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CRYPTOGRAPHY: WHAT IS IT? e s @

} Th e Stu dy Of Secu re | messaggi che invii in questa chat e le chiamate

sono ora protetti con la crittografia end-to-end.
Tocca per maggiori informazioni.

communication techniques in
presence of adversarial behavior

Ciao, Babbo Natale!

Ciao, Gabriele!

» Constructing and analyzing
protocols that prevent third
parties from reading private
messages.

» Applications: electronic
commerce, instant messaging,
military communications, etc.
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HOW DOES IT WORK? Ruleset:

® ) — shift 3 letters backward

» Protocols and algorithms
are implemented to
generate a private "key”

® | — shift 5 letters forward

string Plaintext —
» The key is used by the Key— 00100 1T 1/1/1T 01
sender and recipient to
encrypt and decrypt the +
message

Ciphertext—s Z Y G Z LS F Y F | J
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CLASSICAL CRYPTOGRAPHY

» Security based on hard-to-solve mathematical problems (e.q.
factorization of large numbers)

» The computational complexity is too great even for most powerful
calculators

» Asymmetric cryptography: RSA algorithm (Rivest, Shamir,
Adleman 1977)
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WHY QUANTUM CRYPTOGRAPHY?

» Quantum threat: quantum computers, _

have higher computational power
and can easily break classical “roblem
cryptosystems (e.g. Shor algorithm)

» Quantum mechanics can be also _

exploited to build cryptographic
protocols: Quantum Key Distribution

o - S

Solution
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BB84 PROTOCOL (BENNET, BRASSARD 1984)

» Goal: communicate a random bit of information (0 or 1)

» Alice prepares a pair of entangled qubits

1004104+ [ 14 1) _ [+ al )+ 1= al = a

V2 V2

» She sends qubit A’to Bob, then they can measure the qubits in their

| (D+>AA’ —

possession randomly in the (computational) Z = {|0),|1)} or (conjugate)
X={|+),|—)} Pauli basis.
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| @) can be either written in the X or Z basis:

» Alice measures in the Z basis:

50 % prob: [0),
50 % prob: | 1),

eigval +1

>

>
eigval -1

D" p —

D) p —

0)4
DA

0)4
1)y

[0)A10)p+ [ 1)411)5

|(D+>AB —

V2

[ F)al )+ =4l = )5

V2

» Alice measures in the X basis:

50 % prob: | + )4
50 % prob: | — ),

eigval +1

>

>
eigval -1

D) g = [+ )4l + )5

O ap = | = al = )5

» Bob after receiving the qubit A" — B can perform the same kind of measurements

» If Alice and Bob have randomly measured in the same basis, they successfully obtain a random

though correlated result, thus they can associate a random bit:

{10),| +)} — eigenvalue (+1) — 0

—

{I1),] =)} — eigenvalue (-1) — 1

Pauli eigenstates relation

1) -1-)

| 1)

NG
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QUBIT PREPARATION AND MEASURE

» To construct a bit string Alice prepares N pairs of qubits

N
_ +\(/)
) = ® | >AB
J=l
» Alice constructs two bit strings a and b

i-th measurementinZ — q,=0
a=(a,...,ay) = ,
i-th measurementin X — a. =1

eigenvalue (+1) in the i-th measurement — 5. =0
b=(by,....by) = -

eigenvalue (—1) in the i-th measurement — b, =1

» Bob constructs his own bit strings a’ and b’ as well



THEORETIC GROUP 4 CHRISTMAS WORKSHOP®:. : SECURITY OF QUANTUM KEY DISTRIBUTION 9

CLASSICAL COMMUNICATION AND POST-PROCESSING

1 2 3 4 5
» Alice and Bob publicly announce o 1 o
) ) ai
their choices of measurement a and
, o} 0 1 0 1 0
a
Alice’s basis Z X X Z X
» Ifa;, = a’, Alice and Bob have A qubit state [0)Y =) [+ 1) [+)
correlated, despite random, results " 0 1 0 1 1
I
—> They keep b; = b Bob's basis z X zZ X X
> I1f a, # ai/ : Alice and Bob have keep/discard v v | v
uncorrelated results, in general Ci= C| 0 1 : - 0

—> They discard b; and b;
The bits they keep form the secret key string ¢ = ¢’
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REAL-WORLD COMPLICATIONS: NOISE AND EAVESDROPPING

» In reality things are complicated due to the presence of noise and eavesdropping

No eavesdropping

>

—

Eavesdropping

- @ O

:

::
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In the real case Eve can intercept the qubit A’. The quantum system that Eve can

control is the entire environment E

‘\P>AA’® ‘¢>E — (IA X U[A’—)B]E) ‘\P>AA’® ‘¢>E — |®>ABE

The final state of the system AB

Pap = Trg ( |©)p(O] )
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pPasp €an be characterized by some constraints

» Ober (Quantum bit error rate)

Qber'” = Tr( [0)40] & | 1)p(1 \pAB) + Tr( [ 141 & 10)5(0 \PAB>

Qber<X>=Tr<\ + )+ | ® | = )p( — \pAB) +Tr<\ (= | ® |+ )p( + \pAB)

» | D7), is maximally entangled and qubit A does not evolve

The reduced density matrix 1

— . .
of A is completely mixed
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SECURITY PROOF - SECRET KEY RATE

I”N:V]

[ — lleak

N

» At the end of the protocol Alice and Bob share a bit string Z" and while EV is

Eve's system

» [ number of secret bits
» [,,.. number of bits leaked for error correction
» 1 transmittance of the channel

» N total number of rounds (block size)

» The problem: estimate how many bits in Z" are secret w.r.t. Eve
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The idea: if Eve's probabilitypgueSS(ZN\ E™) to guess Z" conditioned to her side information

E" is low, the protocol is secure against her attacks.

