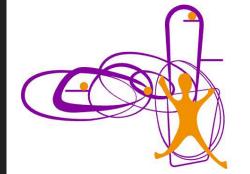
UNIVERSITÀ DEGLI STUDI DI BARI "ALDO MORO"

Dipartimento Interateneo di Fisica "Michelangelo Merlin"

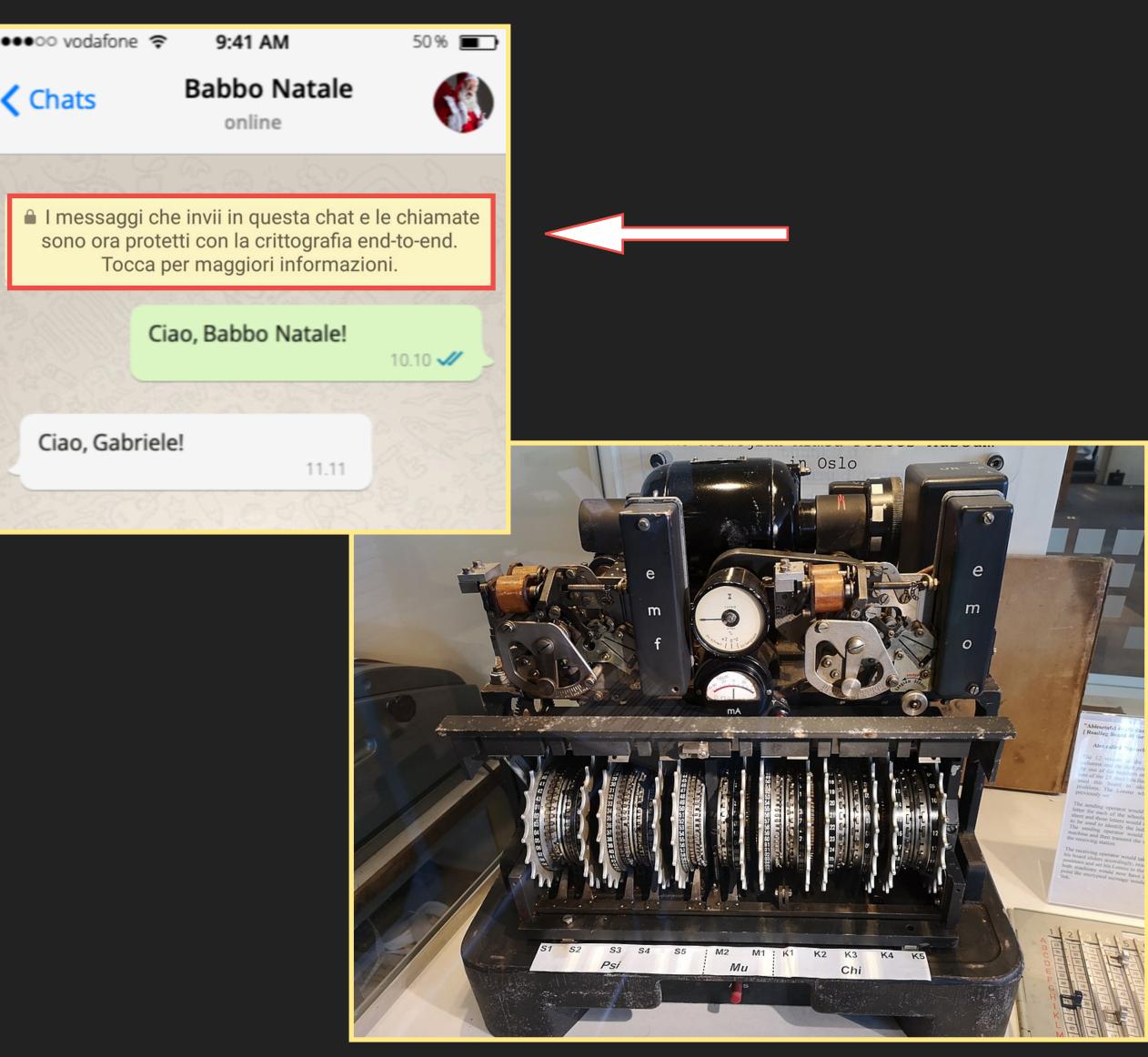
THEORETIC GROUP 🎄 CHRISTMAS WORKSHOP 🥶 SECURITY OF QUANTUM KEY DISTRIBUTION



Gabriele Staffieri <u>g.staffieri2@phd.uniba.it</u> 17/12/2024

CRYPTOGRAPHY: WHAT IS IT?

- The study of secure communication techniques in presence of adversarial behavior
- Constructing and analyzing protocols that prevent third parties from reading private messages.
- Applications: electronic commerce, instant messaging, military communications, etc.



THEORETIC GROUP 🎄 CHRISTMAS WORKSHOP 💿 : SECURITY OF QUANTUM KEY DISTRIBUTION

HOW DOES IT WORK?

Protocols and algorithms are implemented to generate a private "key" string

The key is used by the sender and recipient to encrypt and decrypt the message

Ruleset:

