
SECURITY OF QUANTUM 
KEY DISTRIBUTION

THEORETIC GROUP 🎄CHRISTMAS WORKSHOP🎅

Gabriele Staffieri 

g.staffieri2@phd.uniba.it 

17/12/2024

UNIVERSITÀ DEGLI STUDI DI BARI 
“ALDO MORO” 

Dipartimento Interateneo di Fisica 
“Michelangelo Merlin”

mailto:g.staffieri2@phd.uniba.it


CRYPTOGRAPHY: WHAT IS IT?

▸ The study of secure 
communication techniques in 
presence of adversarial behavior  

▸ Constructing and analyzing 
protocols that prevent third 
parties from reading private 
messages. 

▸ Applications: electronic 
commerce, instant messaging, 
military communications, etc.
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HOW DOES IT WORK?

▸ Protocols and algorithms 
are implemented to 
generate a private “key” 
string 

▸ The key is used by the 
sender and recipient to 
encrypt and decrypt the 
message
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B A B B O N A T A L E

0 0 1 0 0 1 1 1 1 0 1

Z Y G Z L S F Y F I J

Ruleset: 

shift 3 letters backward 

shift 5 letters forward

0 ⟶

1 ⟶

Plaintext ⟶

Ciphertext ⟶

Key ⟶
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CLASSICAL CRYPTOGRAPHY

▸ Security based on hard-to-solve mathematical problems (e.g. 
factorization of large numbers) 

▸ The computational complexity is too great even for most powerful 
calculators 

▸ Asymmetric cryptography: RSA algorithm (Rivest, Shamir, 
Adleman 1977)
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WHY QUANTUM CRYPTOGRAPHY?

▸ Quantum threat: quantum computers, 
have higher computational power 
and can easily break classical 
cryptosystems (e.g. Shor algorithm) 

▸ Quantum mechanics can be also 
exploited to build cryptographic 
protocols: Quantum Key Distribution 
(QKD)
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CLASSICAL 
CRYPTOGRAPHY

QUANTUM 
COMPUTERS

Problem

QUANTUM KEY 
DISTRIBUTION

Solution



BB84 PROTOCOL (BENNET, BRASSARD 1984)

▸ Goal: communicate a random bit of information (0 or 1) 

▸ Alice prepares a pair of entangled qubits 

▸ She sends qubit  to Bob, then they can measure the qubits in their 
possession randomly in the (computational)   or  (conjugate) 

 Pauli basis.

A′ 

Z = { |0⟩, |1⟩}
X = { | + ⟩, | − ⟩}
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|Φ+⟩AA′ 
=

|0⟩A |0⟩A′ 
+ |1⟩A |1⟩A′ 

2
=

| + ⟩A | + ⟩A′ 
+ | − ⟩A | − ⟩A′ 

2



▸ Alice measures in the  basis: 

▸ Bob after receiving the qubit  can perform the same kind of measurements 

▸ If Alice and Bob have randomly measured in the same basis, they successfully obtain a random 
though correlated result, thus they can associate a random bit:

Z

A′ ⟶ B

▸ Alice measures in the  basis: X

50 % prob:  |0⟩A
eigval +1

|Φ+⟩AB ⟶ |0⟩A |0⟩B

50 % prob:  |1⟩A eigval  -1
|Φ+⟩AB ⟶ |1⟩A |1⟩B

50 % prob:  | + ⟩A
eigval +1

|Φ+⟩AB → | + ⟩A | + ⟩B

50 % prob:  | − ⟩A eigval  -1
|Φ+⟩AB → | − ⟩A | − ⟩B

|Φ+⟩AB =
|0⟩A |0⟩B + |1⟩A |1⟩B

2
=

|+⟩A |+⟩B + | − ⟩A | − ⟩B

2
 can be either written in the  or  basis:|Φ+⟩ X Z
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{ |0⟩, | + ⟩} ⟶ eigenvalue (+1) ⟶ 0

{ |1⟩, | − ⟩} ⟶ eigenvalue (−1) ⟶ 1
⟹ |0⟩ =

| + ⟩ + | − ⟩

2
|1⟩ =

| + ⟩ − | − ⟩

2

Pauli eigenstates relation



▸ To construct a bit string Alice prepares  pairs of qubits 

▸ Alice constructs two bit strings  and  

▸ Bob constructs his own bit strings  and  as well

N

a b

a′ b′ 

a = (a1 , . . . , aN) ⟹

b = (b1 , . . . , bN) ⟹

i-th measurement in Z ⟶ ai = 0
i-th measurement in X ⟶ ai = 1

eigenvalue (+1) in the i-th measurement ⟶ bi = 0
eigenvalue (−1) in the i-th measurement ⟶ bi = 1
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QUBIT PREPARATION AND MEASURE

|Ψ⟩ =
N

⨂
j=1

|Φ+⟩( j)
AB
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CLASSICAL COMMUNICATION AND POST-PROCESSING

▸ Alice and Bob publicly announce 
their choices of measurement  and 

 