Left-over hash lemma

If Z" is Alice and Bob's string and Eve owns side information E about it, the number [ of random

bits in Z" on which Eve is completely ignorant about is given by: / ~ — log, pgueSS(ZN\ EN)

Collective attacks: if each qubit attack is identical and statistically independent, every qubit
measurement is represented by a i.i.d. random variable and the guessing probability

factorizes: pgueSS(ZN\EN) = [P (Z‘E)]N

guess
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Analytic form of the
guessing probability in
terms of the Ober (1
qubit):

Pguess

Guessing probability vs Quantum bit error rate

1 W

1
Peuess(@ber) ==+ \/Qber(1 — Qber)

> (.5

P guess —

Information-disturbance
trade-off
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Key rate vs Block size - Qber = 0.03 (distance: 10km)

— Guessing Probability
- -AE.P.

Guessing probability is

better w.r.t. A.E.P. when
one studies the security
at finite-size

For N < 10° one still

manages to have non-
vanishing key rate
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CONCLUSION

» Quantum Key Distribution represents the quantum answer to the
"quantum threat”

» Quantum cryptography aims to be everlasting i.e. no more depending
on the technological advance, being founded on inviolable laws of

physics

» Guessing probability outperforms traditional approaches in studying the
security of QKD at finite size
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THANK YOU FOR YOUR
AITENTION!
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BACKUP SLIDES
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Y random variable, Y ~ Py,

Shannon Entropy; H(Y)PY — Z Py()’) . 10g2 [Py(y)] Shannon: if an event occurs with

probability p, then its surprisal is

YeY —log, p. The entropy is the
average surprisal of an event

A quantum system, p, state —

H(Y)PY measures the uncertainty

Von Neumann EntrOpyI H(Y)PY = —1Tr (ﬂA IOg pA) (in bit) about the value of ar.v. Y,
distributed as Py
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ERROR CORRECTION LEAKAGE

» The outcome of Bob’s measurement on one qubit can be seen as a binary random
variable Y, distributed as Qber

e.g. Alice measures |®"), 5 in { 10), | 1)} and finds |0). Then

Bob will find:
Uncertainty about Y:

with probability p = Qber state | 1) (error occurred) H,(Qber) = — Qber - log,(Qber) — (1 — Qber) - log,(1 — Qber)

with probability g = 1 — Qber state |0) (error not occurred)

» Bob hasto communicate [, , = H,(Qber) bits of information to Alice to help her
correct her string
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PHOTONS AS QUBITS

» Qubits are photons in QKD protocols

» Polarization is the observable that is measured

o {l+)]=)} = {ID),[A)]
o, {10),|)} «—= {|H),[V)}

oy MDAV ) 1)

V2 V2

| D)

[A)
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Guessing probability can be obtained optimizing quantum fidelity on systems
A and B

pguess(Z‘E) = INnax F2 pAB ’ ZZ OAB Z] ) Fldellty
PAB > OAB
j
F(p,0) =Try [\/por/p = | 1\/pVell,
) N) _ ®N
Collective attacks: :0( ) — Pap
Li0yp) = ZZ] OsB 2 Zi=1,® e J=0,1

J

[1] Coles, Patrick J. "Unification of different views of decoherence and discord." Physical Review A 85.4 (2012): 042103.
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BLOCK CHARACTERIZATION OF FIDELITY

» A particular characterization of Fidelity for P, O € P(#') can be exploited to
write an SDP [?]

F(P, Q) =max{ Tr(X)| : XeE LX), (; g) eP(%@%}}
X

(; )Q(> EPXDOH) = X=+/PK\/O, |Kll,<]1

| Tr (X)| — Re[Tr (X)] = %Tr (X) + %Tr (X™)

[2] Watrous, John. The theory of quantum information. Cambridge university press, 2018.
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Discrete-variable (DV) Continuous-variable (CV)

Long range ( < 1200km ) Metropolitan range ( < 100km )

Non-trivial detection (high-efficiency . |
photon detectors, expansive cooling Mature detection techniques

systems required) (Coherent detection)

V)
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Quadrature Phase Shifting Key (QPSK)
a; = \a\exp[z(z+5])l j=0,1,2,3

;) = e—|a|2/22 ﬁ k)

k=0

Homodyne and Heterodyne detection
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—]

Based on hard-to-solve ALICE'S MESSAGE FOR BOB W

mathematical problems
(e.g. factorization of large
numbers)

ALICE'S PUBLIC KEY BOB'S PUBLIC KEY =

a E—
Asymmetrlc: CryptOgraphy: ALICE'S PRIVATE KEY WMB

RSA algorithm (Rivest, |
DECODED MESSAGE

Shamir, Adleman 1977) B