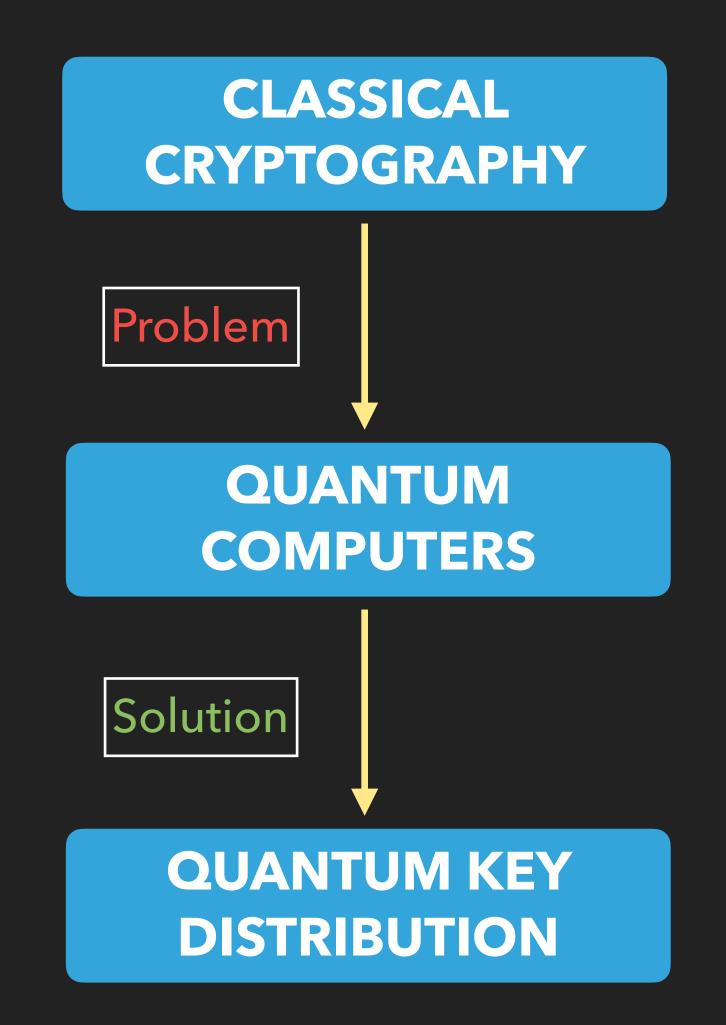
- $0 \longrightarrow \text{shift } 3 \text{ letters backward}$
- $1 \longrightarrow \text{shift 5 letters forward}$
- Plaintext \longrightarrow B A B B O N A T A L E $Key \longrightarrow 0 0 1 0 0 1 1 1 1 1 0 1$ Ciphertext \longrightarrow Z Y G Z L S F Y F I J

CLASSICAL CRYPTOGRAPHY

- Security based on hard-to-solve mathematical problems (e.g. factorization of large numbers)
- The computational complexity is too great even for most powerful calculators
- Asymmetric cryptography: RSA algorithm (Rivest, Shamir, Adleman 1977)

WHY QUANTUM CRYPTOGRAPHY?

- Quantum threat: quantum computers, have higher computational power and can easily break classical cryptosystems (e.g. Shor algorithm)
- Quantum mechanics can be also exploited to build cryptographic protocols: Quantum Key Distribution (QKD)



BB84 PROTOCOL (BENNET, BRASSARD 1984)

- Goal: communicate a random bit of information (0 or 1)
- Alice prepares a pair of entangled qubits

$$|\Phi^{+}\rangle_{AA'} = \frac{|0\rangle_{A}|0\rangle_{A'} + |1\rangle_{A}|1\rangle_{A'}}{\sqrt{2}} = \frac{|+\rangle_{A}|+\rangle_{A'} + |-\rangle_{A}|-\rangle_{A'}}{\sqrt{2}}$$

She sends qubit A' to Bob, then they can measure the qubits in their possession randomly in the (computational) $Z = \{ |0\rangle, |1\rangle \}$ or (conjugate) $X = \{ | + \rangle, | - \rangle \}$ Pauli basis.

 $|\Phi^+\rangle$ can be either written in the X or Z basis:

► Alice measures in the Z basis:

50% prob: $ 0\rangle_A$	$\xrightarrow{\text{eigval}+1}$	$ \Phi^+\rangle_{AB} \longrightarrow 0\rangle_A 0\rangle_B$
50% prob: $ 1\rangle_A$	eigval -1	$ \Phi^+\rangle_{AB} \longrightarrow 1\rangle_A 1\rangle_B$

- Bob after receiving the qubit $A' \longrightarrow B$ can perform the same kind of measurements
- though correlated result, thus they can associate a random bit:

 $\{ |0\rangle, |+\rangle \} \longrightarrow eigenvalue (+1) \longrightarrow 0$ $\{ |1\rangle, |-\rangle \} \longrightarrow \text{eigenvalue} (-1) \longrightarrow 1$

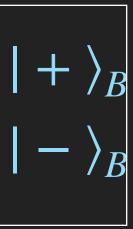
$$|\Phi^{+}\rangle_{AB} = \frac{|0\rangle_{A}|0\rangle_{B} + |1\rangle_{A}|1\rangle_{B}}{\sqrt{2}} = \frac{|+\rangle_{A}|+\rangle_{B} + |-\rangle_{A}|-\rangle_{B}}{\sqrt{2}}$$

Alice measures in the X basis:

50% prob: $ +\rangle_A$	$\xrightarrow{\text{eigval}+1}$	$ \Phi^+\rangle_{AB} \rightarrow +\rangle_A$
50 % prob: $ -\rangle_A$	eigval -1	$ \Phi^+\rangle_{AB} \rightarrow -\rangle_A$

If Alice and Bob have <u>randomly</u> measured in the same basis, they successfully obtain a <u>random</u>

Pauli eigenstates relation
$$|0\rangle = \frac{|+\rangle + |-\rangle}{\sqrt{2}} \qquad |1\rangle = \frac{|+\rangle - |-\rangle}{\sqrt{2}}$$



QUBIT PREPARATION AND MEASURE

To construct a bit string Alice prepares N pairs of qubits

$$|\Psi\rangle = \bigotimes_{j=1}^{N} |\Phi^+\rangle_{AB}^{(j)}$$

Alice constructs two bit strings a and b

$$a = (a_1, \ldots, a_N) \implies$$

 $b = (b_1, \ldots, b_N) \implies$

Bob constructs his own bit strings a' and b' as well

- *i*-th measurement in $Z \longrightarrow a_i = 0$ *i*-th measurement in $X \longrightarrow a_i = 1$
- eigenvalue (+1) in the *i*-th measurement $\longrightarrow b_i = 0$ eigenvalue (-1) in the *i*-th measurement $\longrightarrow b_i = 1$