▸ If  , Alice and Bob have 
correlated, despite random, results   

   They keep   

▸ If  , Alice and Bob have 
uncorrelated  results, in general         

   They discard  

a
a′ 

ai = a′ i

⟹ bi = b′ i

ai ≠ a′ i

⟹ bi and b′ i

1 2 3 4 5

ai 0 1 1 0 1

bi 0 1 0 1 0

Alice’s basis Z X X Z X

A qubit state ｜0 〉 ｜⎻ 〉 ｜+ 〉 ｜1 〉 ｜+ 〉

a’i 0 1 0 1 1

Bob’s basis Z X Z X X

keep/discard ✅ ✅ ❌ ❌ ✅

ci = c’i 0 1 - - 0

The bits they keep form the secret key string  c = c′ 
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REAL-WORLD COMPLICATIONS: NOISE AND EAVESDROPPING
▸ In reality things are complicated due to the presence of noise and eavesdropping

A
A’

B

No eavesdropping

A
A’

B
E

Eavesdropping

A
|0⟩A′ 

B
|0⟩B

Noiseless

A
|0⟩A′ 

B
|?⟩B

Noisy
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▸ In the real case Eve can intercept  the qubit . The quantum system that Eve can 
control is the entire environment  

▸ The final state of the system 

A′ 

E

AB

|Ψ⟩AA′ 
⊗ |ϕ⟩E ⟶ (1A ⊗ U[A′ →B]E) |Ψ⟩AA′ 

⊗ |ϕ⟩E = |Θ⟩ABE

 System  is isolated⟹ ABE
 The overall evolution is unitary⟹

ρAB = TrE ( |Θ⟩ABE⟨Θ |)

A B

E
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▸  (Quantum bit error rate) 

▸    is maximally entangled and qubit A does not evolve

Qber

|Φ+⟩AA′ 

  can be characterized by some constraintsρAB

Qber(Z) = Tr( |0⟩A⟨0 | ⊗ |1⟩B⟨1 |ρAB) + Tr( |1⟩A⟨1 | ⊗ |0⟩B⟨0 |ρAB)
Qber(X) = Tr( | + ⟩A⟨ + | ⊗ | − ⟩B⟨ − |ρAB) + Tr( | − ⟩A⟨ − | ⊗ | + ⟩B⟨ + |ρAB)

ρA =
1
2

1A
The reduced density matrix 
of A is completely mixed

⟹
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SECURITY PROOF - SECRET KEY RATE

▸ At the end of the protocol Alice and Bob share a bit string  and while  is 
Eve’s system 

▸ The problem: estimate how many bits in  are secret  w.r.t. Eve

ZN EN

ZN

▸  number of secret bits 

▸  number of bits leaked for error correction 

▸  transmittance of the channel 

▸  total number of rounds (block size)

l

lleak

η

N

13

  rN = η( l − lleak

N )
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▸ The idea: if Eve’s probability  to guess  conditioned to her side information 
 is low, the protocol is secure against her attacks. 

▸ Left-over hash lemma 

▸ Collective attacks: if each qubit attack is identical and statistically independent, every qubit 
measurement is represented by a i.i.d. random variable and the guessing probability 
factorizes:   

pguess(ZN |EN) ZN

EN

pguess(ZN |EN) = [pguess(Z |E)]N

GUESSING PROBABILITY
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If  is Alice and Bob’s string and Eve owns side information  about it, the number  of random 
bits in  on which Eve is completely ignorant about is given by: 

ZN EN l
ZN l ≃ − log2 pguess(ZN |EN)

14



▸ Analytic form of the 
guessing probability in 
terms of the  (1 
qubit): 

▸  

▸ Information-disturbance 
trade-off

Qber

pguess ≥ 0.5

GUESSING PROBABILITY AND QBER

15

pguess(Qber) =
1
2

+ Qber(1 − Qber)
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GUESSING PROBABILITY VS ASYMPTOTIC EQUIPARTITION PROPERTY 

▸ Guessing probability is 
better w.r.t. A.E.P. when 
one studies the security 
at finite-size 

▸ For  one still 
manages to have non-
vanishing key rate

N ≤ 105
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CONCLUSION

▸ Quantum Key Distribution represents the quantum answer to the 
“quantum threat” 

▸ Quantum cryptography aims to be everlasting i.e. no more depending 
on the technological advance, being founded on inviolable laws of 
physics 

▸ Guessing probability outperforms traditional approaches in studying the 
security of QKD at finite size
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THANK YOU FOR YOUR 
ATTENTION!
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BACKUP SLIDES
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TOOLS OF QUANTUM INFORMATION THEORY: ENTROPY

▸  random variable,   

▸  quantum system,   state

Y Y ∼ PY

A ρA

THEORETIC GROUP 🎄CHRISTMAS WORKSHOP🎅 : SECURITY OF QUANTUM KEY DISTRIBUTION

H(Y)PY
= − ∑

y∈𝒴

PY(y) ⋅ log2[PY(y)]Shannon Entropy:

Von Neumann Entropy: H(Y)PY
= − Tr(ρA log ρA)

Shannon: if an event occurs with 
probability , then its surprisal is 

. The entropy is the 
average surprisal of an event  

 

 measures the uncertainty 
(in bit) about the value of a r.v. , 

distributed as 

p
−log2 p

⟹

H(Y )PY

Y
PY
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ERROR CORRECTION LEAKAGE

▸ The outcome of Bob’s measurement on one qubit can be seen as a binary random 
variable , distributed as  

▸ Bob has to communicate  bits of information to Alice to help her 
correct her string

Y Qber

lleak = H2(Qber)
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e.g. Alice measures  in  and finds . Then 
Bob will find: 

‣ with probability  state  (error occurred) 

‣ with probability  state  (error not occurred)

|Φ+⟩AB { |0⟩, |1⟩} |0⟩

p = Qber |1⟩

q = 1 − Qber |0⟩

Uncertainty about :Y
H2(Qber) = − Qber ⋅ log2(Qber) − (1 − Qber) ⋅ log2(1 − Qber)
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PHOTONS AS QUBITS

▸ Qubits are photons in QKD protocols  

▸ Polarization is the observable that is measured

|H⟩

|V⟩

|D⟩

|A⟩

σx : { | + ⟩, | − ⟩} ⟷ { |D⟩, |A⟩}

σz : { |0⟩, |1⟩} ⟷ { |H⟩, |V⟩}

|D⟩ =
|H⟩ + |V⟩

2
|A⟩ =

|H⟩ − |V⟩

2
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GUESSING PROBABILITY AS FIDELITY (  QUBIT PAIR ) N = 1

▸ Guessing probability can be obtained optimizing quantum fidelity on systems 
 and  

▸ Collective attacks:

A B

[1] pguess(Z |E) = max
ρAB , σAB

F2( ρAB , ∑
j

Zj σAB Zj )

Z{σAB} = ∑
j

Zj σAB Zj Zj = 1A ⊗ | j⟩B⟨j | j = 0,1

F(ρ, σ) = Tr ρσ ρ = | | ρ σ | |1

Kraus-Sudarshan operators  completely positive mapZ

Fidelity

[1] Coles, Patrick J. "Unification of different views of decoherence and discord." Physical Review A 85.4 (2012): 042103.

23

ρ(N)
AB = ρ⊗N

AB
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BLOCK CHARACTERIZATION OF FIDELITY

▸ A particular characterization of Fidelity for  can be exploited to 
write an SDP 

P, Q ∈ P(ℋ)
[2]

F(P, Q) = max
X { |Tr (X) | : X ∈ L(ℋ), ( P X

X† Q) ∈ P(ℋ ⊕ ℋ}}
( P X

X† Q) ∈ P(ℋ ⊕ ℋ) ⟺ X = PK Q, ||K||∞ ≤ 1

|Tr (X) | ⟶ Re[Tr (X)] =
1
2

Tr (X) +
1
2

Tr (X†)

[2] Watrous, John. The theory of quantum information. Cambridge university press, 2018.
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DISCRETE-VARIABLE AND CONTINUOUS-VARIABLE  QKD PROTOCOLS
▸ Discrete-variable (DV) 

▸ Long range (  ) 

▸ Non-trivial detection  (high-efficiency 
photon detectors, expansive cooling 
systems required)

≤ 1200km

▸ Continuous-variable (CV) 

▸ Metropolitan range (  ) 

▸ Mature detection techniques 
(Coherent detection)

≤ 100km

|H⟩

|V⟩

|D⟩

|A⟩

|α⟩
ℐm(α)

ℛe(α)
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CV PROTOCOLS WITH DISCRETE MODULATION (DM-CV-QKD)

▸    Quadrature Phase Shifting Key (QPSK) 

▸     

▸     

▸    Homodyne and Heterodyne detection

αj = |α |exp[i(
π
4

+
π
2

j)] j = 0,1,2,3

|αj⟩ = e−|α|2/2
∞

∑
k=0

αk
j

k!
|k⟩

|α0⟩

ℐm(α)

ℛe(α)

|α2⟩ |α3⟩

|α1⟩
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CLASSICAL CRYPTOGRAPHY

▸ Based on hard-to-solve 
mathematical problems 
(e.g. factorization of large 
numbers) 

▸ Asymmetric cryptography: 
RSA algorithm (Rivest, 
Shamir, Adleman 1977)
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ALICE’S MESSAGE FOR BOB BOB’S MESSAGE FOR ALICE

ALICE’S PUBLIC KEY BOB’S PUBLIC KEY

ENCODED MESSAGE ENCODED MESSAGE

ALICE’S PRIVATE KEY ALICE’S PRIVATE KEY

DECODED MESSAGE DECODED MESSAGE


