been estimated.

for 11 and 12 qubits high **computational cos**t

sum over the squared eigenvalues π_A

Histograms of π_A

Pseudorandom

Uniform realphased

Comparison between first bipartition purities

Histograms of $\pi_M E$

Pseudorandom

Uniform real-phased

Analytical expectations of the purity distribution relative to the generic bipartition for Random state

$$\mu = \langle \pi_A \rangle = \frac{N_A + N_B}{N + 1}$$

$$\sigma_A^2 = \langle (\pi_A - \mu)^2 \rangle = \frac{2(N_A^2 - 2N_B^2)}{(N + 1)^2}$$

 $IV_A = \Delta^{--}$ and where IV_A is the number of qubits in $N_{\overline{A}} = 2^{n_{\overline{A}}}$ and where $n_{\overline{A}}$ is the number of qubits in $N=N_AN_{\overline{A}}=2^{n_A+n_{\overline{A}}}=2^n$ and where $\,n\,$ is the number of qubits of the system

$(1)(N_{\overline{A}}^2 - 1)$ (N+2)(N+3)

Comparison numerial vs theoretical

Analytical expectations of the purity distribution relative to the generic bipartition for Uniform real-phased

$$\mu = \langle \pi_A \rangle = \frac{N_A + N_{\overline{A}}}{N}$$
$$\sigma_A^2 = \langle (\pi_A - \mu)^2 \rangle = \frac{N_A N_{\overline{A}} - \mu}{N_A N_{\overline{A}} - \mu}$$

Comparison numerial vs theoretical

between different data

n = 12

Comparisons

between different sub-manifold

L^1 distance compution

Absolute distance values

Qubits	One bipartition	Mean over
3	1.70661478	1.7
4	1.78527711	1.5
5	1.05875891	0.7
6	0.67784909	0.8
7	0.55854826	0.9
8	0.54466821	0.9
9	0.54290989	1.1
10	0.5374433	1.2
11	0.540405	1.3
12	0.5377885	1.5

Identification of a frustration quantifier

\bullet Non indipendence of $\ \pi_{ME}$ from the bipartitions

Numerical estimation

$$\alpha_r = 0.548$$

$$\alpha_{\iota}$$

u = 0.570

Major problem

Why?

Simmetry of the distribution

quantum frustration

The bipartitions interfere each other, enlarging the variance of the distribution of

$\pi_M E$

P Facchi et al. "Classical statistical mechanics approach to multipartite entanglement". In: Journal of Physics A: Mathematical and Theoretical 43.22 (May 2010), p. 225303. issn: 1751–8121. doi: 10.1088/1751–8113/43/22/ 225303. url: http://dx.doi.org/10.1088/1751–8113/43/22/225303.

$\alpha < 1$ Random case $\sigma_{ME}^2 \sim N^{-2.415}$ $\sigma_{IND}^2 \sim N^{-3}$ $\alpha^{asym} = 0.585$

Procedure for the evaluation of α

 $\ln \frac{\sigma_{\rm IND}^2}{\sigma_{\rm ME}^2} = (\gamma - 1) \ln \mathbb{P}$

at 12 qubits:

 $\ln \frac{\sigma_{\rm IND}^2}{\sigma_{\rm ME}^2} \sim (\gamma - 1)\beta \ln N$

 $\alpha = (1 - \gamma)\beta$

$\ln \mathbb{P} = \beta \ln N$ with $\beta = 0.937$

NOT IN THE LIMIT OF LARGE n

Analytical expectation of π_{ME} for random states

$\sigma_{th}^2 = \frac{(N+1)f_2(N) - 2(N_A + N_{\overline{A}})^2}{(N+1)^2(N+2)(N+3)}$

P Facchi et al. "Classical statistical mechanics approach to multipartite entanglement". In: Journal of Physics A: Mathematical and Theoretical 43.22 (May 2010), p. 225303. issn: 1751-8121. doi: 10.1088/1751-8113/43/22/ 225303. url: http://dx.doi.org/10.1088/1751-8113/43/22/225303.

)	2
J	

Qubits	$f_2(N)$
3	14
4	22
5	31.8
6	49
7	71.83
8	109.77
9	161.95
10	246.43
11	364.87
12	553.70
11	504.87 553.70

Comparison numerial vs theoretical

Numerical

Theoretical