CLASSICAL COMMUNICATION AND POST-PROCESSING

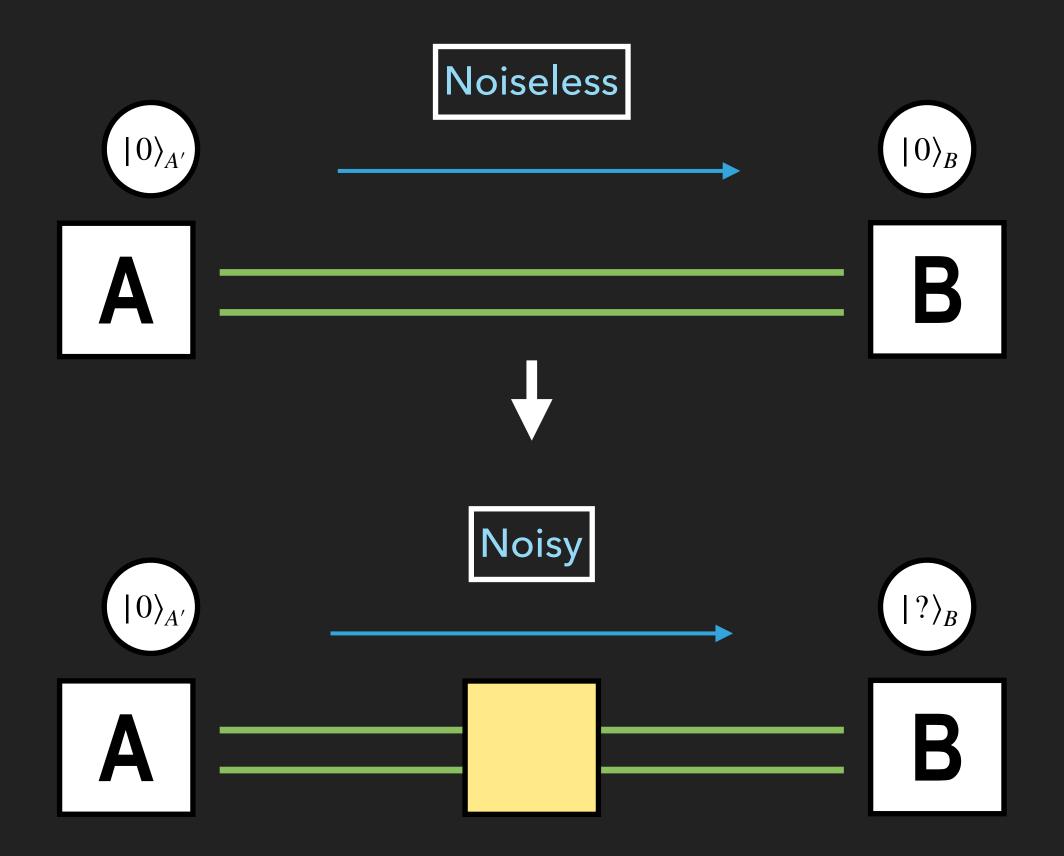
- Alice and Bob publicly announce their choices of measurement a and \mathcal{A}^{\prime}
- If $a_i = a'_i$, Alice and Bob have correlated, <u>despite random</u>, results \implies They keep $b_i = b'_i$
- If $a_i \neq a'_i$, Alice and Bob have uncorrelated results, in general \implies They discard b_i and b'_i

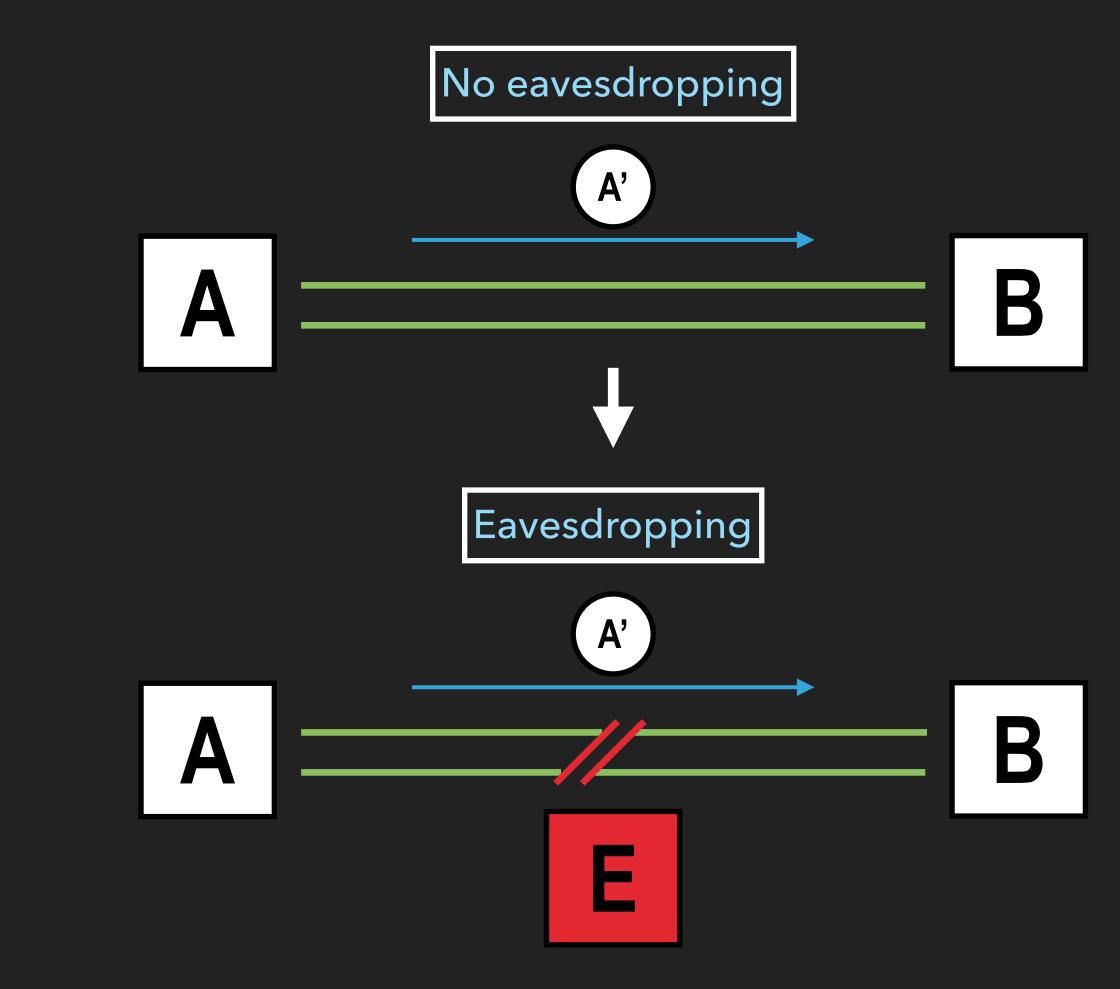
	1	2	3	4	5
ai	0	1	1	0	1
bi	0	1	0	1	0
Alice's basis	Z	Х	Х	Z	Х
A qubit state	0 >	- >	+ >	1 >	+ >
a' _i	0	1	0	1	1
Bob's basis	Z	X	Z	X	X
keep/discard			×	×	
$c_i = c'_i$	0	1	-	-	0

The bits they keep form the secret key string c = c'

REAL-WORLD COMPLICATIONS: NOISE AND EAVESDROPPING

In reality things are complicated due to the presence of noise and eavesdropping





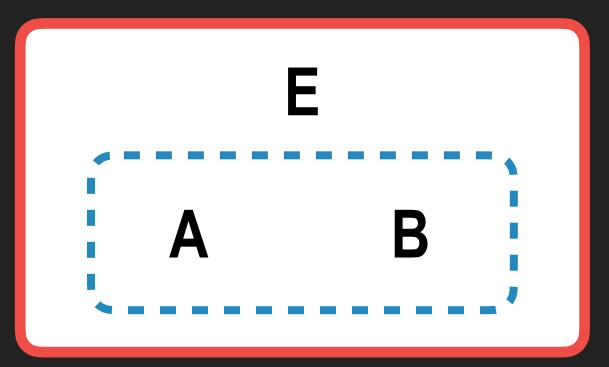
control is the entire environment E

 \implies System *ABE* is isolated \implies The overall evolution is unitary

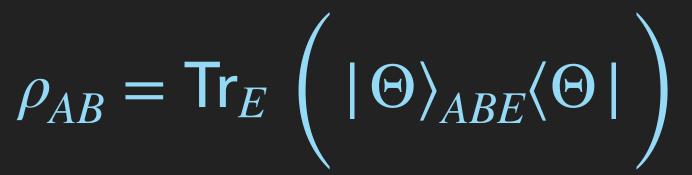
$$|\Psi\rangle_{AA'}\otimes|\phi\rangle_E\longrightarrow \left(\mathbf{1}_A\otimes b\right)$$

The final state of the system AB

> In the real case Eve can intercept the qubit A'. The quantum system that Eve can



$U_{[A'\to B]E} \left| |\Psi\rangle_{AA'} \otimes |\phi\rangle_E = |\Theta\rangle_{ABE} \right|$



ρ_{AB} can be characterized by some constraints

Qber (Quantum bit error rate)

$$Qber^{(Z)} = \operatorname{Tr}\left(|0\rangle_{A}\langle 0|\otimes|1\rangle_{B}\langle 1|\rho_{AB}\right) + \operatorname{Tr}\left(|1\rangle_{A}\langle 1|\otimes|0\rangle_{B}\langle 0|\rho_{AB}\right)$$
$$er^{(X)} = \operatorname{Tr}\left(|+\rangle_{A}\langle +|\otimes|-\rangle_{B}\langle -|\rho_{AB}\right) + \operatorname{Tr}\left(|-\rangle_{A}\langle -|\otimes|+\rangle_{B}\langle +|\rho_{AB}\right)$$

$$Qber^{(Z)} = \mathsf{Tr}\bigg(|0\rangle_A \langle 0|\otimes|1\rangle_B \langle 1|\rho_{AB}\bigg) + \mathsf{Tr}\bigg(|1\rangle_A \langle 1|\otimes|0\rangle_B \langle 0|\rho_{AB}\bigg)$$
$$Qber^{(X)} = \mathsf{Tr}\bigg(|+\rangle_A \langle +|\otimes|-\rangle_B \langle -|\rho_{AB}\bigg) + \mathsf{Tr}\bigg(|-\rangle_A \langle -|\otimes|+\rangle_B \langle +|\rho_{AB}\bigg)$$

 $\bullet | \Phi^+ \rangle_{AA'}$ is maximally entangled and qubit A does not evolve

The reduced density matrix of A is completely mixed

$$\rho_A = \frac{1}{2} \mathbf{1}_A$$

SECURITY PROOF - SECRET KEY RATE

$$r_{N} = \eta \left(\frac{l - l_{leak}}{N} \right)$$

$$\eta$$

- At the end of the protocol Alice and Bob share a bit string Z^N and while E^N is Eve's system
- The problem: estimate how many bits in Z^N are <u>secret</u> w.r.t. Eve

- number of secret bits
- *Leak* number of bits leaked for error correction
- transmittance of the channel
- V total number of rounds (block size)

GUESSING PROBABILITY

- E^N is low, the protocol is secure against her attacks.
- Left-over hash lemma

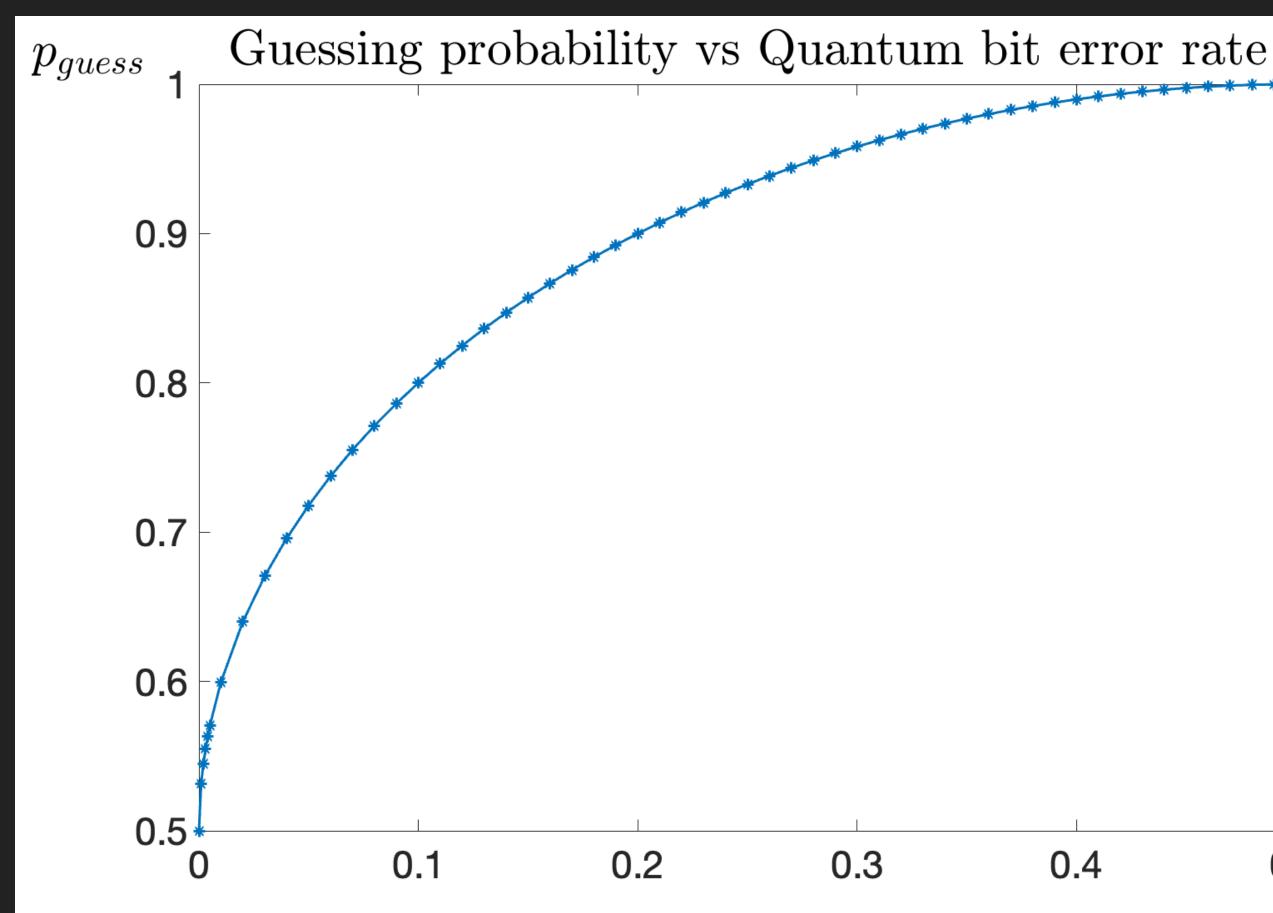
If Z^N is Alice and Bob's string and Eve owns side information E^N about it, the number l of random bits in Z^N on which Eve is completely ignorant about is given by: $l \simeq -\log_2 p_{guess}(Z^N | E^N)$

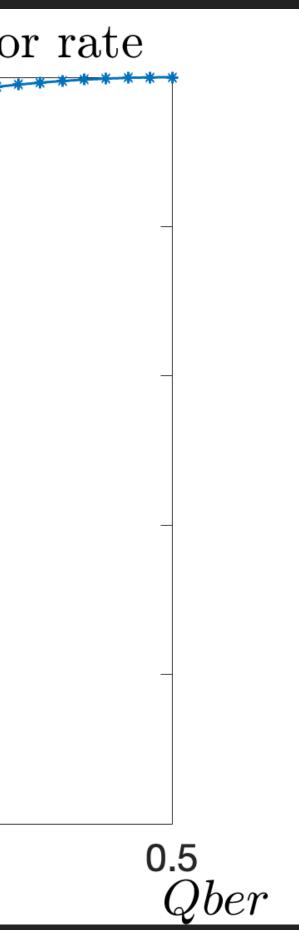
factorizes: $p_{guess}(Z^N | E^N) = [p_{guess}(Z | E)]^N$

The idea: if Eve's probability $p_{guess}(Z^N | E^N)$ to guess Z^N conditioned to her side information

Collective attacks: if each qubit attack is identical and statistically independent, every qubit measurement is represented by a i.i.d. random variable and the guessing probability

GUESSING PROBABILITY AND QBER

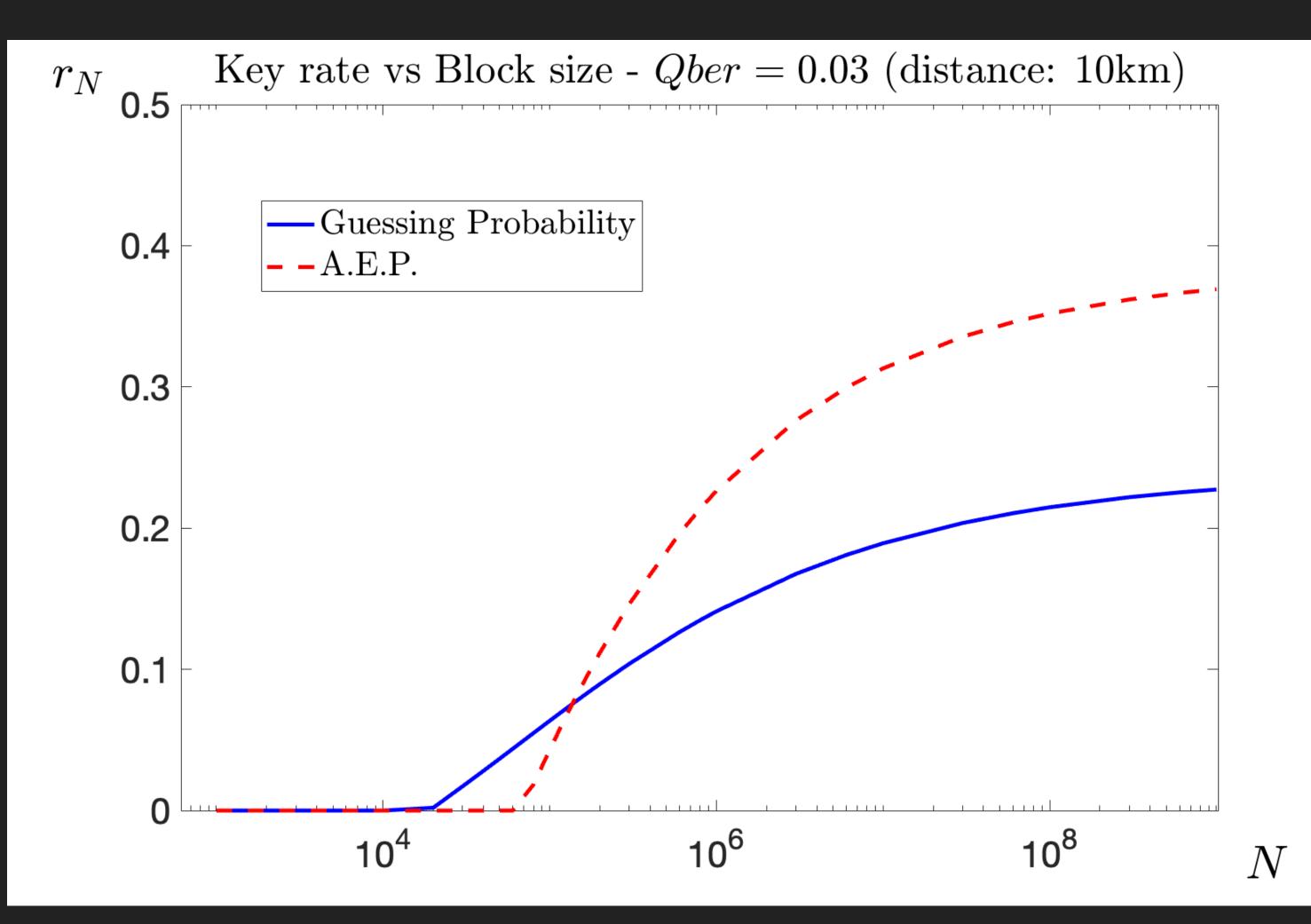




Analytic form of the guessing probability in terms of the Qber (1 qubit): $p_{guess}(Qber) = \frac{1}{2} + \sqrt{Qber(1 - Qber)}$ $\triangleright p_{guess} \ge 0.5$

Information-disturbance trade-off

GUESSING PROBABILITY VS ASYMPTOTIC EQUIPARTITION PROPERTY



 Guessing probability is better w.r.t. A.E.P. when one studies the security at finite-size

For $N \le 10^5$ one still manages to have nonvanishing key rate

CONCLUSION

- Quantum Key Distribution represents the quantum answer to the "quantum threat"
- Quantum cryptography aims to be everlasting i.e. no more depending on the technological advance, being founded on inviolable laws of physics
- Guessing probability outperforms traditional approaches in studying the security of QKD at finite size

THEORETIC GROUP 🞄 CHRISTMAS WORKSHOP 💽 : SECURITY OF QUANTUM KEY DISTRIBUTION

THANK YOU FOR YOUR

THEORETIC GROUP 🎄 CHRISTMAS WORKSHOP 🛒 : SECURITY OF QUANTUM KEY DISTRIBUTION

BACKUP SLIDES

THEORETIC GROUP 🞄 CHRISTMAS WORKSHOP 🚉 : SECURITY OF QUANTUM KEY DISTRIBUTION

TOOLS OF QUANTUM INFORMATION THEORY: ENTROPY

> Y random variable, $Y \sim P_V$

Shannon Entropy: $H(Y)_{P_Y} = -\sum P_Y(y) \cdot \log_2 \left[P_Y(y) \right]$

> A quantum system, ρ_A state

Von Neumann Entropy:

 $y \in \mathcal{Y}$

 $H(Y)_{P_{v}} = -\operatorname{Tr}(\rho_{A}\log\rho_{A})$

Shannon: if an event occurs with probability p, then its surprisal is $-\log_2 p$. The entropy is the average surprisal of an event

 $H(Y)_{P_{Y}}$ measures the uncertainty (in bit) about the value of a r.v. Y_{r} distributed as P_{Y}

ERROR CORRECTION LEAKAGE

variable Y, distributed as Qber

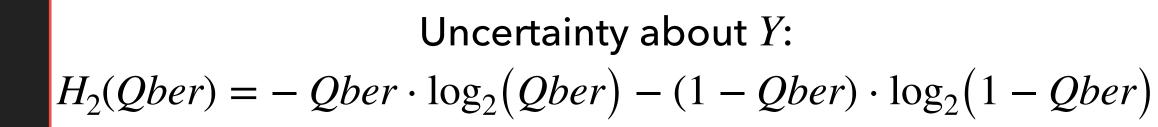
e.g. Alice measures $|\Phi^+\rangle_{AB}$ in $\{|0\rangle, |1\rangle\}$ and finds $|0\rangle$. Then Bob will find:

with probability p = Qber state $|1\rangle$ (error occurred)

with probability q = 1 - Qber state $|0\rangle$ (error not occurred)

Bob has to communicate $l_{leak} = H_2(Qber)$ bits of information to Alice to help her correct her string

The outcome of Bob's measurement on one qubit can be seen as a binary random



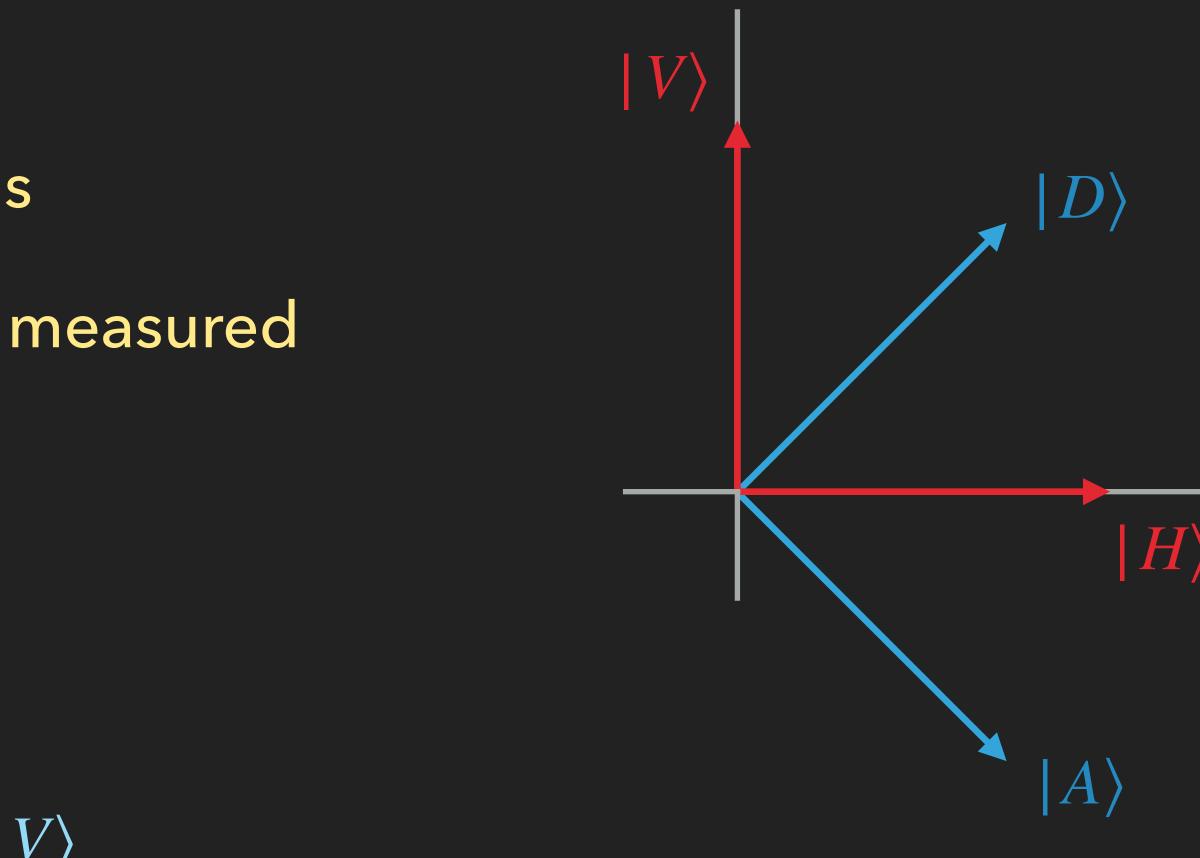
PHOTONS AS QUBITS

- Qubits are photons in QKD protocols
- Polarization is the observable that is measured

$$\sigma_{x}: \{ |+\rangle, |-\rangle \} \longleftrightarrow \{ |D\rangle, |A\rangle \}$$

$$\sigma_{z}: \{ |0\rangle, |1\rangle \} \longleftrightarrow \{ |H\rangle, |V\rangle \}$$

$$|D\rangle = \frac{|H\rangle + |V\rangle}{\sqrt{2}} \qquad |A\rangle = \frac{|H\rangle - |V|}{\sqrt{2}}$$



GUESSING PROBABILITY AS FIDELITY (N = 1 QUBIT PAIR)

A and B

^[1]
$$p_{guess}(Z|E) = \max_{\rho_{AB}, \sigma_{AB}} F^2(\rho_{AB}, \sum_{j} Z_j \sigma_{AB})$$

 $\rho_{AB}^{(N)} = \rho_{AB}^{\otimes N}$ Collective attacks: Z completely positive map $Z\{\sigma_{AB}\} = \sum Z_j \sigma_{AB} Z_j$

[1] Coles, Patrick J. "Unification of different views of decoherence and discord." Physical Review A 85.4 (2012): 042103.

Guessing probability can be obtained optimizing quantum fidelity on systems

)
Fidelity

$$F(\rho, \sigma) = \text{Tr}\sqrt{\sqrt{\rho}\sigma\sqrt{\rho}} = ||\sqrt{\rho}\sqrt{\sigma}||_{1}$$

Kraus-Sudarshan operators

 $Z_j = \mathbf{1}_A \otimes |j\rangle_B \langle j| \qquad j = 0,1$

BLOCK CHARACTERIZATION OF FIDELITY

write an SDP^[2]

$$F(P,Q) = \max_{X} \left\{ \left| \operatorname{Tr} (X) \right| : X \in L(\mathscr{H}), \left(\begin{array}{cc} P & X \\ X^{\dagger} & Q \end{array} \right) \in P(\mathscr{H} \oplus \mathscr{H}) \right\} \right\}$$

$$\begin{pmatrix} P & X \\ X^{\dagger} & Q \end{pmatrix} \in P(\mathscr{H} \oplus \mathscr{H}) \iff X = \sqrt{1}$$
$$|\operatorname{Tr} (X)| \longrightarrow Re[\operatorname{Tr} (X)] = \frac{1}{2}\operatorname{Tr} (X) + \frac{1}{2$$

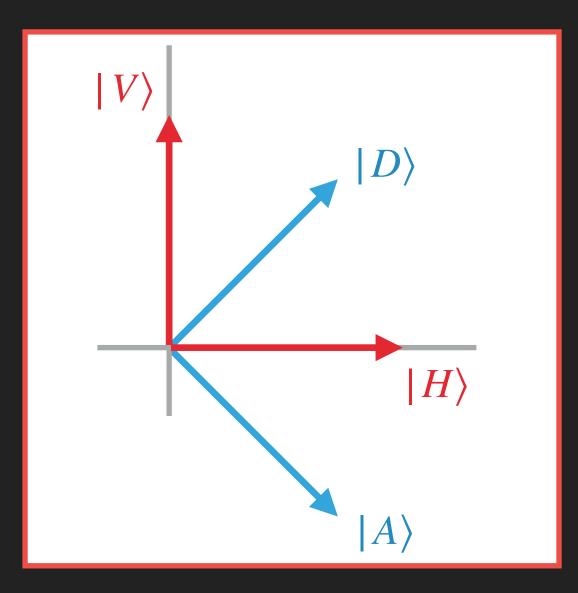
[2] Watrous, John. *The theory of quantum information*. Cambridge university press, 2018.

A particular characterization of Fidelity for $P, Q \in P(\mathcal{H})$ can be exploited to

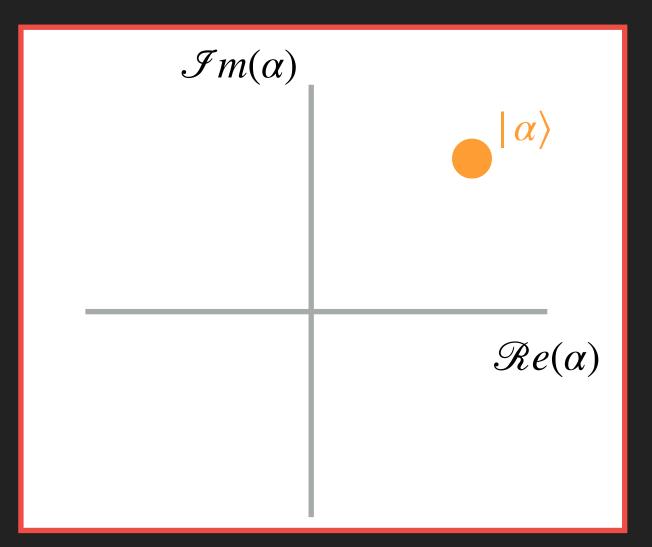
 $\langle PK\sqrt{Q}, ||K||_{\infty} \leq 1$

DISCRETE-VARIABLE AND CONTINUOUS-VARIABLE QKD PROTOCOLS

- Discrete-variable (DV)
 - Long range ($\leq 1200 km$)
 - Non-trivial detection (high-efficiency photon detectors, expansive cooling systems required)



- Continuous-variable (CV)
 - Metropolitan range ($\leq 100 km$)
 - Mature detection techniques (Coherent detection)



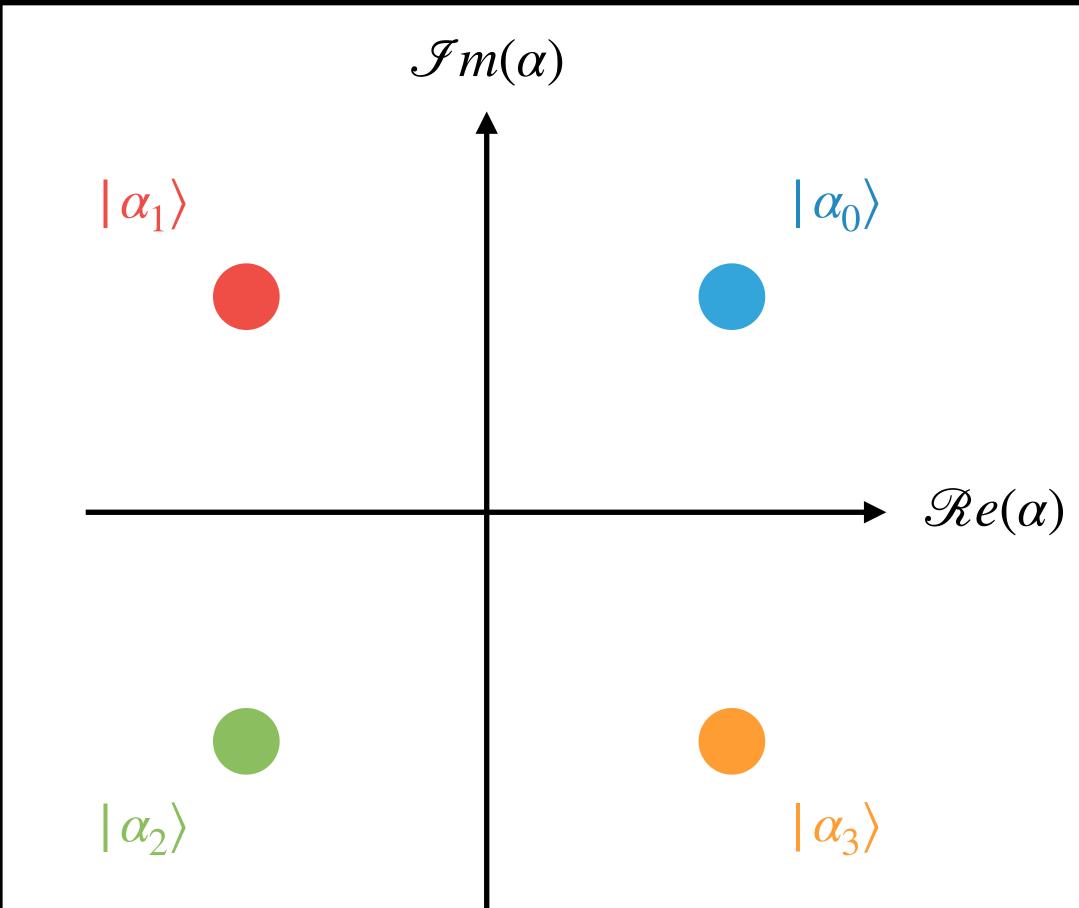
CV PROTOCOLS WITH DISCRETE MODULATION (DM-CV-QKD)

Quadrature Phase Shifting Key (QPSK)

•
$$\alpha_j = |\alpha| \exp\left[i(\frac{\pi}{4} + \frac{\pi}{2}j)\right]$$
 $j = 0, 1, 2, 3$

$$|\alpha_{j}\rangle = e^{-|\alpha|^{2}/2} \sum_{k=0}^{\infty} \frac{\alpha_{j}^{k}}{\sqrt{k!}} |k\rangle$$

Homodyne and Heterodyne detection



CLASSICAL CRYPTOGRAPHY

- Based on hard-to-solve mathematical problems (e.g. factorization of large numbers)
- Asymmetric cryptography: RSA algorithm (Rivest, Shamir, Adleman 1977)

